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two substances are isomorphous. There is perhaps
reason to believe that the occurrence of comparatively
strong cooperative interaction is a distinctive feature of
hydrated chlorides (and possibly other halides) of nickel
and cobalt not exhibited by other salts of these metals
hydrated to a comparable degree. For example, in
O,NiSO4 6H20", a Schottky-type specific heat anomaly
has been found at liquid helium temperatures but no
evidence of cooperative interaction. X-ray analysis has
shown" that each Ni~ ion in this salt is surrounded
by an octahedron of six water molecules which ap-
parently help to isolate it rather eGectively from its
neighbors. While similar octahedra might be expected
to surround the metallic ions in NiCl2 6H20 and
CoCl& 6H2O, recent x-ray studies by Mizuno et al.'
show this not to be the case. They find that each
metallic ion is actually surrounded by an octahedron
consisting of four water molecules and two chloride
ions. The Cl ions are at opposite vertices of the octa-
hedron while the H20 molecules form a square in the

2' C. A. Beevers and H. Lipson, Z. Krist. 83, 123 (1932).
"Mizuno, Ukei, and Sugawara, J. Phys. Soc. Japan 14, 383

(1959).

plane bisecting the line joining the Cl 's and containing
the metallic ion. On the basis of preliminary reports of
this x-ray work, Haseda and Kanda' suggested that
the Cl ions, replacing as they do water molecules in
the usual octahedral coordination scheme, are respon-
sible for the "high" Neel point in CoC12 6820. Pre-
sumably they provide paths for the indirect exchange
coupling of Co~ moments. Our observation of a co-
operative transition in NiC12 6H20 is certainly con-
sistent with this conjecture. Further speculation as to
the mechanism of such coupling should perhaps await
the development of a clearer picture of the arrangement
of ionic moments in the antiferromagnetic state in
both salts.
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Evaluation of Thermal Activation Energies from Glow Curves
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A new method for the evaluation of thermal activation energies from glow curves of excited crystals is
described. Use is made of the symmetry of the glow peak, from which the activation energy is calculated
by a simple formula: E= (g/B)has, where Tq is the peak temperature, k—Holtzmann's constant, S—the
half-width towards the falloff of the glow peak, and g

—a factor which can be computed from the shape of
the glow peak. Values of q~&1 were found for monomolecular processes, while 1~&g ~&2 correspond to
bimolecular ones. The method thus enables to determine the type of kinetics.

INTRODUCTION

'HE method of thermoluminescence has been
extensively used in the study of trapping states

in crystals. ' In this method energy stored up in the
crystal by suitable excitation, is subsequently released
with emission of light on warming up the crystal from
the low temperature at which it has been excited.

Randall and Wilkins' were the first to investigate
the thermoluminescence theoretically. They used a
model in which electrons in metastable states are
raised thermally to an excited state from which they

' For references see: G. F. J. Garlick, Luminescent 3/Iaterials
(Oxford University Press, Oxford, 1949); G. F. J. Garlick,
Encyclopedia of Physics, (Springer-Verlag, Berlin, 1958). Vol.
XXVI, pp. 1-28; W. Hoogenstraaten, Philips Research Repts. 13,
515 (1958).

s J. T. Randall and M. H. F. Wilkins, Proc. Roy. Soc. (London)
A184, 366 (1945).

return to the ground state with emission of luminescence.
Assuming a uniform rate of heating they obtained an
expression for the variation of the thermoluminescence
with temperature, but they neglected the bimolecular
nature of the process. Later the theory was extended
by other investigators, ~' who assumed bimolecular
kinetics and also allowed for the retrapping of the
released electrons.

Computation of activation energies remained still
quite complicated, not only for mathematical, but also
for physical reasons. The difhculty lies in the fact that
in addition to the activation energy, the equations

' H. E. Klasens and M. E. Wise, Nature 158, 483 (1946).
4V. V. Antonov-Romanovski, Izvest. Akad. Nauk S.S.S.R.

Ser. Fiz. 10, 477 (1946).
'Ch. B. Lushchik, Doklady Akad. Nauk S.S.S.R. 101, 641

(1955).' J. J. Hill and P. Schwed, J. Chem. Phys. 23, 652 (1955).
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contained other unknowns; e.g. , the so-called frequency
factor of the trap, and the probabilities of the transitions
involved. Several methods have been proposed in
order to overcome this diKculty. 7 These methods are,
however, still limited in use. One of the limitations was
the assumption of equality of the number of traps and
the number of luminescence centers, which does not
seem to be always justified.

