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The various anomalies exhibited by the thermal properties of liquid He originate with its nuclear spin
system according to the statistical thermodynamic formalism elaborated for the latter. This result of
general character is verified directly through a quantitative evaluation of the volume expansion coe%cient
of the saturated liquid. The theory also yields the explanation of the observed pressure dependence of the
temperature locus of its volume anomalies near saturation at moderate pressures. The quantitative ex-
tension of the theory into the regions of the compressed liquid and the solid will have to await the forth-
coming of precise measurements of several thermal properties in these phases of He'.

I. INTRODUCTION

' 'N recent work' we have analyzed the thermal prop-
& - erties of the nuclear spin system in liquid He' on
the basis of its statistical thermodynamics elaborated
previously. ' The anomaly of the volume expansion co-
efficient of the liquid could be shown to arise from the
behavior of the spin system determined by the tem-
perature and pressure dependence of the nuclear para-
magnetic susceptibility of the liquid. In the present
paper we propose to generalize quantitatively the
theory' ' in deriving the tota1 volume expansion co-
eKcient of the liquid as well as some other properties
closely connected with it in terms of empirically ob-
tained properties required by the statistical thermo-
dynamic character of the theory.

The formalism is based on the assumed additivity of
the entropy of the nuclear spin system and the entropy
associated with the degrees of freedom other than spin. ' '
So far the main goal of the theory was a precise de-
scription of the partial properties of liquid Hea arising
from its nuclear spin system. In this the theory suc-
ceeded without involving any arbitrary parameters
whatsoever. The generalization attempted in the present
work, so as to include in the formalism the system of
degrees of freedom other than spin, still succeeds
essentially as long as one considers the liquid in equi-
librium with its vapor, or under moderate external
pressure, near saturation. However, some of the thermal
properties of the compressed liquid established in this
Laboratory by two groups of independent workers, 4 at
or above 1.0'K, suggest already that in the compressed
liquid as well as probably in the solid phase, ' the non-
spin degrees of freedom require, for their equation of
state a parametric function e, (V,T) of the variables
of state. This function is, of course, susceptible of
evaluation through the formal description of some ther-
mal properties of the liquid.

The statistical thermodynamic formalism used in

connection with the nuclear spin system' ' leads in a
fairly straightforward way to the derivation of the
partial volume expansion coe%cient of the nonspin
degrees of freedom. This combined with that of the
spin system yields the approximate total volume ex-
pansion coefficient of saturated liquid He' in fair
agreement with preliminary data. ' The problem in
compressed liquid He' can only be discussed along
semiquantitative lines, because accurate data on the
nonspin degrees of freedom of compressed liquid or
solid He' are not available at the present time. Results
obtained near saturation condition and under moderate
pressure appear to agree with the data.

2. THERMAL PROPERTIES OF LIQUID Hee

p„.(V,T) = ', $E„.(V,T)/V], -
that is to postulate the validity of the virial theorem.
In (1), on account of the rather small variations of the
liquid volume over the temperature interval of interest,

T

C„.(V,T)dT. (2)E,(V,T) =

In order to generalize somewhat the representation of
the empirical results on the partial thermal properties
of the nonspin degrees of freedom, it appears reasonable
to rewrite the equation of state (1) in the less restricted
form

It has been established, experimentally, by Roberts
and Sydoriak7 that, to a fair degree of approximation,
the partial heat capacity of the nonspin degrees of
freedom in saturated liquid He' is linear in temperature
over a fairly wide temperature interval. This interval
is, however, reduced somewhat in transforming the
saturated liquid heat capacity to the constant volume
heat capacity at the volume of the saturated liquid at
any precise temperature. ' In this linear region it may
be justified to write in a Grst approximation,

p„.(V,T) = ', e„,(V,T)E„.(V,T)/V, -(3)' L. Goldstein, Phys. Rev. 102, 1205 (1956); 112, 1483 (1958).' L. Goldstein, Phys. Rev. 96, 1455 (1954}.
3 L. Goldstein, Phys. Rev. 112, 1463 (1958).' R. H. Sherman and F. J. Edeskuty, Ann. Phys. (N.Y.) (t

be published); E. R. Grilly and R. L. Mills, Ann Phys. (N.Y.
8, 1 (1959).

