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Electromagnetic Properties of Insulators. P
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We discuss the response of a perfect insulator to weak external electromagnetic fields of long wavelength

from a many-particle point of view. Our method is to treat the Coulomb interaction between all electrons to
all orders of perturbation theory and analyze the structure of the corresponding Feynman graphs. As a
result of this graphical analysis we are able to show that the response of the many-particle system to long-

wavelength external fields of arbitrary polarization is completely described by a single frequency-dependent
dielectric constant. In the limit of long wavelengths as well as low frequencies, we also include, in terms of a
magnetic permeability, the magnetic eRects of an external field on our system.

1. INTRODUCTION

T has been customary for a long time to describe
~ ~ the response of an insulator to a weak electro-
magnetic field by means of a complex dielectric
constant a and permeability p, . However, the only
models for which such a description has been rigorously
justified treat the charge carriers either as localized'

or as distributed throughout the insulator but not
interacting with each other. '

In the present paper we verify the correctness of
this conventional description for a more realistic model

of an insulator. ' ' We take the insulator to be a perfectly
periodic cubic crystal with fixed nuclei and electrons
which interact with these nuclei as well as with each
other. Magnetic eGects are very small in such a
system, as evidenced by the small magnitude of the
diamagnetic susceptibility (x= 10 '); they will be
neglected in the main body of this paper. What will

be done is to derive explicitly and rigorously the
usual constitutive equations of Maxwell's theory in
terms of the frequency dependent dielectric constant
u(co), with the single restriction that the wavelengths
of the electromagnetic field be long compared to a
lattice parameter. Similar results have been recently
obtained by Nozieres and Pines' who however treat the
electron-electron interaction in the "random phase
approximation. "

The parameter ~(co) can be defined either by means

of a formal expression involving the exact wave
functions of the insulator, or by a perturbation series
in the Coulomb interaction between the electrons. The

*A preliminary report of this work was made at the 1959
Spring me'eting of the American Physical Society in Washington,
D. C. LV. Ambegaokar and W. Kohn, Bull. Am. Phys. Soc. 4,
276 (1959)g. It is based on a thesis submitted by one of us (V.A. )
to the Carnegie Institute of Technology in partial fulfillment of
the requirements for the Ph.D., and was supported in part by
the OfBce of Naval Research.

'H. A. Lorentz, Theory of Electrous (B. Teubner and Sons,
Leipzig, 1909), Chap. IV.

s A. H. Wilson, Theory of Metals (Cambridge University Press,
Cambridge, 1936), 6rst edition, Chap. IV.

3 Some aspects of this model have been discussed in W. Kohn,
Phys. Rev. 105, 509 (1957);V. Ambegaokar and W. Kohn, Phys.
Rev. Letters 2, 385 (1959), and in reference 4.

4 W. Kohn, Phys. Rev. 110, 857 (1958).' P. Nozihres and D. Pines, Phys. Rev. 113, 1254 (1959).This
article gives references to earlier work by these authors.

terms of this series can be represented by Feynman
graphs. ' To establish our results, it is not necessary
to evaluate quantitatively the contribution of any of
these graphs, but only to recognize some general
characteristics. One crucial point is this. In describing
the response of the electrons to a longitudinal electric
field (i.e., to a time-dependent embedded charge
distribution) one encounters so-called "improper"
polarization graphs (see Fig. 1), while the response

FIG. 2. A proper polarization
graph that occurs for both trans-
verse and longitudinal fields. A &-~-

' J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
r J. Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957).

FIG. 1. An improper polarization graph that occurs in the
response to a longitudinal field.

to a transverse electric field involves only "proper"
polarization graphs (see Fig. 2). These graphs, which
were introduced by Hubbard' in a somewhat different
connection, will be more fully discussed in subsequent
sections. At this point the following qualitative remarks
may su%.ce. In Fig. 1 the dotted line originating at A
describes the direct interaction of the longitudinal
electric field due to the embedded charge with the
system of electrons, while the line terminating at 8
represents the current set up by the response of the
electrons. Each circle stands for a proper polarization

. part, i.e., an arbitrary graph of interacting electrons
with the restriction that it cannot be split by cutting
a single interaction line carrying momentum q. On the
other hand in Fig. 2 the line originating at A represents
the interaction of the total transverse electric field
with the electrons. The circle and the line terminating
at 8 have the same significance as in Fig. 1. In spite
of the different structure of the graphs of Figs. 1 and 2,
one finds the same connection between the induced
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polarization current and the total electric field

K(M) 1
j (cu) = —ip. E,.a(cu),

4m

of the system, II& may be written as

gt& (xi—xj)
ZZ'

Q s&q' k jP
(2.3)

Here
H= Hp+Ho+Hz.

