
P H YS I CAL R EV I EW VOLUME 117, NUMBER 2 JANUARY 15, 1960

Wave Functions and Effective Hamiltonian for Bloch Electrons in an Electric Field
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(Received August 3, 1959)

Following up an earlier communication, wave functions are
constructed which satisfy the Schrodinger equation for a potential
which is a sum of a periodic and a uniform field term. The wave
functions are Houston modiGcations of Bloch type functions; the
Bloch functions form an orthogonal set whose members are fully
determined except for phase. The theory exhibits them in the form
of power series in the Geld strength; the unmodified Bloch band
functions form the zero order term of that series. The solutions
themselves do not allow for a Zener effect, but the fact that they
are only given as power series in E may imply that there is a
remainder term causing interband transitions; it would have to
be asymptotically smaller than any power of E. Instead of con-
structing time dependent solutions of the Schrodinger equation

one can take the time independent functions to construct an
effective Hamiltonian for electrons in one band; it has the form
(16). Certain indeterminacies are attached to this form of repre-
sentation; it is shown, however, that Gnal physical answers are
unique. The study furnishes an incidental proof that k-space is a
finite space consisting in its entirety of what is customarily called
the Grst Brillouin zone. An appendix treats the case of degenerate
bands; such bands have singularities in k-space even in the absence
of a Geld. The difFiculty is circumvented by working with a set
which is not yet diagonalized but free of singularities; these inter-
mediate functions can be continued as power series in E in the
same way as nondegenerate band functions.

1. INTRODUCTION
' 'N a recent paper, Kohn' has studied the motion of
& - an electron moving under the simultaneous inQuence
of a periodic potential and a uniform magnetic field.
He showed that the nondegenerate bands originating
from the periodic field can be modified in such a way
that an electron moves only within one band under the
inQuence of the applied 6eld. The motion is describable
by an effective Hamiltonian typical for that band. The
Hamiltonian is obtained as a power series in the mag-
netic field II; it is perhaps only semiconvergent in that
variable.

The result of Kohn is very probably due to the fact
that a uniform. magnetic 6eld preserves the periodicity
of the medium. It would then. appear a priori probable
that a uniform electric field has the same properties.
It is the purpose of this paper to prove the correctness
of this view and to derive this Hamiltonian. It will be
seen that the derivation can be given quite a short and
transparent form. It is hoped that this feature will
throw some light on the magnetic case and open the way
for a simpler derivation of Kohn's results.

The philosophy of constructing an effective Hamil-
tonian is to abandon temporarily the usual preoccupa-
tion with the eigenfunctions of the Hamiltonian. The
result sought is still to contain side by side noncommut-
ing variables; however, these variables must be such as
to commute with the band index. To achieve this, one
mulct primarily look for a base in which interband ele-
ments can be absorbed easily into the intraband part of
the Hamiltonian. As this absorption is carried out the
effective Hamiltonian gradually reveals itself as a
power series in E.

The Hamiltonian to be studied has the form,

K=-,'y'+ V(x) —Z~x.

Here V(x) is a potential periodic in x with periods

' W. Kohn, Phys. Rev. 115, 1460 (1959).

a, b, c. Units have been chosen here in which 5=m = 1
and in which e is absorbed in the electric 6eld. The last
term of (1) is the one coupling the bands. It will be
shown that the decoupling of the bands is achieved by
the equation

L-', p'+ V(x) —E(x+i8/Bk, )$8 (x; k)
=W(k)B(x; k), (2)

which was proposed by me in 1955.' The properties of
this equation and of its solutions will be studied in
great detail in Part 2 since statements challenging its
validity are actually in the literature. ' In Part 3 the
decoupled band functions are used as a base to derive
equations of motion. For a nondegenerate band these
equations have Hamiltonian form. The limitations of
this formalism will be discussed. In Part 4 the states of
constant energy of the Hamiltonian (1) will be studied
and their connection with (2) analyzed.

