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The linearized plasma equations and the boundary conditions to be satisfied across a surface of density
discontinuity are considered. It is shown that an incident longitudinal plasma wave generates reflected and
transmitted transverse plasma waves, as well as reflected and transmitted longitudinal waves. The inverse
process also occurs. The transverse waves are generated only when the longitudinal wave is almost normally
incident ; in the inverse process, the generated longitudinal waves are propagated normal to the boundary.

I. INTRODUCTION

E consider here the types of waves which result
when pure longitudinal and pure transverse
plasma waves are incident on a plasma density dis-
continuity. (Since we assume that the equilibrium
pressure is the same on both sides of the boundary, a
temperature discontinuity is associated with the density
discontinuity.) In particular, we show that an incident
longitudinal wave generates reflected and transmitted
transverse waves, in addition to reflected and trans-
mitted longitudinal waves. Thus, we describe a mecha-
nism by which energy is transferred from compressional-
type waves to electromagnetic-type waves. We also
demonstrate that the inverse process occurs; transverse
waves give rise to longitudinal waves when incident
upon a boundary.

This problem, which bears upon the generation of
radio noise in the solar atmosphere, as well as the
generation of radio waves by plasma oscillations, has
been partly treated by Field.! However, his work is
restricted to the case of a plasma-vacuum boundary;
this actually implies a gross velocity for the medium,
which is not taken into account in his linearization of the
plasma equations nor in his boundary conditions (which
are incorrect for other reasons as well).

In Sec. IT we discuss the plasma equations, and the
types of waves which result. Since the boundary con-
ditions are of considerable importance, they are con-
sidered in detail in Sec. III. Section IV contains the
results for the cases of incident longitudinal and
incident transverse waves; the reflection and trans-
mission coefficients are calculated for all types of waves
which appear in each case. Section V contains a dis-
cussion of the results, and some numerical calculations;
in Sec. VI the work is summarized.

II. LINEARIZED PLASMA EQUATIONS

The plasma equations are obtained by applying the
combined sets of hydrodynamic equations and Maxwell
equations to a completely ionized gas. The assumption
is made here that the ions are fixed in space, so that
their only effect is to neutralize electrically the plasma
when the electrons are uniformly distributed. Since we

* Supported by the Office of Naval Research.
1G. B. Field, Astrophys. J. 124, 555 (1956).

are thus considering a one-component (electron) gas,
the parameters associated with the ions do not occur
in the equations. The equations are linearized in the
usual manner by assuming that the variations from
equilibrium in the plasma variables are sufficiently
small so that products of these variations can be
neglected.?

The electron density and hydrostatic pressure are
given, respectively, by po+p and po+p; the po, po are
equilibrium values, and the p and p contain the space-
time variations. It is assumed that there is no gross
motion of the plasma and that no external fields are
present; thus, the space-time variations of electron
(fluid) velocity, electric field, and magnetic field are
represented by u, E, H. The variables p, p, u, E, and H,
as well as their space and time derivatives, are assumed
to be of first-order smallness; products of first-order
terms are neglected in the linearization. The linearized
plasma equations are therefore:

po(du/01)~+Vp+ (epo/m)E=0, n
poV -u-+-3p,/di=0, @
Vp=1*Vp, ©)
VX E=—aH/at, 4)
V-E=— (4re/m)p, ®)
cVXH= — (4mpoe/m)u+0E/ot, (6)
v.H=0. )

In the above equations, v is the adiabatic sound velocity,
and ¢ is the velocity of light; —e and m are the charge
and mass of the electron; p is the varying mass density,
and (eo/m) is the varying charge density; the current
density is — (poeu/m). Thus, the equation of conserva-
tion of mass, Eq. (2), is identical to the equation of
conservation of charge.