IIp Q; (T;+V,), ——

(2.1)

(2.2)

where T; is the kinetic energy of the ith electron and
V, its interaction with the lattice of nuclei; IIq de-
scribes the Coulomb interaction between the electrons
and Hl, the electrostatic energy of the lattice of nuclei.
When account is taken of the over-all charge-neutrality

in both the transverse and longitudinal cases.
Since the electron-electron interactions are taken

into account completely in this theory, all internal
field eGects are included in the spectrum of energy
levels of the insulator, and, thus, the dielectric constant
defined here includes the Lorentz-Lorenz correction.

In the limit of long wavelengths artd low frequencies
(compared with a characteristic electronic frequency)
it is possible also to include simply the magnetic eGects
on our system in terms of a magnetic permeability p, .
This is done in Sec. 5, where both the electric and
magnetic constitutive equations of Maxwell's theory
are derived.

In this paper, then, we derive no new physical
results but merely elucidate the graphical representation
of an electromagnetic field interacting with an insulating
crystal. This analysis will also serve as a preparation
for the discussion in a following paper of the interaction
of an electromagnetic field with charge carriers in an
insulator.

2. RESPONSE TO A LONGITUDINAL FIELD

In this section, we shall calculate the polarization
induced in the insulator by an external longitudinal
electric field of long wavelength. We shall see that the
magnitude of the induced polarization is critically
dependent on the long range nature of the Coulomb
interaction between electrons. To bring out this point,
we shall compare the insulator with a hypothetical
medium in which the extreme tail of the Coulomb
interaction has been cut off. We shall exhibit a simple
relation between the responses of these two media
which will prove useful for our later discussion of the
response of the real insulator to a transverse field
since, in that case, long range Coulomb effects play
no role.

At first, we shall treat the Coulomb interaction
between the electrons as a perturbation, to all orders
of perturbation theory, and examine the structure of
the corresponding graphs. The results obtained by
this formal device will then be directly expressed in
terms of the many-particle wave functions of the
insulator.

The Hamiltonian which describes the insulator may
be written as

where the prime on the sum over k indicates that the
term with k=O is to be omitted. (0 is the volume of
the normalization box. )

Into the system described by (2.1) we introduce a
time-dependent distribution of charge density, p, &(x,t),
which we Fourier analyze as follows:

p„., (x, t) = "p...(q,~)e'& '—"'&dqd~. (2 4)

The reality of p,„&(x,t) implies

p. ~*(q ~) =p. ~(—q —~) (2.5)

We restrict ourselves to charge distributions whose
characteristic wavelengths are long compared to a
lattice spacing. Further, we assume that co/q«c'/v,
(where c is the velocity of light and m, a typical elec-
tronic velocity), so that we can neglect the magnetic
effects of the charge density (2.4). Let us describe its
electric field by a scalar potential. Then the Hamilton-
ian which describes its interaction with the system is,
apart from an irrelevant interaction with the nuclei,

(
4me

V(t) = p.„,(q,~)p(q)e '"'dqd&v,
J ~2

where the operator p(q) is defined as

p(q)=P, e"' '.

(2.6)

(2 &)

We imagine that the Coulomb interactions (2.3) and
the external perturbation (2.6) have been turned on
gradually in the past with exponential time factors.
The total perturbation to the one particle Hamiltonian
Ho may then be written as

H'(t) =Hce&'+ U(t) e" (2.8)

where g and s are small quantities which will later be
allowed to approach zero.

Let Co be the time-independent wave function cor-
responding to the ground state of Ho. In our case of an
insulator this is a state in which a number of Brillouin
zones are completely filled. The time development
operator, which operating on Co in the infinite past
transforms it into the perturbed wave function of the
real insulator, is

t gt1 tn —1

U(t, —~)=1++ (—i)" )' dt's )I dtp
n=1

&&dt Hr'(t, )Hr'(t, ) Hr(t„), (2.g)
where

H&
I
(t) —e4H p tH &

(t) e iH pt—
(Here and in all that follows we use units such that
5=1.) The Schrodinger representation wave function



ELECTROMAGNETIC PROPERTIES OF INSULATORS

generated by (2.9) is

%(t) =e '~o'U(t, —oo)Cp. (2.10)

The electron charge density induced in the insulator
is given by the expectation value of the charge density
operator in the state %(f). In calculating this quantity
we work to first order in p o(q, cd) and, furthermore,
neglect the charge fluctuations with wave vector q+K„
which are excited by the external perturbation. (K„ is
a nonvanishing vector of the reciprocal lattice. ) These
induced short wavelength charge fluctuations, while
themselves comparable to those of wave vector q,
make a negligible contribution to the total Geld within
the insulator in our long wavelength limit (q&(E„).