In the present work, a new method for calculation of
activation energies is developed. Use is made in this
method of the symmetry properties of the glow peaks.
It is to be shown that this symmetry depends not only
on the transition probabilities involved (e.g. , the
amount of retrapping) as has been concluded formerly, 'r
but is also dependent on the number of traps compared
to that of luminescence centers.

The theory developed in the present paper has
already been applied successfully to experimental glow
curves. Results obtained with alkali-halides are to be
described in the following paper.

(1) The Theoretical Model

We start with the physical model shown in Fig. 1,
which has already been proposed by various authors. '
The scheme admits a number of discrete localized levels
in the forbidden energy gap between the valence band
and the conduction band. In the following it proves
convenient to use full formal analogy between electrons
and positive holes. We assume several levels of depth
E, below the bottom of the conduction band, which
may serve as electron traps. By analogy several
trapping levels for positive holes are assumed to be
present above the valence band.

Iet E; designate the number per cm' of electron
traps of depth E;, and e; the number of them occupied
by electrons. By analogy re; out of M; hole traps of
"depth" 8; (above the valence band) may be occupied
by holes. Such fit/ hole traps are often looked at as
empty luminescence centers.

By excitation of the crystal we understand the
process of elevation of electrons from the valence band,
or directly from the luminescence centers, into the
conduction band, followed by trapping of the electrons
in the trapping levels X;.At the same time holes created
in the valence band are trapped in the levels M;.

The energies E; and E; are assumed to be large
compared to kT (say, the smallest of 8;, E; be about
10 kT), where k is Boltzmann's factor, and T the
absolute temperature. Under these conditions the
number of electrons in the conduction band, and of
holes in the valence band will be very small compared
to the corresponding numbers in the traps. The condi-
tion of charge neutrality of the crystal may then be

See, for example, pp. 544—546 of N. Hoogenstraaten, Philips
Research Repts. D, 515 (1958).

s A. Halperin et sl., following paper (Phys. Rev. 11?, 416
(1960)g.' See, for example, reference 6.
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FIG. j.. Energy scheme
for a crystal containing
electron-trapping levels
(F;) and hole trapping
levels (M;).
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expressed in the form:

P rs;=P m;.

Ae= Anz, (1.2)

where De=no —e, and Am=mo —m; eo, mo being the
concentrations at the time to, and e, m at the time t,
of the trapped electrons and trapped holes, respectively.

Two submodels will be discussed:

I. The trapped electron is raised thermally from the
ground state of the trap to an excited state below the
conduction band, from which it Inay recombine with a
trapped hole by a tunneling process.

II. It is raised directly to the conduction band,
where it is free to move, and may finally recombine
with a trapped hole.

On warming up the crystal, trapped carriers may be
released from trapping states, and recombine with
trapped carriers of the opposite sign. Whether it is
electrons or holes that are mainly released will depend
on the relative values of E; and E;, on the transition
probabilities, and on the numbers e; and m; involved.

The recombination process may be accompanied by
emission of photons when the crystal will exhibit
ther moluminescence.

In our model below we shall assume the carriers
released thermally to be electrons. The full analogy,
however, assures all calculations to fit also the analog
case in which holes are released thermally, and re-
combine with trapped electrons.

We further assume that in the limited temperature
range under consideration only one trapping level of
depth Z (whose concentration is X per cm') is effective
in releasing the electrons, and recombination takes
place at only one type of luminescence center M. This
will give rise to an isolated glow peak. We shall allow
nonradiative transitions. The luminescence yield, how-
ever, will be assumed to be constant throughout the
considered glow peak.

An important point is that though transitions
involving other trapping levels are neglected, such
traps exist and may be occupied. This a6ects the
neutrality condition, which can no longer be expressed
as m=nz as assumed by other investigators. ' It should
now be given in the form:
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CONDUCTION BAND (1.4) takes the form:

FIG. 2. Energy band
model, showing the possible
transitions between a single
kind of electron traps, their
excited states, and one kind
of luminescence centers.