e L. Goldstein, Ann. Phys. (N.Y.) 8, 390 (1959).

e R. D. Taylor and E. C. Kerr, Physica 24, S133 (1958); Lee,
o Reppy, and Fairbank, Bull. Am. Phys. Soc. 3, 329 (1958).
) rT. R. Roberts and S. G. Sydoriak, Phys. Rev. 98, 1672

(1955); see also Abraham, Osborne, and Weinstock, Phys. Rev.
98, 551 (1955).
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FrG. 1. Calculated molar volumes of liquid He' as a
function of the temperature.

'Brewer, Sreedhar, Kramers, and Daunt, Phys. Rev. 110, 282
(1958);Brewer, Daunt, and Sreedhar, Phys. Rev. 115,856 (1959).
We wish to thank here the senior member of this group, Dr. J. G.
Daunt, for communication of their latest stage experimental results
before publication.

in which the parametric function s„,(V,T) is supposed
to originate with the interactions existing within. the
system of nonspin degrees of freedom other than those
which are taken into account through the empirical
nonspin heat capacity and Eq. (2). Along the satura-
tion line, and in the limited temperature interval of
interest here the parameter e appears to be close to
its ideal limit of unity. However, as will be shown

briefly below, in compressed liquid He' as well as in the
solid phase, this parameter should take on values con-
siderably lower than unity, judged from the standpoint
of the theory valid in the saturated liquid.

In terms of the ideal antisymmetric formalism, it is
possible to associate with the nonspin degrees of free-
dom, on the basis of their empirical heat capacity,

Co., v/R =aT, a = 0.426/'K, (4)

an apparent characteristic temperature given by

Tp,„=rrsRT/2C„, ,y.
=~'/2a
= 11.6'K.

The coefficient u used here is somewhat smaller than
the one given for the saturated liquid nonspin heat
capacity. This reduction comes about through an
approximate over-all linear fit of the constant volume
nonspin heat capacity which falls below the saturated
liquid nonspin heat capacity' beyond about 1.0'K. It
should be noted that the empirically established'
linearity of C„...(T) involves a good deal of extrapola-
tion, so that a certain amount of curvature of this
partial heat capacity at the very low temperatures,
this heat capacity being concave upward, cannot be
ruled out at the present time. Such an upward concave
extrapolation of C„... was actually suggested by the
workers of the Argonne Group. ' The recent heat
capacity measurements of the Ohio State University
workers, though extending in temperature well below

56.9.

that reached by the measurements of either the Los
A1amos or Argonne workers, ' cannot be used here for
reasons which will be considered briefly below. Inas-
much as we shall essentially limit ourselves to tempera-
tures less than about 1.5'K, the empirical relation (4),
linear in temperature, is acceptable over this interval,
in view of the smallness of the ratio (T/Tp, ,), even at
the upper end of the above temperature range.

It should be noted that in dealing with the spin
system' the parameter e, (V,T) was found to be equal
to (—1), corresponding to the situation whereby the
virial theorem was there approximately verified to
within the negative sign. The latter is a qualitative
algebraic aspect of the fundamental anomaly of the
spin system, which, however, seems to have a fairly
clear physical interpretation. ' In the system of the non-
spin degrees of freedom of the compressed liquid, it
will be shown below that the characteristic derivative

L~P-/d(E-/U) 7y= s e-(V,T),
e .(U, T)(1,

(6)

is not ideal, the parameter e„,falling below unity and
depending in some way on the variables of state. The
preceding result is imposed by the data in the com-
pressed liquid, and, probably, also in the solid phase. '

Using the thermodynamic reasoning discussed previ-
ously in connection with the partial volume expansion
coefficient of the spin system, ' one Gnds for the partial
volume expansion coefficient associated with the non-
spin degrees of freedom

