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Equations of motion for small-amplitude plasma oscillations interacting with the electromagnetic Geld

in slowly varying density or temperature gradients are set up. We then make a calculation of the radio
noise excited by a wave packet of plasma oscillations traversing such gradients using the WKB approxima-
tion. A similar calculation is also made for a density discontinuity.

1. INTRODUCTION
' N this paper we are concerned with the excitation
~ - of electromagnetic radiation inside a plasma by
plasma oscillations. The source of radiation will be
that which derives from the coupling between the
longitudinal electric vector and the transverse electro-
lnagnetic field as a result of density or temperature
gradients. We shall suppose that there is no externally
applied magnetostatic Geld so that the electromagnetic
6elds present are those alternating 6elds associated
with the electron oscillations. In the 6rst section we
set up an equation for the electric field in the plasma
supposing that the temperature and density are slowly
varying functions of position, and neglect all quantities
second order in their gradients. We then calculate the
radio noise excited by plasma oscillations for two
extreme cases, namely, gradients with a length scale
L&&) for which we make use of the WEB approxima™-
tion, and the case of density discontinuities 1.=0,
where X is the wavelength of the plasma oscillations.
A discussion of the propagation of purely longitudinal
waves using the WEB solutions for slowly varying
gradients has been given by Watson. '

Field' previously considered this problem. He gave
equations for the case of a slowly varying density
(L)&)) and also explicitly calculated the radio emission
produced by plasma oscillations striking a plasma-
vacuum boundary (I.=O). In his derivation of the
electric field equations for large L,, however, he omits
the anisotropy of the pressure in a tenuous plasma and
the restraining field E' discussed below. Gould, ' starting
with the same moment equations as Field, has made
calculations of the radiation excited by plasma oscilla-
tions in a region of random density Quctuations which
he characterized by a mean square Quctuation and a
correlation length. He developed a theory in which the
irregularities were treated as a perturbation from the
uniform case and his approach can be considered as
complementary to ours.

temperature Ts(x,) and density 1V(x;) are slowly varying
functions of position. The plasma will, of course, not be
in hydrostatic equilibrium as a result of the nonvanish-
ing pressure gradient 2V(XkTs) of the electrons and
ions. However, any disturbances in the electron com-
ponent will propagate much more rapidly than the bulk
streaming of the plasma which will proceed with about
the ion thermal velocity. Thus one may approximately
consider the electron plasma motions to take place in
the presence of a static nonuniform ion distribution,
and our basic equations become the Boltzmann equa-
tion for the electron distribution function f(st;,x;,t),

1
r)f/r)t+u vf e/rrtI 8+——uXH [ r)f/r)u=0, (1)

c ]
together with Maxwell's equations. We shall use the
following standard4 kinetic theory definitions of the
electron Quid velocity e,, density Z, pressure II;;, tem-
perature T, and heat tensor Q, ,s,

(2)

II;,=rrt~tC;C, fdu,

7S

Q,;s———,C,C,Csfdu.
2 ~

The random thermal velocity C; is simply u;—v;. The
first three moments of Eq. (1) become, neglecting terms
in the square of the electron Quid velocity,

8—+ (t Z) =0,
Bf Bx;

2. BASIC EQUATIONS

Consider a plasma which is so tenuous that collisions
of the electrons may be neglected and in which the ion

* Supported by the U. S. Atomic Energy Commission.
' K. M. Watson, Los Alamos Report L. A.-2055, Part V-C, 1955

(unpublished).
s G. B.Field, Astrophys. J. 124, 555 (1956).
'R. %. Gould, Oak Ridge National Laboratory Technica

Report ORNI. No. 4, November, 1955 (unpublished).