VALENCE BAND

dm/dt =m—N.A „,
dn/dt =y—e sm„—

drs, /dt =ye N. (mA j—s);
(1.3)

where e, is the concentration of electrons in the excited
state; 2 —the probability for recombination; p=s
&& exp( —E/kT) —the probability for thermal excitation
(transition 1) with s as a frequency factor.

It follows from the principle of detailed balance that
s is also the probability (per second) of transition 2.

We assume now that recombination or return to
the ground state of the excited electrons is fast enough
so that in the last of the Eqs. (1.3) it can be assumed
des, /dt=0, when we obtain:

dm
=Vs

dt

A.m
A m+s

(1.4)

We start with submodel I (Fig. 2). In treating this
case E will denote the activation energy from the
electron trap to the excited state, and is assumed to be
large compared to kT (see above). One of the two
following transitions are possible for the excited
electrons: (a) Return to the ground state of the same
trap —transition 2. (b) Recombination with a trapped
hol- ——-transition 3.

The probability of retrapping in neighbouring traps
of the same type is assumed to be very small, and is
therefore neglected in the present model.

The kinetics is formulated in the following equations:

t (t+t —1)
Ay.

dt Ap+8

The thermoluminescence intensity will be propor-
tional to dm/—dt and in suitable units (taking in
account also the luminescence yield) it can be written
I= dm—/dt In . glow experiments carried out with
constant warming rates, dT=pdt, and we obtain:

pmp

t (t+t 1) Av-

dT Ay+8 p
(2.1)

After tushchik, ' we introduce the parameter 8= T2
T, (se—e Fig. 3), To being the temperature at half

intensity on the falloG of the peak, and T, the peak
temperature. We obtain then

kg = Idt =— IdT —Ig6.J,, pJ,,
Here the subscript g refers to the parameters at the
peak of the glow curve, the integration is carried out up
to the exhaust of the glow under consideration, and
the area under the glow curve to the right of the peak
is approximated by a triangle, an approximation
experimentally found to be accurate to better than 5%.
It follows now that

pg (dt's ) pg(tig+p 1) A-
(dTJ g Atig+8 p

(2.2)

where
E=qkTg'/8, (2.3)

g=
kg+a 1Aug+8—

Taking the temperature derivative of (2.1), and
equating it to zero at the maximum of the glow peak,
we obtain with the aid of (2.2):

In developing an expression for evaluating E we
shall treat separately the cases in which the ratio of the
initial concentrations of trapped electrons to trapped
holes, p=gop/mp, is larger, equal or smaller than unity.

(2) Evaluation of E for the case p)1
For further simpli6cation of (1.4) we introduce the

following dimensionless expressions: tj, =m/mo, ' x=E/&o
(~&1) and the notation:

A =A; 8=s/mp.

From (1.2) we obtain: N=mp (p+p —1), so that

Ig

Ltj

X
Q /'2

O
X
UJ

l-

T, T T2

TEMP E RATUR E

I'rG. 3. An isolated glow peak showing the parameters: 5= T2—T~;
a=Tg Tq, and p„or gg=s/w. —
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(a) The dominant process is recombination (more
rigorously we assume

B/(p 1)—«A, and B«Ap,),
when by nelgecting second order terms of 6 we get

E= q,k T,'/5 with q, =p,/ (pg+ p—1), (2.3a)

and

(1—p.)l 1+
e—1

Q.5 Substitution of (2.5a) in the expression for q, yields

0.2

FIG. 4. The ratio of the initial concentrations of trapped
electrons to trapped holes (p=NO/mo) as function of p,—upper
part of the figure and of u~

—lower part of the figure. Curves a,
b, and c correspond to different types of kinetics (see text).

In this equation T, and 8 are readily obtained from
the glow curve. The same applies to y,,=m, /ms, which
is given by the ratio of the area to the right of the
peak to the total area under the glow curve (see Fig. 3).
Approximating the glow peak to be triangular we
obtain: p, =b/w, where w is the half-intensity width of
the peak. Another expression relating the parameters
p, A, and B to p, is obtained by integration of (2.1)
which yields

where

(p+p 1) + B«v 0—- —As
1nl l

p"=—. E pp

p
7

J= exp( —E/k8)N.
J vip

(2.4)

As E/kT is large compared to 1, J is given with good
approximation" by

j= (kT'/E) exp( —E/kT) (1—6); 6=2kT/E

Using this approximation and (2.3) in (2.2) yields

(J .+p 1) (p——1)(1—~)

p p ~ (2p+p 1)
(2.5b)

which by substitution of q& gives

(1—2/qs) (1—6) = lnLyg —(1—pg) (1—qs) j. (2.6b)