~-.o(V,T)= s(sr(V, T)/V)e-(V»)C-. v(V, T), (7)

where use was ma, de of the equation of state (3) of the
nonspin degrees of freedom. The total expansion co-
eScient of the liquid is then'

~o(V T)=~-.(V»),+~-.(U T),
= s (s~(V,T)/V)

Xt .(U,T)C., (U, T)—C., (V,T)7, (8)

where, as in (7), Kz is the isothermal compressibility,
which below about 1.0'K is the same practically as f(.z
or f(:„t,, the adiabatic compressibility or that along the
saturation line, respectively. It should be remembered
now that

C .,v(V, T) =Crr(V, T) C.,v(V, T), —

where Cv(V, T) is the observed total constant volume
heat capacity, so that Eq. (8) is a statistical thermo-
dynamic relation which correlates the following thermal
properties of the liquid: n„,~p, V, Cy, and C, ,y, the
latter being determined' through the empirical nuclear
magnetic susceptibility ratio x (V T)/xp(U T) xp stand-
ing for the limiting Langevin susceptibility at the vol-
ume t/" and temperature T, which liquid He' would
exhibit if it were an ideal nuclear paramegnetic system.

' W. M. Fairbank and G. K. Walters, I'roceedings of the Sym-
posium oe Liquid aud Solid He' (Ohio State University Press,
Columbus, 1958), p. 1 of the Supplement.



THERMAL PROPERTIES OF LIQUID He'

T

V(T) V(0) =
~t (BV/BT)„dT,—

Jp
(12)

which vanishes at a precise temperature T~, where
V(T&) is equal to the volume of the liquid at the
absolute zero V(0). Using then the unique empirical
volume V(T&) of Taylor and Kerrs we have obtained
the liquid volume V(T), whose graph is given in Fig 1. .
T& is equal, to the approximation of the above numerical

Ke have so far implied that e„,(V,T) is equal to unity
in the saturated liquid. Equation (8) shows that the
anomaly of the saturated liquid expansion coefficient
arises from the anomalous behavior of its spin system.
With e,~1, the expansion coefEcient vanishes at the
root T of the equation

a„(V,Tn) =0; en. (V,Tn)Cn. ,v(V, T )
=C„v(V,T ). (10)

At T&T, the expansion coefFicierit is negative since

&nrJCno', V +Ca, Vy T+Ta

It may be appropriate now to comment on the above-
mentioned difhculty which arises when one attempts to
use the more recent low-temperature total liquid He'
heat capacity datas to derive with them, through (9),
the C,v values. Inasmuch as the susceptibility ratios'
determine uniquely' the partial heat capacity of the
spin system, the theory having no adjustable param-
eters in its formalism, the difhculty corresponds, at the
present time, to a slight inconsistency between the
saturated liquid heat capacity' and susceptibility ratio
data. ' Either the latter are somewhat high or the former
somewhat low. This should be resolved by additional
experimental work on these properties of liquid He'
at temperatures below about 0.20—0.15'K. It hardly
needs to be stressed that, however difficult, this lower
temperature region in liquid He' constitutes a rather
fertile experimental 6eld. This not only from the point
view of the above dif6culty but, above all, because it
seems to oGer the possibility of verifying, or disproving,
the present theory' '' of statistical thermodynamic
character of the thermal properties of liquid and solid
He'.

Equation (8) shows that the expansion coeScient is
expressed in terms of the empirical ~r, V(T), and,
through (9), Cv(V, T), in addition to the calculated
C, ,v(V, T) values associated with the measured nuclear
paramagnetic susceptibility ratios x(V,T)/xs(V, T). It
is possible to reduce by one the number of the above
empirical properties by calculating first V(T)u„(V,T)
or the derivative (8V/8T) „,
V (T)~n(V») = (~V/~T).