- The plane waves which may exist in the plasma are
determined by assuming solutions to the plasma
equations of the form exp[i(kn-r—wf)]; % is the
propagation constant (or wave number) and, in
general, is a function of the frequency, w; n is a unit
vector in the direction of propagation; and r is the
vector to the observation point. By equating the

2 Cf., L. Oster, Revs. Modern Phys. 32, 141 (1960).
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determinant of the coefficients of the plasma variables
to zero (the condition for the solution of the simul-
taneous equations), an equation for %k as a function of
o is found. This dispersion relation has three solutions.
One solution corresponds to a longitudinal wave which
has no magnetic field associated with it. The remaining
solutions correspond to two transverse waves, of
opposite polarization, which have no density variations
associated with them. The propagation constants for
these waves are:

b= @—ad)/,
K= (ut=ad)¥/c,

wd=4mpoe?/m?,

(longitudinal wave)

(transverse waves) ®)

w, is the plasma frequency. If the propagation is along
the x axis, the longitudinal wave has field variables
%z, Bz, p (or p); the transverse waves have variables
%,y B, H, (and u,, E,, H.). The relations between the
variables are:

me
ur=— 7 E Ly
dmepy
(longitudinal wave),
my? E
p=——V-E,
4mre
. ©)
ie
ur=——=Erp,
wm
) (transverse waves).
ic
H;=——VXEr
w

In general, all three waves may exist in the plasma; the
boundary and initial conditions determine which waves
exist for any physical problem.

Because the two transverse waves can act differently
at a boundary, depending upon the direction of polari-
zation with respect to the plane of incidence, they shall
be denoted as follows: the transverse wave polarized
with its magnetic vector perpendicular to the plane
of incidence (electric vector in the plane of incidence)
will be called a perpendicular magnetic (PM) wave;
the wave with electric vector perpendicular to the
plane of incidence will be called a perpendicular electric
(PE) wave.

III. THE BOUNDARY CONDITIONS

Since the plasma equations are a set of coupled'

acoustic (or linearized hydrodynamic) and electro-
magnetic equations, the boundary conditions to be
imposed are a combination of the usual acoustic and
electromagnetic boundary conditions. It is to be noted
that these sets of equations are coupled by the electronic
charge. If ¢ is set equal to zero, uncoupled acoustic and
electromagnetic equations result, and the possible
waves are then simply a longitudinal acoustic wave

383

and transverse electromagnetic waves. This limiting
case must be kept in mind when the conditions are
imposed across a boundary.

The acoustic conditions to be imposed across the
density discontinuity are the usual ones® of continuity
of pressure and of the normal component of the fluid

velocity :
(10)

(11)

where the superscripts 7, 7, ¢ refer to the incident,
reflected, and transmitted waves, and 1, is the normal
to the boundary, assumed at x=0. The continuity of
pressure is a dynamic condition requiring the net force
on the boundary to be zero. The continuity of the
normal fluid velocity is a purely kinematic condition;
if not imposed, then the fluids can separate. This
condition therefore requires that the mass flow across
the boundary be nonzero; this may be understood from
the following considerations.

Suppose that the boundary is on the plane x=0
when there are no waves present ; when a wave impinges
upon the boundary, it moves with velocity #.i-u."= u,*
(the linearization requires these velocities to be much
smaller than the sound velocity, so that, to first order,
the boundary conditions are taken at x=0). Across
the plane x=0, there is a flow of mass per unit area, of

Aportz=po1 (u:cz‘l'uxr) — potist, (12)
where por and poe are the equilibrium densities on the
two sides of the boundary. There is therefore a transition
layer, around x=0, of thickness &=/ (u,'+u,")dt
= futdt= (i/w)u,’ [assuming an exp(—iwt) time
variation |, which contains a “surface” distribution of
mass per unit area of

pirp—p'=0 at =0,

i,- (wiHur—u?)=0 at 2x2=0,

= (po1—po)€; | & KA. (13)

The condition on |£| in Eq. (13) is just that |u| <,
as is required for linearization. The continuity of
pressure is insured since the rate of change of momentum
per unit area, associated with this mass, is of second
order.

There is associated with the “surface” mass distri-
bution a “surface” charge distribution

o= (¢/m)r== (¢/m) (po—poz)é. (14)

This “surface” charge distribution will give rise to a
discontinuity in the normal component of electric
field ; however, the “surface’ current density associated
with this charge is of second order smallness and is
therefore taken as zero in the boundary condition given
by Eq. (16) below.

Since the two curl equations, Eqs. (4) and (6), and
the equation of conservation of charge, (¢/m) times
Eq. (2), are a complete set of Maxwell’s equations, the
additional boundary conditions are derived from Egs.