These transcendental equations were solved numer-
ically. Ps and q&s as functions of p, Lthe subscript 0

2

( ' 'l I'

q.=(B—1) 11— ~ l=q ol 1— ~
l (26a)

1—
@gal e—1) E e—1]

pp and q p are plotted against p,, in curves u of Figs. 4
and 5, respectively. Only values corresponding to
p&e/(e —1) are plotted. For larger values of p, p,, (as
well as 8 and q) becomes negative, a matter which will

be discussed below.
(b) Return to the ground state of the trap is the

dominant process, or B»A and B»A (p —1), when we
obtain

E= q&kTvs/5f qs= 1++v/(pa+ p 1), (2.3b)

-
(~ + 1 ) A Bl(p—1)—

ln
l l p, "

p,p )
(Apg+B)'(1 —~)

(2.5)
pg(». +2B)+(p 1)B—

r
r

Cl rrr
rr

rrr~

I

05 Pg or Vg
Equations (2.3) and (2.5) will be applied now for the
following speciic cases:

"See, for example, Bonfiglioli, Brovetto, and Cortese, Phys.
Rev. 114, 951, 956 (1959).

0.2 0.3 0.4

Fzo. 5. The factor q Lsee Eq. (2.3)) as function of pv (and vv).
Curves u, b, and c correspond to diferent types of kinetics. The
black dots indicate the points on the curves at which the initial
number of trapped electrons is equal to that of trapped holes
(p= 1)
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indicates the value for 6=01, are plotted in Figs. 4
and 5, respectively, (curves b) An. approximate solution
is obtained by using the expansion of the logarithmic
function:

and was erst given in this form by Lushchik, ' while
Eq. (3.3a) has already been developed by Braner. rs

(b) Return to the ground state of the trap is
dominant, when we have

lnx= 2

We take only the erst term in the series when (2.5b) and
(2.6b) are transformed into

E=2kTg'g8,

p, = l(1+A).

(4) Evaluation of E for 9&1

(3.1b)

(3.3b)

pg
p=(1—p.) 1+

2tt, (1—2A) —(1—tt, )

2pg
(1—2h) =qso(1 —2A)

(2.7b)

(2.8b)

The functions po and q&0 obtained by this approximation
are given by curves b in Figs. 4 and 5. It is of interest
to point out that Eq. (1.4) takes now the form: —dm/
dt=A ntrt exp( —E/kT), which is just the equation
obtained by Hill and Schwed, ' and by Bonfiglioli et al."

(3) Evaluation of E for 9=1
This case is simple and readily obtained. It is treated

separately because on integration of (2.1) the case
p=1 turns to be singular (see 2.4). In addition this is
the case dealt with by other investigators, and it
seems worthwhile to compare our results to others.

Equation (2.3) remains valid but is now reduced to

p 0

Sp

1 @so

)

p So

S
A =A; B= +A(q ——1),

So

we get

Pnp

dv v(v+q —1) yA

dT Av+B P
(4.1)

This is formally the same as Eq. (2.1) and may be
developed in a similar way.

The parameter 8 is now obtained from: rt, = (Ie/P)b
and instead of (2.3), (2.5) we have now

As long as the number of electrons in the traps is
larger or equal to that of the empty luminescence
centers (ns&&rrts, or p~& 1), the luminescence will fall to
zero with m. It is somewhat diGerent when neo)mo,
(p&1). In this case the luminescence will fall to zero
with e, and it is convenient to treat this case separately.

From (1.3) we have (for drt, /dt=0): dnt/dt=dn/dt
Using this in (1.4), and introducing the notations:

kTg' 8E=q, with q=1+
Atto+ 8

Integration of (2.1) yields for p=1:

p
A in@—8

(3 1)

(3.2)

E=qkTe'/8, with q=

(v +&p—1)"
v, ~

v, q

(4.3)
vs+ p —1 A vs+ 8

(A v +B)'(1—6)
(4 5)

ve (A ve+2B)+ (p 1)B—
where y=A —B/(q —1).

and similar treatment to that in paragraph (2) results in

1 pg
A lnpg —8 (4.3a)