(4)
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B B—11,+2 Q'ta+ t p'II~&+&~II'o+&t II',j
B3 BXIc BXIc

(e+e') =— (jv,+g, ) (12)

e Using the expressions (8)—(11) in the set of Eqs. (3)—(5)+ ~(~i"t+~~P')+ ~ ~""+'" '"+ '""If"+i"~=
& (5) and dropping terms in the perturbations squared, we

obtain the linearized set of equations:

vP= —e(N+e')E'. (6)

where c;j& is the unit antisymetric tensor. Now we can
close the set of coupled moment equations at the second
moment only if we make some assumption about the
third moment Q;,o occurring in (5). In the following
calculation we neglect this heat Qow term in the plasma,
as is frequently done. ' 3 We shall also in the following
discussion use suf6x notation for vectors only when
they occur in equations with tensors.

Now consider an initial state in which the electron
Quid is in equilibrium with the background ions of
nonuniform density N(x) and temperature Tp(x). The
momentum Eq. (4) then gives an. expression for the
electrostatic field E' which balances the gradient of the
electron pressure in this equilibrium state, '

Bs—+ (1Vo,) =0,
B3 Bx;

e BP 1 B Ãe
N — +— p, ,+ E,=O,

Bt mXBx; m Bx; m

clpjt ol'vj Bvj cj

+P +P + (vi,P6,,) =0,
Bf BXj BX~ BXIc

together with Maxwell's equations,

VK= —4xee,

cV&(H= BE/Bt 4zrNev, —

c~&&E= —cjH/R.

(13)

(14)

(15)

(16)

(»)
(»)

The small density deviation e' of the electrons from
that of the background protons E is from Maxwell's
equation 4zre(Z —N) = —VG,

The energy Qux transported in the plasma by the
electromagnetic 6eld and electron Quid motions corre-
sponding to the above equations is readily shown to be

1 p @PE
4zre' & N+e') (7) C

o'~~P~&~+—o&'p~~+&~ p'~.
4m.

(19)

This is of order I. ' where I. is the scale of the density
or temperature nonuniformities and will be neglected.
Thus insofar as we neglect such terms, the equilibrium
state will be characterized by a distribution function fp

with its corresponding density X, pressure Pb;, , Quid
velocity zero, temperature To, and a restraining elec-
trostatic field E'= —VP/eN with zero magnetic field.
Now suppose we perturb this system by writing the
distribution function as fp+ f'. The perturbed moments
will then be represented by where

Bv; B2E,
1V = +Q;,

Bf BP
(20)

We next require an equation for the electric field in
the nonuniform plasma. First differentiate (14) twice
with respect to time and use (13) and (15) to eliminate
Be/Bt and Bp,;/Bt, respectively. Then differentiating
(17) with respect to time, and using (18) to eliminate
BH/Bt, we obtain

Z=N+e= I (fo+f')du,

B BE„
.= 2i=|"ei&Ic

Bxj Bx~
(21)

II', =P"p,,+p;, =ze) C'C, (fo+f ')du,
We now use (20) to eliminate Bv/Bt obtaining finally

(9) an equation for the electric field, namely

f
'o =) I;f du,

B2 B2+g,

+p~,'(x)E„—
(10) Bt Bt

O'E2kT B2E;
+2

m .Bx; Bx;Bxj

~C'(fp+ f') du (11).
3k(N+e) "

The change e in the electron density will produce an
additional electric field E; such that

' The assumption of a scalar pressure for the quasi-equilibrium
state in the presence of arbitrary density and pressure gradients
is correct to order I. '-.

1 dTo l&Z; &Z;) 1 dN &8; 2 dN

Tp dg; Kcjgi Bg; ) N dg; Bg; N dg; Bgg

k To O'Q; 1 dTpBQ; 1 dNBQ;

m Bxj To dxj Bxz E dx~ Bxj
O'Q, 1 dTo (BQ; BQ&i+— . ) + I (22)
Bto Todg; (Bg; Bg;~
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3. RADIATION EQUATIONS

In order to exhibit the coupling which occurs between
the electromagnetic field and plasma oscillations, we
shall first split the electric field E into its longitudinal
and transverse parts Ez, and Er defined by

important for a relativistically hot electron gas, and
will be neglected here since we did not start with a
relativistic Boltzmann equation anyway. Thus insofar
as c'»V', Eq. (28) yields the usual dispersion relation
for electromagnetic waves in a uniform plasma,