3R. B. Lindsay, Concepts and Methods of Theoretical Physics
(D. Van Nostrand Company, Inc., New York, 1951), p. 369,
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MEDIUM | z MEDIUM 2
Por, Vi Po2,V2
Te
T F16. 1. Longitudinal wave (L;:

Lr
AN h\“ v angle of incidence 6y, wave number
4 % i ky) incident upon boundary (Case
SN e . 1); reflected waves—longitudinal
8o (Ly: 01, k1), transverse (Ty: @1, K1);
ki transmitted waves—longitudinal
(Le: 0, k2), transverse (T's: o2, K3).
Li -

(4) and (6) by applying the usual procedure?:
i, X (Bi+E—E)=0, (15)
i, X (H+H —H9)=0. (16)

The discontinuity in the normal component of
electric field can be obtained by taking the divergence
of Eq. (6) and using the condition of continuity of the
normal component of velocity. [This is equivalent to
combining Eq. (5) and (e¢/m) times Eq. (2) indicating,
of course, that Eq. (5) is not necessary for the complete
set of Maxwell’s equations. ] Once again, applying the
procedure for determining boundary conditions, we
find that i,-AE=i(4ne/mw)i,-Apsu. Therefore, by
comparing this with Eq. (14) and, Eq. (11), we see that
the “surface” charge accounting for the discontinuity
of normal electric field is the same as the surface charge
derived from the transition layer considerations. The
condition on the normal component of electric field is
therefore

i, [Bit+-Br—E =40, (17)

where ¢ is defined by Eq. (14). The boundary condition,
on the normal component of magnetic field, derived
from Eq. (7) is redundant (as is the equation itself).
A wave incident on any surface of discontinuity in a
plasma can give rise to six possible waves, i.e., three
reflected waves (one longitudinal and two polarizations
of transverse waves) and three similar refracted waves.
The six boundary conditions, Egs. (10), (11), (15),
and (16), will determine the amplitudes of the six
waves. The “surface” charge distribution can then be

determined by using Eq. (17). If the acoustic and

electromagnetic systems are ‘“uncoupled” by setting e
equal to zero, then the electric field is no longer related
to the fluid velocity, and the normal component of
electric field becomes continuous as expected for
dielectric media.

z
MEDIUM 1

MEDIUM 2
o1, v, Poz,V, F1c. 2. Transverse wave (T3;:
L T angle of incidence ¢o, wave
. number K1) incident upon bound-
) ' ary (Case 2); reflected waves—
— i .x longitudinal (L,: 61, k1), trans-
% verse (T':: ¢1, K1); transmitted
LS waves—Ilongitudinal (L:: 6, k2),
. transverse (T's: @2, K2).
1

4See J. A. Stratton, Electromagnetic Theory (McGraw-Hill
Book Company, Inc., New York, 1941), p. 34 fi,
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Since the requirement of continuity of normal
particle velocity across a boundary gives rise to a
discontinuity of normal electric field, one may expect
that the presence of a boundary (e.g., of density
discontinuity) will cause a coupling between the
longitudinal and transverse waves. If a longitudinal
wave, having a particle velocity u and associated
electric field E, impinges upon the boundary, the
acoustic boundary conditions Egs. (10) and (11) will
“tend to”” set up reflected and transmitted longitudinal
waves; the electric fields associated with these longi-
tudinal waves (alone) cannot satisfy Eq. (14) (unless
the incident wave is normal to the boundary). Thus
reflected and transmitted transverse waves are required
in order to satisfy all the boundary conditions.

Similar effects hold for the case of an incident
transverse wave with its electric field in the plane of
incidence (PM wave). Moreover, since the longitudinal
wave and the PM wave have their electric fields in the
plane of incidence, the PE wave will not be generated,
as seen from Egs. (14) and (16). The PE wave, on the
other hand, having its electric field parallel to the
boundary, will act simply as does an electromagnetic
wave (with the wave number K), satisfying Eqgs. (14)
and (16), and will not couple to the PM transverse or
longitudinal waves.

Since the incident PM transverse wave does give
rise to reflected and transmitted longitudinal plasma
waves, the PM reflection (and transmission) coefficients
are quite different from those obtained in the ordinary
electromagnetic case. Therefore, the existence and
properties of longitudinal plasma waves probably can
be inferred from this difference in reflection coefficients.

It is to be noted that, allowing the electric charge to
to to zero in the plasma equations, ‘“‘decouples” the
hydrodynamic and electromagnetic fields. In this case,
the boundary conditions are no longer related to each
other [o goes to zero in Eq. (17)], and the separate
acoustic and -electromagnetic boundary conditions
result.