The charge density operator is

FIG. 3. A siInple polarization graph. The directed solid lines
running upward represent electrons in normally unoccupied Bloch
states; the solid lines running downward represent holes in
normally occupied states. The dashed horizontal internal lines
represent Coulomb interactions.

Here Ep is the energy of the independent particle state
Cp, E,m,e are integers, and the dots indicate the
successive occurrence of the Coulomb interaction
Hamiltonian, Ht. , and the appropriate energy de-
nominators. In Eq. (2.14) the operator p(q) comes
from the interaction with the external perturbation
(2.6), and the operator p( —q) from the expectation
value of the. charge density operator. ' In writing (2.14)
we have made use of the reality condition (2.5).

The terms of the perturbation expansion (2.14) may,
following Goldstone, ' be represented by Feynman
graphs. The graphs that occur here are almost exactly
the X) graphs of reference 4 which described the inter-
action of two fixed charges in the perfect insulator. A
simple but typical graph which occurs in (2.14) is
Fig. 3. The two p operators act at the external inter-
action lines starting or ending at crosses. In the typical
polarization graph Fig. 3, no unlinked or vacuum part
has been shown because, although the linked cluster
theorem as proved by Goldstone does not apply to our
problem of a time-dependent perturbation, vacuum
parts may be omitted for the following well-known
reason. 'P In (2.14) all possible vacuum graphs occur
with each polarization graph of the form of Fig. 3.
The contribution of the sum of all vacuum graphs may
be separated as a multiplicative factor. However, this
factor may be omitted since it is the normalization
sum for the clothed ground state wave function of the
insulator and thus equal to one.

%hen the vacuum parts have been eliminated, the
limit p —+ 0 can be taken without any formal difhculties.
Finally we let q approach zero and define the long
wavelength complex polarizability tr(to) by

p(x) =e P 8(x—x,) =—Q p( —k)e"'~ *, (2.11)
0~

and the induced charge density, p;„e(x,t), is

p;„e(x,t) = (%(t),p(x)4(t))'. (2.12)

The prime on the right of (2.12) indicates the restric-
tions discussed in the previous paragraph. Let us
Fourier analyze p;„e(x,t) as in Eq. (2.4).' We then
obtain a linear relation between the Fourier coefficients
of the induced and external charge densities of the form

p a(q, to) =&(q,to)p. «(q, to), (2 13)

where, when the time integrations indicated in Eq. (2.9)
are carried out, n(q, td) becomes

4xe' f 1

~
eo,Hc Hc

q 0 &,~,~ E Ep—Hp —ig Ep —Hp —2'

X . p( —q) ~ ~ ~

Ep Hp ilrt —Eo Ho+to+imrt+—is

+~ C'oHc
p
—Hp —i

xp(q)
Ep —Hp —

Go
—i' —zs

1 1
X p(q) " Hao

(

Ep Ho+to+iert+is— Ep Hp+irt—

X p( —q)
Eo Ho &e inert is — E—o —Ho+il—rt— ct (to) —=1im n (q, to). (2.15)

X Huo I . (2.14)
Ep

—Hp+irt )
o The quantity p; o{x,t) contains time factors of the form

e&"&+')' where n is an integer. Before making the Fourier analysis
we take the limit g,s —& 0 in these factors.

'It is clear from the conservation of crystal momentum that
the only Fourier coeKcients of the charge density operator that
can contribute are p(—q+K, ). As pointed out earlier, we only
retain the long wavelength response."J.M. Jauch and F. Rohrlich, Theory of Photons and Electrons
(Addison-Wesley Publishing Company, Inc. , Reading, Massachu-
setts, 1955), p. 176 ff.
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Then (2.14) results in

1
n(co) =lim Q! @'o,H(~q'0 z & Eo—Ho

%re'

Xp( —q) IIg e ~ ~

Eo—&o+~+i&

. . &c@o IX&c p(q)
Eo—&o+oi+i~ Eo &o—
+ (q -+ —q, io —& —

&0, s ~ —s). (2.16)

Here Pz means the sum over all linked graphs.
Let us now examine the graphs corresponding to the

expansion (2.16) of a(oo) in greater detail. Such graphs
fall into two classes. ' Graphs of the erst class cannot
be separated into two disconnected parts by cutting
one Coulomb interaction line carrying momentum q.
We shall call such graphs pmper polarization graphs.
Graphs of the second class, which we call improper
polarization graphs, can be so separated. Note that we
include among the proper graphs those in which two
otherwise disconnected parts are connected by a
Coulomb interaction line carrying momentum q+I„.