2. THE WAVE FUNCTIONS

It should be said at the outset that Eq. (2) can only
apply as it stands to nondegenerate bands. Generaliza-
tions of it must be written down if a number of bands
share degenerate points. Since these generalizations are
not representable by a quasi-classical Hamiltonian for-
malism of the type proposed here, they will be dis-
cussed in an appendix. In the main text the assumption
of nondegeneracy will therefore be made.

I have found in the past that a heuristic justification
of Eq. (2) is rarely convicing until the nature of the
solutions is fully grasped. The difhculty is connected
with the operator Q/Bk, . It is best to consider it at first
simply' as a derivative with respect to k, of a Bloch
type function depending on x, y, s, k, k„, k, . Adams'
has understood Q/Bk, to mean di6'erentiation with re-
spect to k, in the basic set of unperturbed wave func-

' G. H. Wannier, Phys. Rev. 100, 1227 (1955);101, 1835 (1956).
The equation proposed there for the case of a magnetic field is false,' E. N. Adams, Phys. Rev. 107, 698 (1957).
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B,(x; k)=P b, (")(x k)E"
v=0

(3)

tions, and assumed the operator to be given by its
transform in Hilbert space for other functions. With
this interpretation decoupling is indeed only achieved
to second order in 8, as he points out. Once this point is
clear it would appear that the definition is circular,
because unless the Eq. (2) has Bloch type solutions, the
operation c)/Bk, is entirely meaningless. A second ques-
tion that needs an answer is the nature of the quantity
W(k). Its status as an eigenvalue is questionable be-
cause it is sensitive to the phase of 8; when 8 is multi-
plied by a phase factor e'~(+. W(k) acquires an additive
term E94/Bk .

To answer these questions we convert Eq. (2) into
a recursion relation proceeding in powers of K This is
the essentially new step over the previous publication
on this subject. ~ Let us de6ne

particular a function of the type assumed in Theorem 1
will have an expansion

b, '"'(x; k) =g, b, (x; k)p„("'(k),

involving the same wave vector k only. Substitution of
this into (6) yields

(w, —w, )p„(")= b,*(x+i()/()k,)b, (" "dr

+Q w (v)p (n—v) (8)
v=1

Each equation contains only one unknown of order e.
If sQq the term on the right containing m, &"& vanishes
because P„(0)=b„. On the other hand, the coeKcient
on the left for P„'") is different from zero in that case,
thanks to the assumption of nondegeneracy made for
the band q. Hence solution with respect to it is always
possible. For s= q Eq. (8) takes the form

W, (k) =g w, (")(k)E".
v=0 0= ~ b,*(x+i8/Bkn)b, (" "dr+w '")(43

Here b, "& and m, &" are the qth band eigenfunctions and
eigenvalues of the problem

Pi2p'+ V(x) }b,(x; k) =w, (k)b, (x; k).

We shall usually orbit the upper index 0 for these
quantities. Through the choice of the starting function
b, the quantities 8 and 8" become also indirectly func-
tions of q and are so designated in (3) and (4). If we
substitute (3) and (4) into (2) and annul powers of A'

we get

(v)p (n—v) (9)

This equation is clearly soluble with respect to its only
unknown m, (").

In order to carry out the same reasoning for de-
generate bands the Eqs. (6) must first be generalized.
This generalization, together with the feasibility proof,
is found in Appendix I. We now continue with

Theorem 2
(-'p'+ V—w }b,("'= (x+iB/Bk, )b, (" "

There is enough freedom in the recursion system (6) to
allow maintenance of normalization to every power in E.

(v)b (n—v) (6)
Proof

It is seen that Eq. (6) removes the circular character
from the Eq. (2). The operator (x+iB/Bk, ) operates
now on a function already krone from the preceding
recursion step. If we assume b, &" ') to have Bloch char-
acter with wave vector k, then operation on it with
(@+i()/c)k,) retains that character; hence the entire
right-hand side has that character also. We can there-
fore state:

Theorem I

The Eqs. (6) define at every stage a feasible recursion
system, that is, a quasi periodic function-b, "'(x; k, ) of
wave vector k and a number w, (")(k) can be found satisfy
ing the nth recursion relation (6).