IV. APPLICATION OF THE BOUNDARY
CONDITIONS

Let us consider two semi-infinite media separated
by the plane x=0. Medium 1, for £ <0, will be charac-
terized by an equilibrium density po: and sound velocity
71 (and plasma frequency w.:); medium 2, £>0, has
equilibrium density pos, sound velocity ve (plasma
frequency wes). We assume for the electric fields of the
various waves the following form:

longitudinal wave E(i, cosf+1, sinf)
X exp[ik (x cosf+2 sinf) —iwt ],
transverse PM wave Er(—1;sing+1, cosg) 1)
Xexp[iK (x cose+2 sing) —iwt ],
transverse PE wave Er'i, exp[iK (x cose
+2 sing) —wt ],
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where the longitudinal wave propagates at an angle 6
with respect to the positive x-axis and has wave number
k; the transverse waves propagate at an angle ¢ with
respect to the positive x-axis and have wave number K
(see Figs. 1 and 2). The wave numbers % and K are
given by Eq. (8). The other variables associated with
the waves are found from Eq. (9).

Case I. Incident longitudinal waves—We consider first
a purely longitudinal wave, with wave number %,
incident on the density discontinuity at angle 6. The
following waves are assumed: reflected-longitudinal
(angle 61, wave number %;) and transverse (angle ¢;,
wave number K;) waves; transmitted-longitudinal
(angle 65, wave number k;) and transverse (angle ¢s,
wave number K,); see Fig. 1. Applying the boundary
conditions, Egs. (10), (11), and (14), (16), at =0, we
find that the following forms of Snell’s law must be
satisfied :

kl sin00=k1 sin01=k2 sin02=K1 Sin§01=K2 Sil’lgag. (19)

Also, the amplitude of the PE wave is identically zero;
the longitudinal and transverse PM (E in plane of
incidence) waves have reflected and transmitted
amplitudes given by

Err 1
_ [H—A
Elr M

92 tanBz

tangol][&h tané, ]
-1
taneg

+Q:1(1—A)? tandy tane; ] ,

ELI 1 Sil’la() tancp1
L PYA [1+A ]}
Err M 'Sineg tan s
ETT 1 SinBo
=—{—2(1—A4) l»,
Ei M cos ¢y (20)
ETt 1 Sinoo
-=—{ —2A(1—A) tancpl},
Ei M sings
tane; 2 tanf, .
M=[1+A ][-—A +1]
tan 2 ILQ, tapﬁg

+Q1(1—A)2 tan60 tangal,
Qg=w922/w2, A= (1"91)/(1—92)

QD =w?/o?,
These results will be discussed in Sec. V.

Case I1. Incident transverse wave—The case of an
incident transverse PE wave (electric field perpen-
dicular to the plane of incidence) is similar to that of
an ordinary transverse electromagnetic wave, of wave
number K7, incident upon a boundary. Since there is no
pressure wave associated with a transverse wave, Eq.
(10) does not enter in the boundary condition; since
the electric field and fluid velocity are in the y direction,
Egs. (11) and (15) do not enter. This incident PE
wave is therefore not coupled by the boundary,to
longitudinal waves (or PM waves); the reflected and
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transmitted amplitudes are those given by Fresnel’s
law for the case of the electric field normal to the plane
of incidence.®

An incident transverse PM wave, however, does have
a coupling to longitudinal waves; again, the PE wave
does not enter. Taking the incident wave at angle ¢y,
wave number K;; reflected and transmitted transverse
waves at angles ¢; and ¢s, with wave numbers K; and
K, respectively; reflected and transmitted longitudinal
waves at angles 6; and s, with wave numbers k; and k.,
respectively; we have Snell’s laws:

.Kl Sian():Kl sin¢1=K2 Sil’l§02= kl sin01=k2 sinﬂz. (21)
The various electric field amplitudes are given by
Epr 1 tangO()-l Q, tanfy
-
ET'; N ta,I’I(sz 92 tanb’z
—01(1—A)? ;cvan01 taneo } ,
Ert 1 singpg Q; tané,
—=—[ 2A [1+~A ] ,
ETi N singog 92 tan02
E;r o1 sineg
——{-ma-a), (22)
Ert N cosfy
Et 1 sin g
=—{ ZQlA(l—A) tanﬁl},
Ert N sinfy
tange[21 tand;
N=[1+A ][—A +1:|
tan ©2 92 tan02