To clarify the physical meaning of the distinction
between proper and improper graphs, let us for the
moment consider a model of an insulator in which the
interactions between charged particles are described by
a cutoff Coulomb potential. Then, the part of the
Hamiltonian describing the electron-electron inter-
actions will be

kn-e' e&&. (xi—xj)
&c'=

Q k&8 i&j'
(2.17)

where 8 is a small limiting wave number. The response
of this system to a longitudinal electric field of long
wavelength may also be described by polarization
graphs. However, if g(5 (q being as usual, the wave
vector of the external field) the Hamiltonian (2.17)
contains no Fourier coeKcient of the form q '. In the
language of graphs, there are no electron-electron
interaction lines carrying momentum q and, in
particular, no improper polarization graphs. The long
range eGects of the Coulomb interactions are, thus,
contained in the improper graphs.

We turn now to the connection between the sum of
all polarization graphs, n(o&), and that of the proper
graphs alone which we call ai (o~). The connection
arises from the fact that an arbitrary improper polariza-
tion graph (see Fig. 1) can be factored into the product
of the two graphs obtained from it by removing a
Coulomb interaction line carrying momentum q and
in its place attaching two external interaction lines that
preserve the sense of the momentum transfer. It follows
from this theorem, which is discussed in Appendix A,
that the sum of all improper graphs is ni (o~)a(o&), the

~i (oI) coming from the proper parts which can be
factored out of the improper graphs and the ~(oi) from
the remaining parts, these parts themselves being
either proper or improper. Thus one has the relation

Q CO =Gp CO CL M Q'p 6) (2.18)

(cf. reference 7). We shall show later that Eq. (2.18)
implies that the dielectric constants which describe
the response of the insulator to longitudinal and
transverse fields are exactly equal.

We end this section by writing n(co) and ei (or) in
terms of the many-particle oscillator strengths of the
insulator. ' The sum rule these oscillator strengths
satisfy arises from the following operator identities:

L»p(q) j=q j(q),

I.L»p(q) j p( —q)1= —&C'lm,

(2.19)

(2.20)
where

o Pn +on(q)+foo( q)g=gofon(q) =Ã (2.23)

where the most general reason for the equality between
the first and second expressions in (2.23) is the
invariance under time reversal of the insulator
Hamiltonian (2.1).

The complex polarizability, a(or), Lsee Eqs. (2.13)
and (2.15)) may be written directly in terms of the
many-particle wave functions of the insulator as

I'p( —q) o-p(q). o
n o~ = —lim

g Q '+ i Mo —oi —'Ls

p(q) o.p( —«).o)

ioo„+M+$$ )
4~e' fo„(q)

lim P

. + . I (224)
E(don M zs Mo~+oi+zs)

We now show that the quantities fo„(q)
discontinuously at q

=0, and that a relation very similar
to (2.24) holds for np(o~). Since (2.24) is independent
of the direction of q, we may set q=nq where n is an

j(q) —= (1/2m) p; (p,e" *'+e'o *'y.), (2.21)

E is the total number of electrons in the insulator, and
y; the momentum operator for the ith electron. The
longitudinal oscillator strength fo„(q) is defined as

='m 2m q
fo-(q) =, ~o-I p(q) o-l'= ——j(q) o. (2.22)

g +on g

Here the subscript 0 indicates the ground state of the
insulator and n some excited state; coo„ is the diG'erence
of energy between these states and p(q), is the matrix
element of p(q) between them. Taking the expectation
value of both sides of Eq. (2.20) in the ground state of
the insulator, one has
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2m
fo-(q) =fo-(nq) = ln. j(nq)o-l'. 1/K(M) = 1+et(o7)i (3.4)

arbitrary unit vector. Then we have from Eq. (2.22) Here s(oo) is the complex dielectric constant which is
that defined in terms of the quantity n(o&) of the last section

(2.25)

2m
fo.(0)—= ln j(0)o.l', (2.26)

When (2.25) is substituted into (2.24) the resulting
expression may be written as a sum of graphs. The
details of this expansion will be made clear in the next
section. LSee Eqs. (3.10), (3.9), and the discussion
following Eq. (3.11).) The only point that is relevant
here is that for q small but finite one has in the graphical
expansion both proper and improper graphs, whereas
if one replaces fo„(q) in (2.24) by

or equivalently l see Eq. (2.18)j in terms of n&(oi) as"

K(oi) = 1—ni (oo). (3 5)

Equation (3.3) is the constitutive equation which
determines the response of the insulator to long wave-
length fields of arbitrary polarization.