(4.5a)ve ——e '(1+6),

Specific cases:
(a) Recombination dominant, or s/sts«A (p —1)

(A pe+B)s when we have
(1—6). (3.3) g~= 1)

(Atse+ 2B)tse

We shall now follow the specific cases as before:
(a) Recombination dominant, when we get

E=kTe'/o,

tt, =e '(1+6).
(3.1a)

(3.3a)

This corresponds to monomolecular type of decay
investigated by Randall and Wilkins. Eq. (3.1a) is
essentially the same as that developed by Urbach, "

which is valid for all values of y) 1 (p&1). This result
is different from that obtained under (a) in paragraph
2, and will be discussed in the conclusions below.

(b) Return to the ground state of the trap is dom-
inant. We get here the same results as in paragraph 2,
but with the parameters vg and q replacing pg and p,
respectively. The p (or 1/p) values are plotted in the
lower part of Fig. 4. The q(v, ) values coincide with
the q(tte) values except for curve a (see Fig. 5).

"F.Urbach, PreParution and Characteristics of Sok'd Lumines-
cent Materials, Cornett SyntPosistrn, 1946 (John Wiley and Sons, ~sA. A. Braner, thesis, The Hebrew University, Jerusalem,
Inc., New York, 1948), p. 126. 1958 (unpublished).



THER MAL A CTI VATI ON EN ERGI ES F ROM GLOW CURVES

(5) .Submodel II. Excitation into the
Conduction Ban|i

described in paragraph 2, yields

(A*tsp+B*)'(1 6)—
(6 3)

P. (A* t.+2B*)+(P 1)—B*
drn—/dt =nsn, A „,
de/—dt =yn e,(—X n) A—,
dn, /dt=yn=n, gnzA + (X—e)A„7,

(5 1) Equations (6.1) and (6.3) are formally the same as
(2.3) and (2.5), respectively, except for the correction
factor (1—1p() in (6.1), which evidently results from
the T' dependence of s/o. „. We shall use again these
equations for specific cases:

(a) Recombination dominant, or A* suKciently
large compared to B~ (see paragraph 2), when we have

where e, is the concentration of electrons in the conduc-
tion band, A —the probability for retrapping, while
other notations remain unchanged.

Equation (1.4) now takes the form

- ( + 1) AP B*h—(p—1)

Once the electron is excited into the conduction
band, the trap it left can no longer be distinguished from ~ ( ppp
others of the same type. The kinetics will now be given
by the following equations which replace (1.3):

A. mdm
=Ve

dk A I+A (N' —e)
(5.2)

In the present model we have to take in account that
the effective density of states in the conduction band
is temperature dependent. This results in the relation":
s/o=HT', w. here o„=A /I is the cross section for
retrapping, and I—the mean velocity of an electron
in the conduction band. H depends on the details of
the band structure, and includes the effective mass of
the electron as a factor.

We shall again treat separately the cases:

p& 1, p= 1; p(1.

E=q (kT '/())(1 —h)), (6.1a)

kTg'
E=g, (1—3);

with q, exactly the same as given in (2.6a). Similarly
p is given again by (2.5a).

(b) Equal probabilities for recombination and retrap-
ping, or A =A„(A*=0). Eqs. (6.1) and (6.3) are
reduced to (2.3b) )except for the factor 1—A7 and

(2.5b), respectively.

(c) Retrapping dominant, or A„)&A, when Eqs.
(6.1) and (6.3) are transformed into

(6) Evaluation of E for ()1.

We introduce the notation

A*=A —A; B*=A (PX—P+ 1),
and

with q.=
pg 1

+ (6.1c)
t(l)+P 1 1 h(()/ (PX P+ 1)

with P and X as defined above (paragraph 1).
Following exactly the procedure given in paragraph

2, we obtain now

kTg'
E= g (1—6); g=

pg +sic+, (6.1)
P.+P 1P.A*+B'—

instead of (2.3), while (2.4) is now replaced by

-
(ts+p 1) A B /( l)p-

!in ! p~* '=—
tP )

A 0„II
(6.2)

where

J*= ~I f)' exp( —E/kh))de=
Tp

kT4
exp( —E/kT) (1—2D).

E

Using this approximation, and following the procedure

I3 N. F. Mott and R. W. Gurney, Eleckroeic Processes irI, Iorric
Cryst(sts (Oxford University Press, Oxford, 1948), p. 108.