E=Er+Er, V Er=0) VXEr, =0. (23)
%2= M 2+$2c2 (30)

B2 B2

+ +(p '—V'
Bt2 Bt2

82 B2

Iii„(S~;+Sr——;),—(24)
Brit;2. Bt2

where

82SN '

3S BP Bx; Bx; 3$ BP Bx, Bx;

V2c2 BS B B'
I'r;, (25)3' Bx& Bx& Bxg

O'Sg, 2V' B' BTo BE; 2V'c' BTp B
Eg7 ~

Bt2 3Tp BP Bx; Bx; 3To»~ ». »A2

V' 82 BT BE V2c2 BTo B B'
Er, . (26)

3Tp t9P Bx Bx' 3Tp Bx' Bx' BS

Consider first the case in which the density and tempera-
ture gradients are zero, i.e., O'S~,/Bt'=O'Sr(/Bt'=0.
Then (24) gives for the equations describing the propa-
gation of a pure longitudinal plasma wave, or a pure
transverse electromagnetic wave, respectively:

Using these, and denoting the root mean square
thermal velocity in the electron plasma by

V= (3kTp/m)'

and the plasma frequency

t
4prlVe'~ '*

m

Eq. (22) for the electric field becomes

-(8' 8 )8 v 8'( a' a')-
+pp.'—c'

I
—+—

I
c' ——

I &r;
(gt' Bxi') Bt' 3 Bxi,' 0 Bx ' cjP)

Now we shall make a number of simplifications.
First consider separately the two cases of a tempera-
ture gradient only and a density gradient only, setting
the gradients along the x direction i in each case.
Then taking the curl of (24) for these two cases, we
obtain a pair of inhomogeneous wave equations for
V X (O'Ez/Bt'), namely:

t' 8'-q O' Er
i
—+(pp(x) —c'V2 ivX

lao ) aP

O'S~ (l'E
=v X —(v~.')X, (31)

BP BP

for the case of constant temperature, and

( a' q O'Er
)
—+(p,'—c'V

(Bt' ) BP

O'Sr B2E
=vX +(VV')Xv', (32)

BP BP

for constant density. In the source terms on the right
of the radiation Eqs. (31) and (32) we can neglect the
transverse field. This is because terms involving the
transverse field are of order X,/Xr times those for the
longitudinal field, where ), and )z are the plasma
oscillation and radiation wavelengths, respectively, i.e.,
X,/'Ar=(V/c)((1. Also the transverse field will be con-
sidered as a perturbation on the longitudinal field. Under
these circumstances we can reduce (31) and (32) to two
radiation equations for VX Ez with fairly simple sources
dependent on the longitudinal field, i.e., on the presence
of plasma oscillations. For Tp constant, the density
gradient equation becomes

i
—+(pp(x) —c'P ivXEr( (l2

EBP )

and

t'~'
~

—+(p P —VPVP ~Er, ——0,
&R' )

(2't)
(2V'

(V(p.') X
~

7'—1 ~Ec, (33)
(3(pg )

(
I

—+~'—"V'
I
—+—V'I "~'——

I
Er=0.

48tP ) (ttP 3 ( BP) (28)

and with E constant, the temperature gradient equation
becomes

[((P/gtP)+(p '—cPV27VXE~= (VV') X (V'Er). (34)

Equation (27) yields the familiar dispersion relation

~2—~ 2+$2V2 (29)

for the plasma oscillations of a uniform plasma. Further,
the second terin in the square bracket of (28) is only

Thus if we specify the longitudinal Geld KL,, say, for
a wave packet of plasma oscillations, we may calculate
the radiation produced from temperature or density
gradients. The longitudinal Geld will first be calculated
from (24) by setting Er=0, since as far as the propaga-
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tion of plasma oscillations goes the radiation 6eld will

make only a small perturbation. From (33) and (34)
we see that the component of El, across the gradient is
the radiative one.