We now derive Eq. (3.3).The Hamiltonian describing
the interaction of the external vector potential (3.1)
and the system is, to first-order in A,

pn

the charge neutrality of the system ensures no improper
graphs. Thus the limit as q

—& 0 and q=0 give quite
different results. Now a&(oi) differs from n(oi) only in
that all improper graphs are omitted from the former.
Thus, by comparison with (2.24) one has

H(t) =—e

l P y;A(x, ,t)+A(x, ,t) p, le"
2mc &

8
A(q oi) j(q)e

—""'e"dqdku.
c &

(3 6)

4zre' fo„(0)
0!g GO

mQ '+ 260 p&

j.
x l + l. (2.27)

& too +oo+zs oio oi zs—P—
We shall show in the next section that ni (oi) describes
the response of the insulator to a transverse electric
field of long wavelength. We shall thus be able to
interpret fo„(0) as the transverse oscillator strengths.

The operator j (q) was defined by Eq. (2.21). In
Eq. (3.6) we imagine, as in the last section that the
perturbation is turned on with a time factor e". The
current induced in the insulator is given by the expecta-
tion value of the current density operator in the wave
function produced from the ground state of the insulator

by the perturbation (3.6). The current density operator
1S

e t' e

j(x,t)=—p l p, —-A(x;, t) lb(x —x,)
m

3. RESPONSE TO A GENERAL FIELD

Let us now discuss the response of the insulator to
a long wavelength field of arbitrary polarization. We
shall describe this field by a vector potential

e e' A(x, t)=-Z e"*i(—1)—— Z e'"'t (—1). (3.7)
0~ mc V.

The tensor T„,of Eq. (3.2) is then easily seen to be

A(x, t) = A(q to)e'«' "'&dqdoo—(3 1) e &j.(—q)o-j.(q)-o j.(q)o-j.(—q)-o)
T"(q,~) =—& l +

GQ ~ E %os oo zs Q7os+M+zs )
and calculate the induced current to first order in A.
The linear relation between the Fourier coeScient,
j(q,oi), of the induced current and A(q, oo) may be
written as

(3.8)
mc 0

"Equations (3.4) and (3.3) define the longitudinal and trans-
verse dielectric constants, respectively. In reference 5, Nozieres
and Pines assert that the equality between these two dielectric
constants only holds in the random phase approximation. In
fact this equality is exact, provided only that the external fields
are of sutliciently long wavelength (q«K„). This condition is
satisfied both for optical absorption and the forward inelastic
scattering of kilovolt electrons. The arguments that establish
Eqs. (2.18) and (3.3) apply equally well to metals.

lim T„.(q,oi) = l s(oi) —1j
4n-c

x &..+-, l

q (K(Q)) j

j„(q,oi) = T„,(q,oi)A, (q,oi), The quantity q„T„„q„/q'-may be directly related to

where the subscripts p, vindicate Cartesian components the oscillator strengths of the last section. Using the

We shall examine the structure of the lternel T„„in the definition (2.22) of fo„(q) and the sum rule (2.23), one

limit of small q and show that it has the form
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has from Eq. (3.8)

q@Tvvqv/q =

g2

zfp-(q) I

mcQ ~ & 2 (cpp —cp —is)

On

2 (cpp„+cp+zs)

e' (Iq j(—q)o. l'
~I

g CQ ~ E. COO„—CO
—ZS

I
q. j(q),„l ~

cpp„+cd+is) mc 0

lim T„.'= a(cp)b„..
q~O

(3.12)

tribution of the form of the second term. The third
term of T„„, Eq. (3.8), arises directly on taking the
expectation value of the second part of the current
operator, Eq. (3.7).

Now consider the response to the vector potential
(3.1) of the hypothetica/ medium introduced in the
last section in which the interactions between charged
particles are described by a cutoG Coulomb potential.
Let the response of this medium be characterized by
T„„'which, from our previous discussion, diGers from
T„„only in the omission of improper graphs. As the
latter contributed the second term of Eq. (3.11), one
has

e'(cp+is)' fp„(q) Ir 1

BzcQ ~ 2cpp~ ( cpp~ cp 'Ls

Further, in analogy with Eq. (3.10), we now find

lim q„T„„'q,/q' = —(cp'/4prc) ep (cp), (3.13)

+ I (3 9)
cv pz+ cp+ zs ) since the longitudinal polarizability of this hypothetical

medium is n~. From these two equations we see that
Comparing the last equality with the expression (2.24)
for n(cp), one sees that a(cp) = —(cp'/47rc)ng (cp). (3.14)

lim q„T„,q,/q'= —(cpP/4m c)n(cd).
q~O

(3.10) Now, Eq. (3.10) as it stands says

a(c )+b(cp) = (pi'/47rc)oc—(cp) (3.15)

lim T„„=a(cp)ti„,+b(cp) q„q,/q'.
q~O

(3.11)