—
)ts +p —1 ~

xPI(P 1)—
ln !

[XP—(P.+P—1)7(1—~)
(6.3c)

(XP P+ 1)(2Pp+P —1) hp'— —

. The equations still contain the parameter X. For weak
excitations when only a small percentage of the traps
are filled we have x =1V/n()&)1, in which case
Eqs. (6.1c) and (6.3c) take again the form of (2.3b)
(except for the factor (1—6)7 and (2.5b), respectively.
It can easily be shown that in the case p&)1 the same
equations will also hold for.all values of A„&~A

For the other extremity, X= 1, Eqs. (6.1c) and (6.3c)
were calculated numerically, and the corresponding
functions pp and q, p are plotted against pg in curves c
of Figs. 4 and 5, respectively.

It should be noted that the curves for y= 2 are much
closer to those for x= oo (curves b) than to those for
X=1
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E=q(kTg'/8)(1 6)—, with q=1+, (7.1)
A*pg+3*

and
(A*pg+&*)'

(1—~). (7.2)
(A*p,+28*)pg

For the specific cases we now have:

(a) Recombination dominant, when we get

E= (kT,'/~) (1—~),

pg
——e '(1+6).

(b) A*=0 yields

E=2(kTO'/8) (1—6),

pg
——0.5 (1+6).

(7.1a)

(7.2a)

(7.1b)

(7.2b)

(c) Retrapping dominant. Here for y»1 we get
the same as in (b). The value of E has already been
given for this case in the same form by Lushchik'
(without the correction factor), and the symmetry
equation, p,,=0.5, by Braner. "For p=1 we obtain

E=q, (kT,'/e) (1—6), with q, = 1+1/(1—p,), (7.1c)

and (for 6=0)

»p, = (p,—1)/p, (2—p,), (7.2c)

which on calculation (for 6=0) yields p, =0.432, and
q.=2.76.

(8) Evaluation of E for g(1
We treat this case in a similar way as in paragraph 4.

For the specific cases we obtain here essentially the
same results as in paragraph 6 except that for the case
in which recombination is dominant" we have

E= (kT,'/S) (1—a),

r, = e '(1+6)—,
which is valid for all values of p&1.

(9) Conclusions

(8.1a)

(8.2a)

The treatment of glow curves as proposed in the
present work resulted in a simple formula for the
evaluation of the thermal activation energies of trapping
centers in crystals:

E= (q/5)kT, '.

In this formula 1', and 8 are obtained directly from the
glow curve. The determination of g is somewhat more
complicated, nevertheless, it has been calculated for a

'4 More rigorously we assume A to be large enough so that
A «A; and A «A (q —1l.

(7) Evaluation of E for g=1
This is carried out exactly as in paragraph 3, we

getaow

variety of specific cases, f'or which q is readily obtained
from the symmetry of the glow peak (see Fig. 5).
Our model seems to be more general than other treat-
ments reported in literature. For example, our results
for p=1 (paragraphs 3 and 7) include practically all
the cases dealt with previously.

Another interesting result in the present work is
that the symmetry of the glow peak (given by p, or v,)
was found to be characteristic of the kinetics. Qualita-
tively this was already known'~ for the case p=1. In
the present work it is given quantitatively, and even
more, the symmetry is shown to depend on p. Mono-
molecular type of relaxation is indicated by" p,, ~& e ',
whereas p, &~e ' corresponds to bimolecular kinetics.
There might be some doubt near the common value

(p, = e ), in which case the kinetics might be determined
from the p value which for p, = e ' should be unity for
monomolecular kinetics, and infinity for the bimolecular
case. Estimation of the value of p might in such cases
be obtained from the general features of the glow
curves, or from information regarding the relative
concentrations of traps which might be obtained from
the coloration of the crystals or other effects.

The theory assumes a well isolated glow peak.
Fortunately this requirement is not critical, which is
an important advantage of the method. It is easy to
eliminate any interfering glow appearing at lower
temperatures by merely keeping the crystal for some
time at a temperature somewhat below that of the peak
to be measured. The difficulty is to eliminate interfering
peaks at the fallo6 of the peak being measured. For-
tunately the error introduced in the calculated value
of E by a peak appearing as a shoulder towards higher
temperatures is very small. It comes out (as can easily
be calculated) that the effects due to the changes in

q and 6 compensate each other, so that the calculated
value of E remains almost unchanged.