Proof

Since the eigenfunctions of (5) form a complete set,
other functions can be expressed in terms of them. In

It is seen from (8) and (9) that there is no deter-
mining equation for the coeKcients P«('). This is to be
expected in a perturbation calculation. Now the eth
normalization condition reads

(b *b (n)+b o)&b (n—i)+b (&)ib (n—&)

+ b ("'*b )dr=0. (10a)

It is of the form

P«'")+P« "'*+(a known real expression) =0, (10b)

and thus determines the real part of p«'"'.
This normalization procedure is more important here

than in related problems. For we have introduced in
(2) the operator iB/8k. Its conjugate complex io/Bk-
will be its adjoint only within an orthonormal set.
Thus by imposing normalization on 8, we make its
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defining operator Hermitian for this particular 8,. This
in turn will make W, (k) real. This reality is not directly
evident from Eq. (9) which determines successive co-
efficients of the series (4).

We now come to the central theorem of Part 2:

Theorem 3

The wave function B,(x; k) is unique, except for a
phase factor which can be a function of k and E.

Proof

It follows from the Eqs. (8) and (10) that the only
indeterminacy left in the eth approximation is the
imaginary part of P«& &. It will lead to a term of the
form

iv (")8"b

added to the wave function. Instead of adding this
term at the eth stage we may multiply instead the
zero-order wave function with a factor

expPiy, i"&E"j,
and keep P«&"& real. The result will be a phase factor
multiplying the entire wave function whose exponent
is a power series in E, and a determinate set of co-
efficients P„'i"&. To make the proof complete we must
show in addition that the quantities b, |'") which are
unique functions of b, ") are only Inultiplied by a phase
factor if b,"' is so multiplied. Indeed, if b, &" is altered
by a factor ~e&~ w&, &'& from (9) increases by the addi-
tive constant c&C/c&k, . The invariance of the b&"&'s is then
seen from (6) and (9):the other w, &"&'s remain the same
and the extra term in c&b, i" "/c&k, cancels at each stage
with the extra contribution from mr, &". This proves the
theorem.

From what has been said earlier the idea of eigen-
states forming a complete set is not obviously associated
with Eq. (2) because W, appears as a redundant vari-
able capable of being transformed away. Yet some sort
of completeness is needed if we want (2) to given an
exhaustive description of electronic behavior in the
presence of a field. The conversion of (2) to the recur-
sion form (5) produces here a radical change which may
be expressed in

Theorem 4
Two solutions B, and B, of (3) and (6) which are

associated with different band solutions of (5) are or
thogonal to each other in all powers of E.

Proof

We form Green 's identity between a solution 8, of
(2) and a solution B,* of the conjugate complex equa-
tion. We get

8'

iE t'B,*Bpdr= (—Wp W,))IB,*Bpdr. (1—1)
ak.J

The term on the left arises from the nonhermitian char-
acter of the operator ic&/c&k, and is sufficient to invali-
date orthogonality for arbitrary solutions of (2). How-
ever, the situation is quite diGerent for our special
solutions arising from the recursion system (6). To see
this we replace 8,*,8„8'„lV,by their power series
expansions in E, and annul separately each power of If

in (11). Let us denote by O„t"&E" the terms in the
orthogonality integral containing the eth power of E,
that is explicitly

r

0 i"& = (b, &"&*b 1b &"—»*b &»

+ . .+b,*b,& "&)dr. (12)

Then Eq. (11) takes the form

i80„'" '&/—ctk = (w, —w)0„&"

+Q (w &"&—w, ~"&)0, '" "'. (13)
v=1

This is a recursion system in the quantities 0„(")with
a nonvanishing coe%cient for the highest order term
at every stage. Hence, having started with an 0„"'
equal to zero we find all quantities 0„"equal to zero.