A further insight into limq o Tp, may be obtained by
a graphical expansion. The first two terms of T„„
Eq. (3.8), can be calculated as an expansion in powers
of the Coulomb interaction in a manner quite analogous
to the calculation of n(cp) in Sec. 2: one expands the
wave function to all orders in the Coulomb interaction
and to first-order in the interaction (3.6) with the
external field, and then takes the expectation value
of the first part of the current operator, Eq. (3.7), in
this wave function. The resulting perturbation expan-
sion can also be described by graphs. These graphs
have the same structure as those that occurred in the
expansion (2.16) of c«(cp), except that here matrix
elements of j„and j„occur at the external interaction
lines. Among them are both proper and improper ones.
It is shown in Appendix B that the proper graphs give
a contribution of the form of the first term on the right
of Eq. (3.11) while the improper graphs give a con-

(The infinitesimal quantity s has only been retained in
the energy denominators. ) Equation (3.10) expresses
the gauge invariance of the induced polarization current.
It simply states that the same longitudinal electric
field described either by a vector potential or a scalar
potential gives rise to the same current. However it is
possible, as we now show, to deduce the complete form
of T„, to lowest order in q from Eq. (3.10).

Because of the assumed cubic symmetry of the
lattice, T„„must have the form

Remembering the relation (2.18) between n(cp) and
np(cp), we thus have for the real insulator

lim T„,= —(cp'/4vrc)np(cp) Lci„,+n(cp) q„q./q'j. (3.16)

4. OPTICAL PROPERTIES AND SUM RULES

In this section we shall recall the relation of the
dielectric constant «(cp) to physically observable
properties.

To discuss the propagation of light through our
system, we may use Maxwell's equations in the trans-
verse gauge, V A=0, namely

4'
A= ——j,,

C

1 cjA
E== ————Vp

c Bt (4.1)

v'p= —4~p, &=~XA,

where jj. is the solenoidal part of the current density.

When one now expresses np(cp) and cc(cp) in terms of
«(cp) from Eqs. (3.4) and (3.5) one gets the result (3.3).

The second term in. the square bracket in Eq. (3.16)
plays a role only in the case of a longitudinal .held and
contains the long range effects of the Coulomb inter-
actions. It has the eGect of reducing the amplitude of an
external longitudinal electric field, E(pp) =i(cp/c)A(cp).
by a factor of «(cp). In both the longitudinal and trans-
verse cases, however, one gets the same local relation
(1.1) between the induced current and the total electric
field.
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q'= (cp'/c') ~(cp). (4 4)

The complex dielectric constant a(oi) may as usual
be written

K (M) = e (oi)+ (4pl z/M) 0' (Cp) &
(4.5)

where e(oi) is the real dielectric constant and o (co) the
real conductivity. From Eqs. (3.5) and (2.27) we see
that

7l e
o (&p) = ——Imnp(&u) = P fo„(0)5(&p—cop„), (4.6)

4m. 2mb)

where a term containing 5(pi+pip„) has been omitted
for obvious reasons. Integrating over co and using the
sum rule (2.23) (for q=0) gives

o(pi) d(v = rre-'N/. 2mn. (4 7)

The alternative definition (3.4) of ~(rp), namely
K(o&)=I 1+n(tp)) ', is the natural definition for the
discussion of the response to longitudinal fields. In the
limit of zero frequency a(rp) becomes the static di-
electric constant which is real and finite for the perfect
insulator. " We see from the definitions (2.13) and
(2.15) of n(rp) that a(0) describes, in the usual way, the
partial neutralization of a static external charge
embedded in the insulator. "

Another sum rule follows from Eqs. (3.4), (2.24),
and (2.23),

Ke see from the discussion of the last section that a
transverse vector potential excites only a transverse
current and thus we can find transverse wave solutions
for the electromagnetic field in the insulator:

A —A ei[4((u). x—&at] ~ () (4.2)

Substituting (4.2) into (4.1) and using the constitutive
equation of the last section I see Eqs. (3.2), (3.3)) we
have

Ap (—q'+ rp%')
(4pr/c) ( (rp /4ire) Lir(rp) 13)Ao. (4 3)

The usual dispersion relation q(o&) in the medium
results from (4.3), namely

{proportional to Imgop/~(cp)]) of fast particles travers-
ing a solid. '4 ~

It may be worth noting that Lusing Eq. (4.5)$ this
longitudinal sum rule can also be written in the form

n(~) xe'E
dc@=

"o
I
4s.o (a&)/oi]'+e'(a)) 2mB

(4 9)

where it refers explicitly to the optical properties of
the medium.

C(q'5„.—q„q.). (5.2)

5. STATIC MAGNETIC PERMEABILITY

In the preceding sections the only restriction that
has been made is to long wavelengths. The constitutive
equation (3.3) is the first term in an expansion of the
kernel T„„in powers of g. We wish to remark here that
if the further restriction to low frequencies is made,
one can deduce the form of the next term in the expan-
sion of T„„.This term contains the static magnetic
permeability of the medium.