4. PLASMA OSCILLATION SOLUTION
IN GRADIENTS

If one sets the perturbation transverse 6eld Ez ——0,
the wave equation for plasma oscillations in a density
gradient along the x direction i becomes, from (24),

i
—+o~,'—V'(x) V' i�E.——

IE�'
2V' dT

3T dS

V'dT 8
VEL*+ EL-,

3T d$8$

and gives for the WEB solution,

Pr (oi,k„)
dcodk„

k,'*(x)V'(x) k'(x)

wave packet of plasma oscillations in a temperature
gradient can be calculated from (24), which becomes

(~'
(*)—V'V' (E,)E8P Xexp ioit+i k„y—+i

al 0

k, (x')dx' . (41)

2V'dS V' dX 8
E (35) The plasma oscillations given by (40) and (41) are

3Ã dx 3E dx Bx refracted out of the direction of increasing X or T, i.e.,

lf we now write the irrotational vector Ei, as VP in(35)
and drop terms O(I='), we find a wave equation for the
scalar potential p,

o~' —oo,o(x)

V'(x)
—ky', ky .

4'((o,k„,x) exp( —ioot+ik„y).

Equation (36) then becomes for %',

d4% 1 d~'d% d%
+— + (k„'—k.')

dx4 cu,~ dS des dx2

(37)

where

d% ( 1 d(u, ' k„'do~,o)
~+k„'k,'e=0, (38)

dx (V' dx (g' dx)

k,'(x) V'= oi' —oo.2(x) —k„'V'. (39)

This is now in a form suitable for solution by the WEB
approximation since the characteristic length L of the
density gradient is ))X, i.e., k, (x) is slowly varying.
Thus writing

4=exp (So+Si+ ~ ),
and calculating So and Si from (38) in the usual way,
yields for an arbitrary wave packet defined by fN,

P~(oo,k„)or, (x)
y= (2m)-' doodk„

k(x)k.&(x)

x

Xexp ioit+ik„y+i~—~ k, (x')dx' (40)
0

from which the electric field Er,=Vp is easily calculated.
In a way similar to the foregoing, the behavior of a

i
—+o&,'(x) —V'Vo iPy

&ato
' )

8$ do~.' V' de,o 8&
+— +— V'—=0. (36)

Bx ds co,2 dx 8$

We shall examine the behavior of an in6nite plane
plasma wave with its propagation vector k in the xy
plane.

F'~ —— Sgydt =
11V'

doidk&cdlgp~ ~ (43)

I'z = dCOdkyG)k lpT .
48m. V'o~.m

(44)

The slow dependence of Y& on x derives simply from
the neglect of terms in L ' in the approximate ex-
pression (42).

S. RADIATION BY PLASMA OSCILLATIONS

Basically there are two extreme cases of gradients
which we are able to investigate from the point of view
of radiation. The 6rst are slowly varying gradients for
which L))X and to which the radiation Eqs. (33) and
(34) apply. The second, which for practical purposes
will be considered as density discontinuities, are those
for which L(&X. These can be treated by applying
boundary conditions to the solutions of the homo-
geneous wave equation across a discontinuity.

Further, the electric vector rotates about an elongated
ellipse whose major axis along the direction of propa-
gation is of order LX times the minor axis. The ampli-
tude of the electric vector given by (40) decreases in

the direction of decreasing X, the energy being trans-
ferred to the temperature Quctuation as the wave tends
to propagate more like a sound wave.