We shall now discuss some of the results in more
detail. As stated above, a constant value, p, =e ', was
obtained for p ~&1 in the monomolecular case treated
under (a) in sections 3, 4, 7, and 8. For p)1, p, was
found to decrease, and reaches the value p, =0 (and
8=q=0), when p=e/(e —1)=1.58. For larger values
(p)1.58), p„b, and q become negative. To explain
this we recall that we assumed for this case a very large
probability for recombination (A =~). This implies
that the thermoluminescence should in this case be
governed only by the rate at which electrons are
released from the traps. This will indeed be the only
factor in determining the shape of the glow peak for

p « 1. For p&1 the shape should again be given by the
rate of release of electrons as long as there are empty
centers. The thermoluminescence should, however, stop
at the moment at which the centers are completely full.
The distribution of electrons between the trapping level

'~ Unless otherwise stated, all the values given in this discussion
are for 6=0.
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and the excited state (or th'e conduction band) will
then be kept at thermodynamical equilibrium up to a
temperature at which recombination in some other
centers will become appreciable.

The expected eGect of a shortage of luminescence
centers on the glow curve is demonstrated in Fig. 6
for a few typical values of p. Figure 6 (a) corresponds
to the case in which there are empty centers sufhcient
for all the trapped electrons (p &~1), so that there is no
interruption in the glow. Figure 6(b) corresponds to
1 & p(e/(e —1), in which case the centers are exhausted
somewhere on the falloff of the virtual glow peak
determined by the trapped electrons. In this case p„
8, and q are still positive. Figure 6(c) shows the case in
which the glow stops just at the maximum [p= e/(e —1);
p„8, and q just become zero]. Finally, Fig. 6(d)
corresponds to a still larger value of p so that the glow
stops before reaching the maximum. In this case .p,
and 8 should be taken negative.

In practice the probability for recombination is of
course finite. Nevertheless, it is enough to have the
rate of recombination much faster compared to that of
release from the traps. The above given description
should not change than, except for some curvature in
the still steep falloff of the glow peak. Experimentally
values of p, (e ' are very rare, which implies that
monomolecular processes with p&1 occur rarely, if at
all. The explanation might be that very large probabil-
ities for recombination are likely only when the traps
and centers are very closely related. Such a close
relation might be expected in monomolecular reactions
in the rigorous meaning of the term, when the number
of traps should be equal to that of centers (p= 1).

We turn now to processes of bimolecular character.
The formulas (2.3b) and (2.5b) and the corresponding
curves in Figs. 4 and 5 hold for the specific case (b)
as well as for (c) when x»1. Even more, they hold for
all values of A (A„when y))1. All these specific
cases make the formulas quite general for the bimolec-
ular type of process. It should be noted that experi-
mentally x is mostly larger than unity. Curves c in
Figs. 4 and 5 represent therefore a limit which is
practically never reached. In the case that 50/o of
the traps are 611ed by the excitation (g=2) the
calculated values of q (p,) are much closer to curve b

(Fig. 5) than to curve c. Even so, there might be a
small eGect of filling the traps which will cause some
increase in the q values.

As already mentioned in this discussion, all values of
p, between e ' and 0.5 can be obtained for bimolecular
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Fxo. 6. The theoretical eGect of p on the shape of the glow peak
in case of monomolecular kinetics. (a) p &1; (b) 1&p &e/(e —1);
(c) p=e/(e —1); and (d) p&e/(e —1).
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processes. Values of p, &0.5 can, however, be obtained
and were already observed experimentally in the glow of
ZnS: Cu: Cl crystals. '6 The reason for it is to be found
in the correction factor A. Taking this into account we
get as the limiting value pe =0.5 (1+6) t see Eq. (3.3b) $.

The equation for E remains essentially the same for
both the submodels treated in the present work.
The main differences are in the correction factor 1—6
which enters in the equation obtained for submodel II,
and in the eGect of filling up of the traps which in case
of model II should be accompanied by an increase in
the q values as stated above.

It has already been pointed out that just the same
equations will fit the case in which trapped holes are
released and recombine with trapped electrons. The
identihcation of the sign of the released carriers might
be established by complementary experiments; e.g. ,
electrical glow curves, thermal bleaching of color
centers, etc.
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