The proof given here must be generalized to cover
degenerate bands. In Appendix II the proof will be
found for the proposition that a solution of (3) and (6)
is orthogonal to all degenerate Sloch-like functions
evolved from a partially degenerate base by the pro-
cedure of Appendix I. One can also show that separate
degenerate band systems are orthogonal to each other.
Within a band system sharing degeneracy points
orthogonality is of course not entirely automatic.

It follows from the preceding theorems that we are
in possession of a complete set of Sloch like functions,
insofar as their orthogonality and continuity with the
complete set b, guarantees this property. These Bloch
functions obey Eq. (2). It is possible to terminate this
development very straightforwardly by constructing
Houston type4 wave functions from them. They are

e(x,t) =B,(x; kp+Et, k„, k,)

&&exp i W,—(kp+Et, k„, k,)dt . (14)
J

These functions obey

Theorem 5

The expressions %(x,t) defined in Eq. (14) obey the

time dependent Schrodhnger equation associated with the

Hamiltonian (1) to all powers of E; the two positions at
which E occurs multiplied with t are not to be included in
this expansion

4 W. V. Houston, Phys. Rev. 5?, 184 (194Ol.
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Proof

We get from (1) and (14)

takes the form

(q~X)q)=W, (k) —E r, (16)

(X—ia/ai)e= exp i— W, (k,+Et, k„, k,)dt

X L-', p'+ V—Ex—W, (ks+Et, kv, k,) ir)/—r)k,5

XB,(x; kp+Et, k„, k,).

The square bracket is the operator in (2); hence the
expression equals zero to all powers in E. The distinc-
tion between E occurring alone (or more precisely
divided by an energy denominator) and E occurring
multiplied with I, is familiar from Kohn's work'; in his
case Bwas treated as small unless it occurred multiplied
with x.

3. THE HAMILTONIAN

In order to develop an eGective Hamiltonian for elec-
trons located in the nondegenerate band q we refrain
from the last step of Part 2. We do not integrate the
Schrodinger equation with respect to time but use
instead the wave functions 8, as a base in which to
express the equations of motion for the dynamical
variables.

In order to do this we must take a fundamental step.
Up to now ir)/r)k, was—defined as a straight derivative.
It is not in general a Hermitian operator. However with
respect to the basic functions 8, it has as its adjoint
operator +i8/elk, Henc. e we can now introduce the
lattice vector operator for this set by the definition

rB,(x; k) = i(cl/ak)B—,(x; k). (15)

The adjoint form is +it)/elk. Outside the basic set of
the 8,'s r is to be considered defined by the normal
transformation properties of Hermitian operators. The
operator r is particularized among all possible operators
conjugate to the wave vector k in that it must also
commute with the band index q in the set on which it
is defined. ~ Its eigenvalue spectrum is the totality of all
possible lattice vectors of the crystal; these eigenvalues
are realized through the so-called Wannier functions.
In our present study the operator R r forms the dif-

ference between the true Hamiltonian occurring in Eq.
(1) and the defining operator for the wave functions in

Eq. (2). This latter operator is simply W, (k) in the set
of wave functions 8, and has no interband elements to
finite powers of E. Since r has no interband elements
either the entire Hamiltonian is free of interband terms
Lexcept for degeneracies already present in (5)5. In
particular, the projection (q ~

K
~ q) of K into the band q

5 G. H. Wannier, Elements of Solid State Theory E'Cambridge
University Press, New York, 1959), pp. 173-177.' G. H. Wannier, Phys. Rev. 52, 191 (1937);J. C. Slater, Phys.
Rev. 76, 1592 (1949).

This yields for X, from (15)

XB,(x; k) = (x+Q/elk)B, (x; k).