The energies F'& and F'z carried by the wave packets
(40) and (41) are obtained by integrating the flux S
over t and y. Using (14) and (17), (19) becomes for our

longitudinal field,

kTo 7 BEz, (BEi
(~E,*)+21 V IE.*, (42)

32m'&g' 2 Bt ( Bt )
where we have neglected terms O(L '). Thus from (40)
and (41), we find
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Case j., L&&X

%e shall consider the density radiation equation erst.
We also consider a two-dimensional radiation problem
by using a plasma wave packet localized with its
propagation vector in the xy plane, but of infinite
extent in the s direction. This will be incident on a
region of infinite plane density variation E(x). The
source term in Eq. (33) then gives rise to a s component
of VXET, i.e., essentially the magnetic field. Thus
writing C = (V XET),= H, /c, w—e need to solve

(8 ) d&u (2V
I
—+~'(x) —c2& IC'=

I
V2 —1 l~~' (45)

(Bt2 ) dh ~301,2

9'e shall take for El,„that given by the two-dimensional
wave packet (40) with wave numbers k and frequencies
co. Those of the radiation field will be written K and v.

Then taking Fourier transforms over y and t,

about the origin and the plasma to be of uniform
density outside this region. Then for large

~
x~ )I. the

two terms of (52) correspond to waves traveling to the
right and left, respectively. In the plasma to the left
of the gradient region there should be no transverse
wave traveling to the right, and similarly on the right
of the gradient there should be no wave traveling to
the left. Thus we take the constants a= —~, b= ~.
Equation (46) then breaks up into two radiation wave
packets for large ~x~))L, CN1 traveling to the right
in the positive x region, and 4 ~2 to the left in the region
x negative, i.e.,

@'Nl+C N2y

with

PNE„
CN1 N2= (&c') 'J dvdK, G1,2(v)E„)

—QO

C = (22r) ') dvdEvA(h, v,Ev) exp( i vt+iE—„y), (46)
where

Xexp ivt+iK—„yai E,(x')dx', (53)
I 0

(45) becomes

where

and

f d'
+E,'(x) ih. =g(x),

Edh2 )
P COg —E„2

C2

(47)

(4g)

iE~. (2V'k'
g(h) =— ON(v, E,) ~

+1
~c' dh k.&k ( 301,2

with now

Xexp i~t k (x')dx' (49)
0

k 2V2 p2 ~2 + 2V2 (50)

k2V2= v2 —a),'.

The amplitude A. of the radiation in (46) is determined
by (47) in which the source g(x) derives from those
frequencies co=v and wave numbers k„=E„ in the
plasma oscillation packet. An approximate solution of
(47) can now be generated from the two WEB solutions
of the homogeneous equation,

( " dx01, (x) d01.2 (2V2k2
+1 I

~ „E,lkk, & dh E 3co,2 )
Z X

Xexp Wi K,(x')dx'+i) k, (x')dx' . (54)
0 0

The integrand of G~ 2 is a product of a rapidly oscillating
function with a slowly varying wavelength X, and a
slowly varying function with a gradient scale L. Ex-
plicit calculation of the radiation field now depends on
evaluating these integrals for a particular density
gradient E(x) and wave packet of plasma oscillations
defined by fN.

In a similar way the radiation field resulting from
plasma oscillations traversing a temperature gradient
follows from the wave equation (34). Writing C T for the
s component of V XET, we again have 2 waves traveling
to the right and left, respectively,

C'T C'Tl+@T2)

where

EAT(v, K.)
1 T1, T2 (42rc ) . dvdEv ~1,2(v)Kv)x.

Xexpg ivt+iKvyai—K,xj (55)

A1,2=E, &(x) exp +i) E.(x')dx',
0

(51)

Ay f A2 f
+2gdg ——

I gqggg .
2i ~ 2j

(52)

Suppose we now consider the density gradient region
to be confined between two infinite planes, ~x)&1.,

dx dV'

„Vk.~ d~

I

p W'K,*+ ~ k, (x')dx' . (56)
0

We shall require in the following discussion the
radiated energies represented by the radiation wave
packets (53) and (55). These are derived from the Qux

in a similar way to that for the plasma oscillations,
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namely, by using

c
T= —E„H,*dydt.