= slrr (V,T)$~„.(V,T)C ., v(V, T)
—C .v(V T)7 (8a)

and using the latter to obtain, by integration,
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Fio. 2. The constant pressure volume expansion coefFicient
n„,in units of 10~/'K, of saturated liquid He' as a function of
the temperature.

lim(8n. „/AT)
„

T~P

=-s, )irr(T=0)/V(0)]Pe —( ', ln2)Ts —']; (15)-

or this limiting slope is a constant, c being the empirical
constant included in (4), and Ts in (15) is the character-
istic temperature of the nuclear spin system, the limiting
slope (BC,,v/BT) „having been given previously. ' The
result that n„thus vanishes linearly in T, from negative
values is a consequence of the linear vanishing of
C, ,v(V, T) with T, which is the dominant property
imposing the linearity in T of e„,as predicted previ-
ously. ' The latter limiting property is not aGected by
the precise shape and temperature variation of the

calculations, to about 0.764'K, provided that e„,(V,T)
is taken, along the saturation line, to be equal to its
ideal value of unity. The molar liquid volume V(T&)
or V(0) is, approximately, 36.69s cc/mole. The calcu-
lated V (T) values then lead finally to an evaluation of
cr„(V,T), always on the assumption of the parameter
e„to be unity. Figure 2 gives a graph of the expansion
coeKcient n~(V, T), along isobars issuing at the satura-
tion line.

The expansion coefficient vanishes at about 0.417'K;
its minimum is, at 0.150'K, where its value is —0.0092
/'K, approximately. By the Nernst theorem, n„van-
ishes at the absolute zero and always with e„,taken to
be unity,

(ri,/&T) „=$„(V,T)]'+—V '(O'V/8T') „—(13)

or, with (8),

(~~&/~T). = L~,(V,T)]'—
+ ', V '{(Birr/BT)„[-C„„vC.v]—
+&r$(&Ca.,v/&T) r (&C, v/BT)—„]'I, (14)

and



378 LOU I S GOL DSTE I N

nonspin heat capacity. If, in the future, accurate heat
capacity measurements at the low temperatures, T
&0.15'K, would lead to an empirical C„,,y different
from the one used here, Eq. (4), the dominance of
C, ,y at these low temperatures will insure the limiting
linear variation of n„(V,T) with temperature, at very
low temperatures. Using the limiting value of the com-
pressibility ~, estimated by Laquer, Sydoriak, and
Roberts, " from their low-temperature sound velocity
measurements, one obtains

lim (Bn., ~/BT) ~= —0.126/('K)';
E-+0

lim(Bu„„„/BT)„=0.0232/('K)', (15a)

lim (Bn,/8 T)„=—0.103/('K)'.

Returning now to the total liquid volume V(T), whose
T' or parabolic approach toward V(0) has been dis-
cussed previously, its minimum is, of course, at the
zero of n„.The inflection point of V(T) is at a tempera-
ture Tp, at which, by (13),

(Brr,/BT) „=—n„', (16)
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FIG. 3. The pressure slope (BC„/Bp)z,in units of 10~ cal/mole
X'K)&atmosphere, of the constant pressure heat capacity of
liquid He', near saturation, as a function of the temperature.

'0 Laquer, Sydoriak, and Roberts, Phys. Rev. 113, 417 (1959).

where the expansion coefficient still decreases. If Tp is
the temperature of the minimum of n„,then by (13)
and (16),

Ty & Tp.

However, taking n„to be about the same at Ty as it is
at Tp, about (—0.01/'K), an approximate value by
excess, numerically, it is seen that the temperature slope
of rr„at Trr is less, numerically, than L

—10 4/('K)'$,

and the smallness of this suggests that an experimental
diGerentiation between Ty and Tp could be dificult, or,
that Ty and Tp should be rather close.