X is a periodic operator which conserves k. We can say
a posteriori that it enters into the defining Eq. (2) of
8,. It arises because the center of gravity of a Bloch
function does not always coincide with a lattice point
but has a definite shift for each q and k which equals

(q,k i Xi q, k) =X,(k). (21)

In the presence of a field this shift in position produces
an energy shift with respect to which the functions 8,

VAs an illustration of this indeterminacy we may modify
b(x; it) by multiplication with e'"'a, where a is some vector of
the Bravais lattice. It is then seen that all Wannier functions are
shifted by this vector a from their fiducial positions. The lattice
vector operator r thus can convey a certain amount of misin-
formation which is not present in the basic wave functions.' E. N. Adams, J. Chem. Phys. 21, 2013 (1953);R. Karplus and
J. N. Luttinger, Phys. Rev. 95, 1154 (1954).

where W, (k) is given by (2) and r by (15).
Since the expression (16) explicitly contains the con-

jugate variables k and r equations of motion are im-
mediately written down:

dk/dt = (1/i) (Kk—ac) = E, (17)

dr/dt = (1/i) (Kr—rX) =c)W,/elk. (18)

These equations are of Hamiltonian form with W, (k)
playing the role of an effective kinetic energy.

In principle, the subject could be dropped at this
point. However, the Eqs. (15)—(18) have certain un-
satisfactory features which must be taken up to get
physical understanding. The wave functions are unique,
but the function W, (k) is not. It was pointed out al-
ready that multiplication of B,(k) by a factor e'e'~'

modifies W, by an additive term Er)C/Bk . This in-
determinacy arises from an intrinsic indeterminacy in
the definition of the lattice vector operator r.' The
present instance is an example of this; while (17)
is a well known universal relation (18) refers to an
imperfectly defined operator; the identification of dr/dt
with the expectation value of the velocity is therefore
debatable.

A simple way to shed light on this question is to
calculate the intraband matrix elements of the true
velocity. In other words we write

(q[~x/«i q) = (1/')(ql5('x-x5('i q)
= (1/i)PC, (q(x[q) —(q[x[q)K,).

Here(q~ x~ q) and(q( dx/dt)q) are the projections of these
operators into the subspace g. We now employ for x the
decomposition' '

x= r+X.
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(q, k
l
dx/dt

l q, k') =by, g

flW, (k) flX, (k)
+g

Bk Bk.
(23)

or in components, using (2)

are dined self-consistently. This same interpretation
will be helpful in the discussion below.

We see that with (16) and (19) both K, and (ql xlq)
are decomposed into two terms, one a function of k, the
other of r. As corresponding terms commute the com-
mutator of x and BC, takes the form

(q l
d x/dt

l q) = (1/i) {W,r—rW, }
—(E/i) (r.X,—X,r,}. (22)

The result is

k, varies linearly in time and X is periodic in reciprocal
space. Hence the two types of velocities are com-
patible as arising from two position vectors differing
locally.

The question arises whether we can dispose of the
phase in 8, in such a way that the similarity between
(18) and (23) becomes greater. An approach to this is
suggested by the fact that Eq. (24) has obvious Hamil-
tonian form. We may dispose of the phase in 8, in
such a way as to make (24) coincide with the corre-
sponding Eq. (18). This is done by making the com-
ponent of X, a constant along the field direction. To do
this we make the substitution

dh, (k) 8
&q, kllp'+Vlq, k&,

dt Bk
(24)

B,~B, exp i dx fX,(x,k„,k,)—X,(k„,k,)}. (26)

dr,
(q, kll1'+Vlq, k),

dt Bk
(27)

Equations (24) and (25) are independent of the phase
of B,. In (24) this is self-evident. To prove it for (25)
we start out with (20) and (21) (28)

Here X, is defined by (20) and (21) and X, is its aver-
d3's(k) fl, , t'flVs(k) rlXs(k) ) age along k, for fixed k„and k, .' This brings (18) in

(q, kl-:I'+ VI q, »+&I
dt clk„E ilk, rfk„

(25)

X,(k) = "B,*(xyia/al )B,d, .

Now set

Then we get
8,—+ e'~B„

X, -+ X,—cfC/elk„

F', —+ F', cfC/rfk„—
(ffX,/rfk„) (BF,/elk,—) ~ (flX,/ak„) —(BV,/Bk.),

which proves the proposition.
It is also true that the equations (24) and (25) agree

with (18) when averaged over time. The difference be-
tween the two velocities is seen from (23) to equal

p &"' = real.