8m. ~
(57) K(x) s

K2(x) ~

We shall attach sures T~j, TN2, T~j, T~2 for the
energies of the two waves originating in the density or
temperature gradients respectively. The electric and
magnetic vectors E and H of the four radiation fields
required in (57) can be obtained from C ~i, 4 ~2, C pi, and
Cr2 using Maxwell's equations C = H,/c—and V E=O.
Thus for example the components of the magnetic and
electric fields of wave 1 for a density gradient are

FxG. 1. Radiation by
plasma oscillations tra-
versing a slowly varying
density gradient in the
neighborhood (x( ~&L. e~(-) = el

w2=cu2(x)+k (x)V
2 2

~ e~(+a))=arp
rue(x) MMW MME

r
X(x)V

Eg,=IIg,——Hg„——0,

4' C ~ 00 V

t dvdEyEy
jv, Gg,

4m c' E'

i.e., the angle P= arctan(E'„/E, ) which the two radia-
tion waves make with the &x axis at the point of
emission (Fig. 1) must be less than x/2. The radiated
waves have the same frequencies v= co and wave number
components E„=k„as the plasma oscillations. Only the
x component of the wave number changes so that the
condition for radiation can also be written

where

f dvdEgE~
Gg,

4mc2 ~ E'
ky V V

tane~= —(
k, (c'—V') & c

(61)

Evf~
Gi —— Gi exp ivt+iE„y—+i ~ E,(x')dx' . (58)

E&

Similar expressions are easily obtained for the other
radiation waves. Using these in (57), the radiated
energies become

f' dvdE„
T~i 2

——(32nc') '
~

. ~Gi, ~~'fv'E ' (59)
E'v

from the density gradient, and

dvdEv
Tr& z

——(32~c2) i ~Fi 2~2jr2E 2 (60)
vE~'

where 8~ is the angle the plasma oscillation wave
number k makes with the gradient direction; i.e., the
plasma oscillations must propagate in a narrow "radia-
tion cone" about the gradient direction in order to
produce radiation capable of propagating in the plasma.

Now both the quantities F and G of (54) and (56)
may be written in the form

00 dc@,2

Gi 2
—

I dx g(x)
dx

f S $$
yexp Wi E( x) dx+i) k, (x')dx', (62)

~J0 0

from a temperature gradient. We next calculated the 1" dt/'
functions G and F for a particular physically plausible Fi,2= dx f(x)
gradient. 00 dx

Approximate Evaluation of F and G

The WEB solutions (53) and (55) obviously break
down at the classical turning points represented by the
zeros of E, or k . Better solutions are obtainable but
we shall restrict ourselves here to this simpler case
~E 'dE /dx~((1. Further, the functions F and G
contain exponentially decaying factors as soon as
E becomes complex. Thus the condition we need
to satisfy in order to obtain radiation capable of
Propagat~lg is

V Me —E„2)0,
C2

g

+exp %iE,x+i t k, (x')dx', (63)
0

(ro2 —o&p) r
* ( x )

o~,2(x) =&eP+ dx expiI ~ ~„& Li (64)

(V2' —Vp) I t x'q
V'(x) = VP+ dx exp~ ——

~, (65)
1.2)

where g and f are slowly varying provided we avoid
the zero of E or k . Ke next choose particular func-
tions to represent the gradient regions in the plasma,
namely,
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f(x)=fo+xfo',

g (*)=go+xgo ~

(67)

i.e., either the density changes from Ãl to S2 or the
temperature from Ti to To in a region

I xl &L about the
origin. Such gradients might, for example, describe the
density or temperature transition through a shock wave.
The integrals (62) and (63) are complicated and we
shall here only approximately evaluate them. Consider
first (62). Expanding the slowly varying wave numbers
E,(x) and k, (x), we can write for the exponentials in
(62) approximately

expLix(k. (0)~E,(0))+-,'ix'(k, '(0)~E,'(0))7, (66)

which is valid for lxl &L The integrand vanishes
rapidly for larger x. Similarly for the functions f(x)
and g(x):

and we have also used

k,'(0) =— 1 Qcog

2k V2 dx p

(~o —&P)