Let us make a schematic order of magnitude expan-
sion of the explicit relation (3.8) for T„„:

eX pro ) (q )
oI —I+oI —

I

mcQ (pi,'I ( q
s)

~2 2

+ol, , I+ " .
(pig qg

Here rp, is a typical electronic frequency (of the order of
volts) and q, a typical electronic wave number (of the
order of reciprocal angstroms). The first term in the
square bracket in (5.1) has been dealt with in detail in
the preceding sections. It is clear from symmetry that
there can be no term linear in q. The second and third
terms in (5.1) are quadratic in q and are negligible
compared to the first term in the long wavelength
limit (q/q, «1). The second term does not involve the
frequency ~ and may thus be clearly identiGed as
describing a current induced by the magnetic field,
8= &XA, associated with the external vector potential
(3.1). Since there is no magnetic field associated with
a longitudinal Geld, the complete tensor form of this
term must be"

Im dM=
K ((0)

2''e'
dop hm P fp„(q)5(oi —o~p„)

mQ ~p

2x'e'S
(4.8)

p(0) —1
C=c

4m1i(0)
(5.3)

The current described by (5.2) may be related to the
usual magnetization current of macroscopic electro-
dynamics by writing

This relation has been used to discuss the energy loss

"This is seen from Eq. (2.24) using the fact that there is an
energy gap between the ground state and the 6rst excited state
of the perfect insulator.

I3 sc(0) is the static dielectric constant introduced in reference 4
in terms of the energy of interaction of two distant point changes.

where 1i(0) is the static magnetic permeability. The
third term of (5.1) becomes comparable to the second

r4 J. Hubbard, Proc. Phys. Soc. (London) A68, 976 (1955).
See also E. Fermi, Phys. Rev. 57, 485 (1940); and H. Frohlich
and H. Pelzer, Proc. Phys. Soc. (London) A68, 525 (1955).

"M. R. Schafroth, Helv. Phys. Acta 24, 645 (1951).
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Fzc. 4. An improper polarization graph used in the discussion
of the factorization of these graphs.

term when the external frequency becomes comparable
to an electronic frequency. It is not possible to deduce
the structure of this term from simple arguments.
However, if we restrict ourselves to low frequencies
(~&&~.) the dominant terms of the expansion of T„„are,
using (5.2), (5.3) and (3.3),

M q~q~ t'
lim T„„(q,o~) = fa(0) —1] 3„„+

~

—1
~

g o 4m q' Ez(0) )
~~Q

~(0)—1,+c (q'3„„—q„q„). (5.4)
4zrZi(0)

When the constitutive equation (5.4) is used with
Maxwell's equations, as in Sec. 4, the induced currents
may be interpreted, in the usual manner of macroscopic
electrodynamics, as the sum of induced polarization
and magnetization currents; and the dispersion relation
for low-frequency light can easily be seen to be

This completes our derivation of the macroscopic
electromagnetic properties of an insulator from the
microscopic Schrodinger equation,

'

including the
electron-electron interaction.

APPENDIX A

We wish here to consider the following theorem.
Consider any improper polarization graph which occurs
in the expansion (2.16) of n(oi). Call it Z. It will
consist of a number of proper graphs connected by
Coulomb interaction lines carrying momentum q.
Focus attention on any one of these lines. Call it I..
Let Zr, be the part of the graph on the left of L and
Zii the part on the right. Consider all graphs'', P",
etc. , obtained from Z by keeping L fixed and Zl. and
Ziz unchanged, but arranging those interaction lines of
Z)r. that are above L in all possible positions relative
to the interaction lines of X)ii above L, and similarly
arranging the interaction lines of Zl, and Z)ii below L.
Now consider the separate graphs Zi and piz obtained
from X) by removing L and in its place attaching to
the two parts of X) external interaction lines that

preserve the sense of the momentum transfer. Then
the sum of the contributions to n(o~) of X),'2', K)"etc.
is equal to the product of the contributions of Z&
and Pii.