+Q,(1—A)? tand; tan .
V. DISCUSSION OF THE RESULTS

It has been shown that transmission of a longitudinal
wave across a discontinuity can cause transverse waves
to be generated. However, only a small cone of incident
angles are allowed for transverse waves to be formed.
For a normally incident longitudinal wave, Egs. (20)
show that no transverse wave appears (as was noted
in the discussion of the boundary conditions); more-
over, for a true transverse wave, the angle of propa-
gation (¢; for the reflected wave, and ¢, for the
transmitted wave) must be less than 90°. The angles
are given by Snell’s laws, Eq. (19):

kl Cc A
sin ¢ =— sinfy=— sinf, (23a)
1 U1
kl X , Cc
sin g =— sinfy=A*— sinf,. (23b)
2 1

For all except very small 6y, the angles ¢; and ¢, will
be complex since (¢/v1) is much greater than unity. If
the angle of propagation is complex, the transverse

5 Reference 4, p. 495.
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wave becomes a surface wave propagating along the
boundary (z direction) and exponentially attenuating
in the direction normal to the boundary (x direction).
Moreover, the electric field, in this case, has a com-
ponent in the direction of propagation.

Calculations have been performed assuming an
electron density of 4X 10° electrons per cubic centimeter
and a temperature of 105 °K. These values are com-
parable to values of these parameters in the solar
corona. The ratio of densities across the discontinuity
is taken to be 2:1, with transmission into the less
dense medium. The plasma frequencies are computed
using Eq. (8): we=3.58X10° cps and w.=2.53X10°
cps. Since ¢/v;=1.89%X10? reflected transverse waves
will only occur for angles of incidence less than zero
degrees eighteen minutes. Because the ratio of propa-
gation constants, Eq. (23b), contains the factor A%, the
transmitted waves will be generated over a slightly
larger range of incidence angles; the allowed range
increases as w approaches w.;. In Fig. 3 are plotted
the relative electric field amplitudes of the created
transverse reflected and transmitted waves. Three
different frequencies of the incident wave are assumed:
I, ©=3.94X10° cps; II, o=10X10° cps; III, v=18.8
X 10° cps.

The ratios of the propagation constant for an incident
transverse wave to the propagation constants for the
generated longitudinal waves,

K]/klz 7)1/6, Kl/k2= A%7)2/6,

are much less than unity—of the order 1072 in the
calculations which were performed. Therefore, PM
transverse waves incident at any angle give rise to
reflected and transmitted longitudinal waves. As a
result of Snell’s law, though, the angles of reflection

(29)

2
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~
L
<1 - F16. 3. Transverse wave
reflection and transmission
coefficients for incident
/ longitudinal wave (Case 1)
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w=10X10° cps; III, w
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and transmission, 6; and 0, are approximately zero. Thus
the created longitudinal waves propagate along the
normal to the discontinuity.

The ratios of electric field amplitudes, of the created
longitudinal waves, to that of the incident transverse
wave, are plotted in Fig. 4. The parameters are assumed
to have the same values as in the previous calculations.

VI. SUMMARY

We have investigated the problem of longitudinal and
transverse waves incident on a plasma density (or
temperature) discontinuity. Applying the boundary
conditions, we have shown that energy can be con-
verted from longitudinal waves to transverse waves. In
addition, we have shown that the inverse process,
transverse converted to longitudinal, also occurs
provided that at least part of the incident transverse
wave can be considered polarized with magnetic field
perpendicular to the plane of incidence. The transverse
waves are generated only when the longitudinal wave
has a very small incidence angle; whereas, all angles of
incidence for the transverse wave give rise to reflected
and transmitted longitudinal waves. For each case
calculations are made assuming three different values of
frequency. As the frequency of the incident wave
approaches the plasma frequency, the amplitudes of the
generated waves increase. Comparing Figs. 3 and 4,
one observes that the longitudinal waves are created
more efficiently than the transverse waves. In addition
to the difference in allowed range of incidence angle,
the generated longitudinal waves have relative electric
field amplitudes which are an order of magnitude
greater than the relative electric field amplitudes of the
generated transverse waves.