2k t/'2Lm&

1 dV'
I

"dvdK E 'pr') 2k 'V'~'
TT1=~T2=

I l+
Sc' dx ~ vE E'k'V'

Xexp — . (72)
(Vo Vo)o

In a similar way to the above, the functions Pl, 2 may
be approximated and yield for the radiated energies
in a temperature gradient

with

f,= V 'k. 'I.=-o,
- Radiation EfBciency for Slowly

Varying Gradients

(2V'k'
go=

I
+1 IE kk ( 3oo,' )

Thus (62) becomes

2 ~ 2 goo

Gi,~— dx(go+*go')
L7l QQ

X2

Xexp +iax+ i—bx-',
J2

The radiation efficiencies for these plasma waves
(6S) propagating in the xy plane and encountering a region

of density or temperature variation will be dered as
R~= (T~i+T~o)/Y~ and Rr ——(Tri+Tro)/Yr, i.e., the
fractional energy radiated away in traversing the in-
finite plane inhomogeneity considered here. Taking f&
and Pr to be highly peaked functions about some partic-
ular values v and E„for which we use the same notation,
the above eKcienciesbecome from (43), (44), (71), and
(72),

where a=k, (0)WE (0) and b=(k '(0)WE, '(0))/2, and
the suffixes 1 and 2 on. G correspond to the —or +
values, respectively, in a or b. The above Fourier in-

tegral becomes simply

12m d(u, o (a),) ' sin'Oi
z =-

11c' dx E a&) E'E,
Sxk 4V4

(Mo
—Mi ) go zaL a~Lo

Gy, 2= gp
— exp

(1—iL'b)'* 2(ibL' —1) 4(1—ibL')

1.e.,

and

Xexp —,(73)
(02 GOl

12or d V' (~,q
' sin'8i f k ) ' ( 2k 'V'~ '

I

—
I I o+

11c' dx &~) E. &E) I
'

~,' )

~N 1=~N2=
V'o~ '

d&v
' ~" dvdE„E 'P~'A'

Sc' dx E2vE k2

where

S~k 4V4

Xexp —,(71)
G)2 COl g P

2k'V') k,'V' k,' k,'V'(M '+2k'V')
A=I 1+ I

—+ +
3(g ' ) 2E,'c' k' a.'(2k'V'+3~ ')

IGi.ol'=—
I go

—
I expl — I, (70)

I'I bl & 2b ) ( 2boLo)

s'nce b=O(X 'L, ') i.e., L '((b' Further since E,((k
and E,'((k, ', we have a=k (0) and b=k '(0)/2 so that
IGil'=IGol' and the energies of the two radiated wave
packets from (59) become

Sx V4

Xexp —,(74)
(V o Vp)o

where sinoi ——E„/k. It should be emphasized that these
expressions are restricted both to large L)&X and to
angles Ol of the plasma oscillation across the gradient
which are sufficiently smaller than V/c that we avoid
the singularity at E =0, i.e., the classical turning
points of the WEB solutions. Oscillations propagating
at an angle Hi) V/c do not produce radiation capable
of propagating.

We shall next consider radiation by plasma oscilla-
tions incident on density discontinuities, i.e., L=O.
The radiation Eq. (33) will not be applicable to this
case since it was derived neglecting terms of order X'/L'
and above.
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Case 2, I.=O

Consider a sharp density transition from X1 to E2
inside the plasma (e.g. , a shock front) and long wave-
length plasma oscillations incident on it (X»1.), i.e.,
the opposite extreme to the case above. Then we may
again calculate a radiation eKciency for such an en-
counter by treating the sharp transition as a discon-
tinuity and applying boundary conditions to the uni-
form plasma solutions on either side. The boundary
conditions are obtained from the exact Eqs. (3)—(5),
together with Maxwell's equations by considering a
sharp but continuous density variation from X1 to X2
and then performing the usual limiting processes. ' In
crossing the density "discontinuity, "we shall hold the
temperature of the electron component of the plasma
constant. Thus, for example, such a discontinuity might
correspond to a plasma shock wave in which the
characteristic length over which the electrons are
heated by the shocked ions is somewhat larger than
the shock thickness.