Another aspect of the preceding situation is associated
with the pressure variation of the constant pressure
heat capacity at a constant temperature, according to
the thermodynamic relation

(BC,/BP) r ——T—(BsV/BT')„.(18)

One obtains here, in terms of n„(V,T) given by (8),

(~Cn/~p)r = sT(—(~&r/~T) nL& .C ..t C.,v—)
+~r((B/BT)„(e„.C„., v C.,

—v) j), (19)

This shows that at low temperatures the heat capacity
first increases with pressure as a consequence of the
dominance of the spin heat capacity through its tem-
perature derivative in the second term on the right-
hand side of (19), and as predicted on the basis of the
behavior of the spin system at low temperatures. ' ' The
pressure slope vanishes, as we just saw, at T&, the
inflection point of the liquid volume, to become nega-
tive at T&Ty. We give in Fig. 3, the graph of
(BC~/Bp)r at the saturation line. It vanishes at the
absolute zero and at Ty, and has one maximum at
about 0.076'K where its value is, approximately, 0.00443
(cal/mole)&'K&&atmos). The value of (BC„/Bp)r at
Ts, is, with (13), (16), and (18),

(2o)

This is negative because of (17). However, with V (Tp)
equal to about 37 cc/mole, Tp~0. 15'K, and n„being
about (—0.01/'K), it is seen that, in units of (cal/mole
&('K)&atmos), the slope at Ta is about —1.3&(10 s,

which is a rather small slope. This again shows that Tp,
though larger than Tz, should be quite close to it, the
slope at Ty being zero by de6nition. The numerical
calculations of the quantities (BV/BT)~, n„(V,T), and
(BC~/Bp)p according to the relations given above
yield Tz and Tp, for e„,being equal to unity, as being
essentially coincident at 0.15'K, as mentioned already.

In connection with the numerical evaluations of
V(T), tr~ and (BC„/Bp)p, it is well to keep in mind that
the errors affecting the various empirical quantities
entering into these calculations are cumulative, and
tend to limit necessarily the numerical precision with
which the above properties are obtainable. The same
limitations apply to the temperatures T& or Tp, T, at
which n„vanishes an Tq. At the present time, it,
would seem justi6ed to state that at or above T, the
volume V(T) as well as the expansion coefficient rr,
appear to agree fairly well with the experimental values
of preliminary character of Taylor and Kerr.

In the calculations of the above properties the pa-
rameter e„,was taken to be unity. If accurate values
of n„erwe available, Eq. (8) would allow the deter-
mination of e, (V,T), in terms of the other properties
entering into Eq. (8). At the present time, however, it
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TV TP
('K) ) ('K)

Ta TB ~ (&P)
(oK) (oK) (oK) &

1.0
0.95
0.90
0.85
0.80
0.75

0.150 0.150
0.151 0.151
0.153 0.153
0.155 0.155
0.156 0.157
0.158 0.159

0.417
0.429
0.442
0.457
0.472
0.488

0.764 —0.00917
0.792 —0.00934
0.822 —0.00951
0.854 —0.00968
0.890 —0.00985
0.928 —0.0100

Tmx, z I.Approximate values of the characteristic temperatures
Tv, Ts, T, Tq, and of the minimas n~(Ts) at various values of the
constant parameter ~„.

an explanation of another property of liquid He' reach-
ing into the compressed liquid phase region near
saturation conditions, using the above formalism. This
concerns the locus of the zero of the expansion co-
efficient T„(p).

According to Eq. (8), the zero T of n~(V, T) associ-
ated with the saturated liquid is that temperature at
which the positive or normal nonspin expansion co-
eKcient is equal, numerically, to the anomalous spin
expansion coefficient, or T is the root of

is not possible to obtain actually the parameter e„,(V,T)
along the saturation line. It seemed, nevertheless, in-
structive to obtain approximately and indirectly the
effect of several constant values of e„,on the tempera-
tures, Ty, Tp, T, the zero of n„,and Tg, the zero of
the volume variation

1 U(T) —V(0)$. We give in Table I
these various temperatures as well as the values of 0,

„

at their minimas.
The inQuence of a constant e„,on the various char-

acteristic temperatures and the minimum of o.„canbe
easily understood by noting that T is the temperature
of intersection of the increasing e„,C, ,y function and
the decreasing branch of the spin heat capacity C, ,~,
Eqs. (8) and (10).Hence with decreasing e„,the product
e,C„,v is depressed, causing the zero T (e„,) to shift
toward higher temperatures. Also, the limiting very
low-temperature negative slope (Bn„/BT)r s decreases
with decreasing ~„„causinga more rapid fall of n„with
temperature toward a decreasing minimum n„(Tp) The.
increased negative loop of n„,causes the volume change