Let us also introduce the definitions

(29)

There is now exact agreement of (27) and (24). How-
ever, (28) and (25) still differ by a term which averages
to zero in time.

We shall conclude this part by carrying out the
power series expansions of 8, and W, a certain way,
proceeding to square terms in Eq. (3) and to cubic terms
in Eq. (4). The equations employed are (8), (9), and
(10). For simplicity we shall make the system deter-
minate by the phase prescription indicated under
Theorem 3.

dx dr clX—jV

dt dt ak. ~
b,*(x+iB/Bk,)b,dr= (sl )is). (30)

This quantity is zero when averaged over time because We find then with sWq

(31)

P (0) —1 (32)

p is) —0 (33)
It is very suggestive to leave off the term I, in (26). The expressions in the rest of this chapter would then become much simpler

since X, and X~ can then be replaced by 0 in the rest of this discussion. That this is incorrect is proved from the equation of motion (28)
which does then not reproduce (25) in the mean. The error committed in leaving o6' X~ is that B~ ceases to be periodic in reciprocal
space; this requirement seems to me essential a priori because k is defined through the lattice displacement operators exp(ik g) with ga lattice vector. Distinction of different cells in reciprocal space is not consistent with this de6nition. It is gratifying to see this view-
point on this somewhat controversial question con6rmed here in the sense that the looser interpretation of the meaning of k space
gives actually wrong results. The error would also be very serious in Part 4, which deals with stationary states. Allowing a phase shift
upon return to the starting position in k 'space is perhaps tolerable for a moving wave packet but makes the selection of constant
energy wave functions quite impossible.
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w &') = —(q I p I q)

P ii) —0

(slxlq)
8q

(34)

(35)

(36)

rQq ZV r 78q

P (2) 1
l(rl xl q)l'

~q (w„—w, )'

(37)

(38)

(sl*lr)(rl xl q) ((sl mls)
—

(ql &I q)) (sl xl q)
P.q")= 2

res, q (w, —w, )(w„—w, ) (w, —w, )'
(slxl q)

K'g —'Rq &kg 'Mg —K'q
(39)

(qlxls)(slxlr)(rlxlq)

swq, rwq, rwa (w~ wq) (wt wq)

I (ql xlr) I'((r
I & Ir) —(ql &I q))

(w„—w, )'

(ql xlr)L&(r
I
xl q)/». j—I &(ql xlr)/». j(r I

xl q)
+si P— (40)

rgq (w, —w, )'

One can verify that the phase dependencies in the second
and third term of (39) cancel as proved earlier for the
wave functions generally. Phase independence holds
actually for all terms m, &") except mq&'& as was already
discussed in connection with Theorem 3. All other in-
determinacies of the mq~")'s are suppressed here through
Eq. (29). It is clear that the expression for W derived
from (29) is not the same as the one suggested by Eqs.
(27) and (28). In crystals with a center of symmetry
all matrix elements (30) can be made to vanish by a
suitable choice of phase. "The first order pseudoenergy
m &') is then zero and corresponding simplifications arise
later in the sequence.

We see from this discussion that a Bloch electron
acted upon by a uniform electric field has an effective
Hamiltonian of the form (16).It has a field term of the
usual type and a new kinetic energy term which equals
the band energy function w, (k) for small field. If this
function is modified for larger fields in a certain way
interband elements are suppressed to all powers in K
The modification contains a certain amount of inde-
terminacy. The expressions (31), (34), (37), and (40),
together with (4) define one of the possible explicit
forms of the effective kinetic energy W, (k). It is
possible that the effective Hamiltonian so obtained is
only asymptotic for small fields and that interband ele-
ments are not really absent from the full Hamiltonian.