We shall illustrate this theorem by a simple example
which exhibits its complete generality. In Fig. 4 the
quantities m&, m&, m3, m4 represent the matrix elements
(between Bloch states) of e+"*/q which occur at the
verticies adjacent to these symbols. Note that the
matrix element of the Coulomb interaction (2.3) which
occurs at the interaction line connecting the two parts
of the diagram has been split up into separate matrix
elements of e ''i'*/q and e''i'*/q called mz and zzzz,

respectively. At the two other Coulomb interaction
lines the matrix elements are indicated, with sufhcient
generality for our purposes, as M& and M&. I'&,P& etc.,
are differences between hole and electron energies.
I'~ refers to the electron and hole in the left-hand
portion of the diagram; I'2, I'3 etc. , refer to the particles
and holes in the appropriate sections of the right-hand
part. The contribution of Fig. 4 to n(o&) is

(4zre'l ' 1 1
( m,—m4 m, zrz,

0 0 i P4 Pz+(v+zs

X 3E, mi. (A.1)
Pi+Pz+oi+Zs Pi+to+Zs

In (A.1) the sign can be obtained from the rule' (—1)"+'
where h is the number of hole lines and l the number of
closed loops; one of the factors 4zre'/0 comes from the
definition (2.16) of n(o&), the other occurs because
(4zre'/Q)zzzinzz is the Coulomb matrix element.

Consider now the graph Fig. 5. Its contribution is

t 4zre'l ' 1 1

I ~,—ZZZ4 . m3m2
& 0 ) P4 Pz+oi+is

1 1
X mt—Mi. (A.2)

Pi+Pz+oi+is Pz

Using the identity"

1 1 1

P,+a+is Pz P,+Pz+oi+is Pi+oi+is

1
(A.3)

Pt+Pz+oi+is Pz

the sum of the expressions (A.1) and (A.2) is

~4zre'l 1 1 1
[m,—m4 mZ—~t

( n ) P, P+~+zs P,

(4zre'l 1
(ZZZz mi . (A.4)

0 ) Pi+M+zs
"N. M. Hugenholtz, Physica 23, 481 (1957).
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The first square bracket in (A.4) is the contribution of
the graph on the right of Fig. 6, the second that of the
graph on the left.

By applying a succession of identities of the form
(A.3), and following the prescription given in the first
paragraph of this appendix, the most general improper
diagram can be factored as in the above example. P& 'r

APPENDIK B

In this appendix we consider the graphical expansion
of the tensor T„„/see the explicit expression (3.8)$
and discuss the tensor form of the graphs which
describe the first two terms of llm& p T&„, namely

FrG. 6. Two graphs the product of whose contributions equals
the sum of the contributions of Figs. 4 and 5.

j.(—q) -j.(q)-o j.(q)~j, (—q).o

+
cQ ~ " Mo~ cv zs coo"+cv+2$

(B.1)

Comparing these terms with the expression (2.24)
for n(co), it is clear that the graphs which occur here
have the same form as those that describe the expansion
(2.16) of n(~) except that here the operators j„and j„
occur at the external interaction lines.

The one particle matrix element of j„(q) is

—(0-, +., "*(P.+V./2)4-, ),
m

(B.2)

P4
PYl4

P2

X-~
m,

Ms

FIG. 5. A graph closely related to that of Fig. 4.

where P",z+q, and f",& are Bloch functions. This matrix
element approaches a finite limit as q approaches zero.
As a result, in the calculation of the'contribution of a
proper graph to (B.1) one finds to lowest order in g a
second rank tensor independent of q. It follows from
the assumed cubic symmetry of our system that this
tensor must be diagonal. Thus the contribution of all
proper graphs has the tensor form 8„„.

Consider, now, an arbitrary improper graph that

occurs in the expansion of (B.1). (See the schematic
graph of Fig. 1.) It can be factored as in Appendix A
into the product of proper parts. The ieeer proper parts,
namely those which have one-particle matrix elements
of g 'p(~q) at both their external lines make a con-
tribution which in the limit of small q is a scalar
function of frequency. The two oiler proper graphs,
each of which has a j operator at one external line and
a p operator at the other, make contributions which
transform like vectors under rotations.

Consider any outer proper graph in which the
matrix element of g 'p(q) occurs at one external line.
This matrix element has, in the limit of small q, the form

(fn, t+q, g ' '*Pm, k)

=q-'8„„+r'q
~

—u„g,u„, ~, (8.3)
(Bk

" ™)

where u„,~ is the modulating function of the Bloch
wave. If an ie/erband transition takes place at the
vertex where the above matrix element occurs, the

gives zero. Then one finds, to lowest order in q, a
contribution from the graph of the form g 'g~U&, „(~)
where V~„(cu) is a tensor with no q dependence and v

indicates the Cartesian component of the j operator
which acts at the other external interaction line. From
cubic symmetry Uz„(cu) must be diagonal, and, thus,
the vector dependence of this outer graph has the form

q 'g„. That the same vector dependence occurs for an
outer proper part in which an ietruband transition
takes place at the external p vertex follows from
arguments given in reference 4, Sec. 2.

Similarly, the vector form of the other outer proper
graph which multiplies the contribution of the part
discussed in the last paragraph is g„/g. Thus the tensor
form of the sum of all improper graphs is q„q„/g'.