1 V(T)—V(0)), Eq. (12), to become more negative and
shifts thus its zero Tq toward higher temperatures.

In compressed liquid He', or in solid He', the partial
nonspin heat capacities are not available at the present
time, above all at the lower temperatures where their
values are critical in connection with the predicted'~
anomalous pressure behavior of the spin heat capacities
C,(p, T). The quantitative evaluation of the expansion
coeKcient n„(V,T) of the compressed liquid cannot
thus be made at the present time. Beside the absence
of the total heat capacities C~(p, T), and with them the
nonspin heat capacities C„,,~(p, T), there is another
circumstance tending to prevent a straightforward dis-
cussion of n„(V,T) for the liquid under pressure or the
solid phase. Namely, new and more accurate experi-
mental values of the nuclear paramagnetic suscepti-
bilities and susceptibility ratios would be important for
a veriication of the rule deduced recently~ on the
pressure effect of these properties. In spite of these
obstacles which prevent one from obtaining the com-
pressed liquid or solid Hee expansion coeKcients along
isobars of the phase diagram, the formalism estab-
lished" ~ and used above was already sufBcient to yield
an explanation of the anomalous temperature variation
of the pressure derivatives (BC„/tip)r near the satura-
tion line. In addition, we are also in measure to advance

n .,„(V,T )+n. ,~(V,T )=0, (21)

as pointed out already previously' ' and discussed above.
Equation (8) also allows one to obtain qualitatively the
pressure dependence of T (p) near the saturation line.
At T, where n„vanishes, we have by (13), (18), and

(19),

lim (O'V//BT')
„

= sR~r(T.)((8/rlT)„Le„.(C„.,v/R) j
—(&/&T), (C.,v/R) } (22)

T'(B—Cr/Bp) r

T='L(~—C-../~p) .+(~C.,./~p) -3

On assuming, without thereby reducing greatly the
generality of the result to be obtained, that e„,varies
only slowly with temperature near T in comparison
with C„,v, one has, by (4),

e..(rl/riT)„(C...v/R) =as, ;

(~/~T)n(C. .v/R) =b(T), (23)

where the temperature derivative of the spin heat
capacity has been studied previously. "At T equal to
about 0.42'I, one has3

a=0.426/( K), b(T ) = —0.32/( K), (23a)

(BC„.,„/Bp)r (0, (BC,,„/rip)r (0, (23b)

or

a result conform to the previous discussion' of the for-
malism. But according to (23a) and (22),

1(~C .,./~ p) r- I & 1(~C.,./~p) r-I

e..&b/a, (b/a 0.75), (25)

the temperature of intersection of ~„,C, and C„
T (p+op), at the pressure bp above the saturation
pressure, is seen to be shifted toward a temperature
higher than T (p), as a result of the larger depression

or the nonspin heat capacity is depressed more by ex-
ternal pressure than the spin heat capacity, at the
saturation line and at T . Also, omitting the subscripts
p or V above, at the low temperatures in question, and
provided that
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of e,C, compared with that of C,. Hence,

T-(p+op) T-—(P) &0,

(AT./t7P) r.)0,
(26)

that is the locus of the zeros T (p), in the (T,p)
plane must increase with increasing pressure in the
vicinity of the saturation line. This is the explanation
of the observed pressure dependence4 of the locus
T (p) at small external pressures, near the saturation
line.