4. ENERGY STATES

Energy states in the electric field case do not have
much intrinsic interest because they are a priori known
to be not normalizable and hence not truly stationary.
We wish to discuss them mainly to show their relation-

'q W. Kohn, Phys. Rev. 115, 809 (1959).

ship to the wave functions Bq(x; k) discussed in Part 2.
This discussion proceeds more easily in one dimension,
to which discussion will at first be limited.

It is well to show up first the status of Eq. (2) in the
constant energy problem. Suppose we assume a con-
stant energy solution for the Harniltonian (1)

,'p'+ V Ex]-A (x) =—hA (x).

I et the period of V be d, that is

V(x+d) = V(x).

(41)

B(x k) =Q e'""~A(x rid)—(42)

I,et this be for the moment a formal operation. Then 8
obeys the equation

,'Ps+ V Z(x+~/a-k) )~=—@73,

which is a special case of Eq. (2).
To prove the existence of 8 we must supplement the

formal manipulations with a convergence proof for the
series (42). To do this we must know the behavior of
A for large x. For such values V is negligible compared
to Ex and the behavior is of the free electron type. This
means good convergence in the up field direction, and

Then A(x+d) is also a solution of (41) with energy
8+Ed. This is the familiar "Stark ladder" associated
with constant energy solutions of (41). It is the image
of the periodicity of the Houston functions in k space,
which through k=kq+Et, becomes a periodicity in
time. Now superimpose the solutions of (41) in the
following way
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behavior as
exP[axsi(2E) &xtg

A~ )
x&

(43)

in the down fieM direction. The contributions to the
series (42) from large tt diminish therefore in magnitude
and oscillate more and more rapidly in phase, hence
converge. Thus an existence proof for Bloch type solu-
tions of (2) has been given. There is to be sure no proof
that these solutions are identical with the power series

type of Part 2. It would be, however, a very surprising
accident if the solutions which were proved to exist
here were somehow diferent from the power series
solutions which we constructed explicitly in Part 2.

If the reader permits me to make this identification
then the connection just made can be inverted. We can
Fourier analyze the solutions (14) with respect to time
to get the energy. These solutions are quasi-periodic in
k =kp+Et with period 2sr/d and Floquet factor

~27r/d

exp —— W, (k„k„,k,)dk, .
0

The energy values are therefore

~ ~/d

h, (tt) =— W, (k)dk+ ttEd.
2sl Q

(44)

This is again the Stark ladder discussed previously with
a definite value for the energy constant. The constant is
phase independent if we remember to treat reciprocal
space as discussed in footnote 9. The 8"s then di6er
from each other only by the derivative of a periodic
function and definite values result for 8. The same result
can be arrived at also by the method of Part 3. In this
case we construct a wave function in k space from the
Hamiltonian (16). The appropriate wave equation re-
sults from insertion of (15) into (16) and reads

for which 8 is singular. This singularity can be guessed
at from the case of free electrons to which the analysis
applies also. If free electron wave functions are forced
into a lattice scheme with an artificially indeterminate k
the wave functions and energies acquire singularities at
the Bragg positions. The present analysis suggests that
these singularities appear for all bands as soon as a
field is present except that transitions from band to
band are generally very much harder. It is thus possible
that the sequence (6) converges even in the presence of
a Zener eGect; the Zener eGect would in this view
manifest itself through the appearance of singular
points in k space rather than actual divergence of the
sequence for all k.

Very little will be said here about constant energy
states in three dimensions. If the field direction is a
lattice vector direction of the reciprocal lattice, say k„
then the period a~ of the reciprocal lattice in the field
direction can be chosen as one of the basis vectors of
the primitive cell in reciprocal space. The components
k„and k, out of this direction are then constants of the
motion and the wave functions in k space extend along
a line only. Analysis proceeds then as previously for
each fixed k„and k, . It is seen that the spacing of the
Stark levels is proportional to the spacing 1/a* of
lattice planes perpendicular to K Analysis now gets
into difficulty if the direction of E& is not mathematically
fixed with respect to the crystal. For we deal now with
a Stark pattern varying erratically for infinitely small
variation in angle. The constant energy states loose
thereby a great deal of their physical reality. A descrip-
tion by wave functions of the type (2) or (14), on the
other hand, does not suffer from this defect. Their de-
pendence on the field is such that a small change in
field or angle produces only a small change in the wave
functions. Their use would thus seem preferable for
continuity reasons; one might expect that any well
defined physical problem will permit a way of being
looked at in this frame of reference.