The observed pressure increase the locus T (p) is
connected with the larger reduction through pressure
displayed by the nonspin expansion coefficient n,
compared with the pressure increase of the negative
spin expansion coefficient n, . This comes about physi-
cally through the circumstance that at T~&T, T„
~0.42'K, the spin system has already reached a degree
of disorder which is not far from being complete, the
spin entropy being at that temperature some 80%%uo of
its limiting value of (R ln2) per mole. Hence (ttS,/BP) z,
whose numerical value is also

~
(BV/ttT)„~, or V~n. ~,

must be rather moderate or small. In contrast with this,
the normal system of the nonspin degrees of freedom is
not subject to pressure limitations of their normal de-
creasing entropy on compression at temperatures of
the order of T, and its response to the application of
external pressure may reasonably be expected to be
always larger than that of the spin system. While the
proof (26) of the increasing pressure slope of T (p) is
valid only near the saturation line, the preceding con-
siderations on the larger pressure response of the non-
spin degrees of freedom as compared with the spin
system tend to suggest the monotonically increasing
character of T (p) up to the melting line and beyond, in
the solid phase also, which may reasonably be expected
to be also anomalous. '

The lower limit of e, in (25) defines the upper limit
of T (p,) at the saturation line through

e„.&~b (T.)/tz
=a '(~/~T) o(C..y(T-)/&) (27)

or, the allowed limits of T (p,) are

1&~e„,&~b(T )/a, 0.42'K&T (p,)&0.49'K, (27a)

where the range of T (p,) is included in Table I. As
mentioned already, the preceding discussion assumed,
for simplicity, that e, was a constant practically. The
calculations of o.~ with the various e, values indicate
that at temperatures 1'&T, the value of e„,must be
closer to unity than to its lower limit so as to reproduce
the observed expansion coefficients. At the lower
temperatures, however, the smaller e values still
appear to lead to O.„values which could well correspond
to their actual values not yet available at the present
time.

At higher pressures, T (P) increases to reach a value
of about 1.26'K at the melting line at a pressure of

about 47.3 atmospheres, according to independent
measurements of two Los Alamos groups of workers. 4

However, the entropy changes on compression at all
temperatures below those of the locus T (p), starting
from saturation condition and up to the melting line
appear to be rather small. This occurs because of the
opposite signs of these changes, positive or anomalous
in the spin system and negative or normal in the system
of nonspin degrees of freedom. Inasmuch as at about
1.25'K, the nuclear spin system has practically reached
its asymptotic entropy limit in the saturated liquid, and,
tz fortzorz, in the compressed liquid, ' at these higher
temperatures only the nonspin degrees of freedom can
exhibit some slight entropy decrease. This suggests
that the partial nonspin heat capacity should also de-
crease only moderately from its value in the saturated
liquid. In order now for the theory of the volume
anomaly in the saturated liquid to stay valid in the
compressed liquid, as well as probably in the solid
also, ' it is necessary that the parameter e,(V,T), the
derivative, to within the factor 2, of the pressure
associated with the thermal excitations with respect to
the energy density of the latter, should take on rather
moderate values. This will insure the reduction of the
product e C, so that it will equal the rather small
values of the spin heat capacity' ' C, ,z at temperatures
increasing up to about 1.25'K or beyond, in the solid
phase also. ' At the higher pressures, along isobars, the
total heat capacity (C„,,„+C,„)should exhibit long
plateaus at a heat capacity level only slightly higher,
by about (0.05—0.07)R, than the peak value of the spin
heat capacity'3 of about 0.248. This means that while
the increasing C„,partial nonspin heat capacity branch
and the decreasing partial spin heat capacity branch
C„atthe higher pressures, may become equal at
temperatures still not much higher than T (p,), the
product e„,C„,will equal C, only at the higher tempera-
tures associated with the locus T (p).

It seemed instructive at this stage to obtain a precise
idea of the numerical values of e(V,T) in a classical
liquid. In view of the fact that abundant data on the
thermal properties exist primarily in water whose vol-
ume anomaly at about O'C is similar qualitatively to
that of liquid He', we have obtained, with Eq. (8), the
values of e(V, T) of saturated liquid water, through the
thermodynamic relation,

e(V, T) = ,' (8V/8T)of~r(V, T)CTr(—U,T)] ', (28)—
over a range of temperatures. "Using the data compiled
for water" we give in Table II the saturated liquid
water e(V, T) values. At the temperatures of this table,
but in compressed water, up to pressures of about 250

"Thanks are due Mrs. J. E. Powers for the majority of the
numerical work, as well as Miss D. L. Cooper and Miss B. A.
Moore for various calculations, and Mrs. B. M. Hindman for the
drawing of the graphs.

's N. E. Dorsey, ProPerties of Ordinary Water Sttbstartee (Rein-
hold Publishing Corporation, ¹wYork, 1953), second edition.
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TAnLK II. Calculated values of the parameter e(V,T)
in saturated liquid water.

t ('c)
0.0

10
20
30
50

.(v, T)

—0.024
+0.075

.0.16
0.24
0.38

t ('C)

80
100
150
200

(v, T)

0.54
0.63
0.78
0.83

and with e taken to be approximately equal to its
limiting ideal value of unity, one obtains, with

limC, v=2.31RT,
T—+0

and with the empirical C, ,v, Eq. (4),

lime„t(V,T) = —0.69, lim e„t,(V,T) =1.
T large

"M. E. Griineisen, ProceeChrsgs of the Sofsoy Conference, held in
1913 (Gauthier-Villars, Paris, 1921), pp. 243—280.

atmospheres, the values of e(V,T) remain practically
constant at a 6xed temperature.

The parameter e is s times the parameter y(V, T)
used in the discussion of the equation of state of solids. "
Because of the volume anomaly of saturated or moder-
ately compressed water, it is seen that e(V, T) is nega-
tive below the temperature of the volume minimum, it
vanishes at the latter, becomes positive and increases
monotonically at increasing temperatures. The e values
of Table II are only illustrative of those which may
occur in liquids. The molecular character of water has
also to be kept in mind.

The small or moderate e values imposed by the
data' on the locus T (p) in compressed liquid He' sug-
gest, as do the e values of Table II, the complexity of
the formalism correlating the pressure and the energy
density of the thermal excitations in these systems.

It is easy to show with~Eqs. (8) and (28), that in
saturated liquid He', the total parameter e„&(V,T) is

e .(V,T)C ., v(V, T) C., v(V, T)—
e-~(V T) = (29)

C...v(V, T)+C., v(V, T)

This range of values of ~„&displays the pathological
behavior of saturated liquid He3.

It seems appropriate 6nally to comment qualitatively
on the volume anomaly along lines emphasized previ-
ously. ' This anomaly may be understood in the follow-
ing way: at the absolute zero the vanishing total spin
angular momentum of liquid Hes imposes therein a
fairly rigid spatial order, with a very large atomic
volume as a result of the tendency of the parallel spin
atoms to be separated by the largest distances com-
patible with' the minimum of the total energy. As the
temperature of the liquid increases, the rapid tempera-
ture rate of increase of the spin disorder allows a con-
traction to set in because of the possibility of parallel
spin atoms to approach each other in coordinate space
as a result of their increasing separation in momentum
space. This contraction phenomenon, though small as
far as the total volume change is concerned, continues
up to the temperature T (p,) at which the degree of
spin disorder is fairly complete' and beyond which the
ever present normal temperature rate of volume in-
crease originating with the nonspin degrees of freedom
overtakes the anomalous volume contraction arising
from the behavior of the spin system.

In concluding then, it appears justi6ed to say that
the approximate evaluation of the total volume ex-
pansion coeKcient of saturated liquid He' performed in
this work lends support to the statistical thermo-
dynamics formalism of the thermal properties of this
liquid elaborated previously. ' ' ~ The theory should
thus be also successful to account for the temperature
variation of the constant pressure heat capacity pres-
sure slopes (cICo/cIP)s near saturation condition, as a
consequence of the thermodynamic correlation of these
properties. In addition, the theory oGers a fairly rigorous
explanation of the pressure dependence of the locus
T (p) of the vanishing expansion coefEcients, near
saturation condition or under very moderate external
pressures. The veri6cation of the theory in the liquid
subject to increasingly larger external pressure, and
probably also in the solid phase, ~ will have to await the
forthcoming of various data of sufhcient accuracy in
these high-pressure regions of the phase diagram of Hes.