iEdg/dk+W, (k)P= $$, (45) APPENDIX I

which solves to
t 8—W, (k)

/=exp~ i ' — dk ~.
E

(46)

The demand of periodicity in k space for P yields again
the condition (44).

It is interesting to note that identification of 8 as
obtained from (2) and (42) yields a tentative result for
the limitation of the one band idea in the presence of a
field. It is seen from (43) that the series for 8 converges
but that the one for 88/ilk does not, for the magnitude
of the terms increases in the latter case as e&. Since
convergence is restored by a factor e ~ "~ with n arbi-
trarily small we are actually at the limiting circle of
convergence for the Laurent series (42). Hence there
must be actually some value of e'~" on the unit circle

It is known that diagonalization of the Hamiltonian
in degenerate band systems introduces algebraic singu-

larities. " Appearance of such singularities is not con-

sistent with the employment of the lattice vector opera-
tor because its eigenfunctions loose their localized
character. " To avoid these difhculties imperfectly di-

agonalized Bloch type functions are advantageously

employed for which the Hamiltonian is represented by a
finite matrix with nonsingular elements":

f-', p'+V}b, .=g, w. ..,b, , ,
What must be discussed now is the feasibility of solving

"G. H. Wannier, Elerrtertts of Solid State Theory (Cambridge
University Press, New York, 1959), p. 146.

's W. Shockley, Phys. Rev. 78, 173 (1950).
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the equation

(b)

This is a system of simultaneous linear equations for
the expansion coefFicients of b, ,'"' with respect to b,.
The number of equations is given by the number of
quasidegenerate bands in s. The determinant d of the
coefficients equals

in successive powers of E. This means proving the
feasibility of the recursion system

s; ll ~q
gl ~ ~ ~

(z y'+ V)ba;e(") Q—i()s;spba; p'"' = (*+i&/Sk,)bs, e(" ol
~=gs (i()s '(('S) (e)

p v=1

(v) b (vs v)—

(Ws svv +s'sp)
J

bs;e bs p dr
~st

bs;,*(@+ed/Bk,)b '" "dr+w; ev'"'.
n—1 f+E P 'i('a;ep" be;v ba;p

Multiplication with a basis function b... inside
quasidegenerate set yields after integration

(c)

the

Since m q is by assumption outside the set m, , the deter-
minant 6 never vanishes and the simultaneous system
can be solved with respect to the expansion coeKcients
in question.

APPENDIX II

In order to prove the orthogonality of the solutions
of (b) to a solution of (2) to all orders in 8 we construct
Green's identity between the two equations as was done
in the text. We get

f
Q (Wst'). p W, .p)

—B,*B,pd7.
J

Satisfaction of this equation is always possible because
of the appearance of the isolated constant m, .„&"&.It
is therefore immaterial whether the left-hand side
vanishes or not. Multiplication with a basis function
tbq* outside the quasidegenerate starting basis yields

Q (Bfssbsp 7()s ep) bq b, ; p
—"dr

b,*(x+i8/()k, )ba ("-')d7. .

n—1

+Q Q w, .„,p(") b,*b, ,(" ")dr.
p v=1

As previously, this equation has to be sorted out accord-
ing to powers of E; we define therefore by 0,'"' the
coefficient in the power E" of the integral fB,*B,

, pdr.
The nth recursion stage reads then

Qp(Kgb p W; p)Op

=material involving 0,&") with v(e.
All the terms on the right have been set equal to zero
in previous recursion stages. The determinant of the
0,("'s is the 5 defined in (d) and (e) which cannot
vanish. Therefore all quantities 0,(") are zero.