Writing El, E2, Hl, and H2 for the total electric and
magnetic fields on the sides 1 and 2 of the boundary,
we find the boundary conditions at x=o,

H2 —Hi=0)

2X (E2—El) =0)
'~

i. (E2—El) = 42rei (1V2c2—Elcl),

7. (2)-i. (1)=o

(76)

(78)

where i is a unit vector in the x direction pointing
towards the side 2 of the discontinuity. p„are the x
components of the pressure tensor fluctuation. Equation
(77) reduces to

i (VXH2 —VXH,)=0. (79)

~2 —~ 2+k 2V'2 —~ 2+k 2U2 —~ 2++ 2c2

=~22+ k22U2=~22+z22c2, (80)

It should be noted that these do not reduce to Field's2

boundary conditions for a plasma vacuum boundary.
He neglected the surface charge in the condition on the
normal component of electric field. Now consider a
plasma wave el(kl) incident on the side 1 of the
boundary. The boundary conditions are then satisfied

by a reQected and transmitted plasma wave e2(k2) and

e2(k2), together with two radiation waves sl(K1) and

e2(K2) (see Fig. 2). These waves have wave numbers

kl, k2, etc. We shall further consider them as plane
waves, exp/i(k x—wt)$ propagating in the 2:y plane
with a frequency co. Thus we have five dispersion rela-
tions for these waves,

—2

N2

FIG. 2. Radiation by a plasma wave incident
on a discontinuity in density.

where
&u1, 22= 42re21V1, 2/m (81)

are the plasma frequencies on either side of the
discontinuity.

Now in simplifying the boundary conditions (75)-
(79), we note that El=el+e2+sl and E2=e2+e2.
Further we use Maxwell's Eqs. (17) and (18) to express
the electron Quid velocities vl and v2 and H, and H, in
terms of the electric fields, together with (15) for the
pressure tensor p;;. They then reduce to the four
relations:

61+1 62+2 (82)

e2 sin02 —e2 sin02+ ~1 costi+ ~2 cosf2 = —el singl (83)

—e2 cose2 —e2 cos02+ el(sin'Pl —costi) ~1'/2aP sin/1
—62(sin'P2 —cos'P2)~2'/2oP sin&2= —el cosgl (84)

e2k2 (1+2 cos'82) —e2k2(1+2 cos'82)

—t'12E1 Costi Slnlpl(Q)1 /6) )
—622E2 Coslp2 Slnlp2 (a)2'/~')

= —k,e, (1+2 cos'0,). (85)

El= E262/El= L61$/D)

where the determinants Lola and D reduce to

(87)

%e have used a further relation between the angles and
wave numbers, namely the equality of phase for the
various waves along the boundary, i.e.,

kl Sln01=k2 S11182=ka Sin~2=+1 Slnlpl=Z2 Sin/2. (86)

The angles in these equations are between the wave
numbers and the x axis as shown in I'ig. 2. Thus, for
example, from (80) and (86), kl=k2 and 01=82.

The solution of Eqs. (82)—(85) for the amplitudes el
and e2 of the radiated waves are then simply

J. A. Stratton, E/ectromagnetic Theory (McGraw-Hill Book
Company, New York, 1941).

(Uy
Lel]=6el~ —

~
sinel costi(cD2 cdl')/U',

&c&
(88)
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~Point For A Discontinuity
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for the plasma waves, and
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FIG. 3. Radiation effi-
ciency Rrr(L) for long-
@avelength plasma oscil-
lations incident at small
01 on a density change
from E1 to E1j2.

c Eses cosps
rad-

9g

for the radiation. Thus the fractional energy of the
incident plasma wave radiated becomes, for a
discontinuity,

2otp (mc y
&~(HI) =

11cu'kl I kT )
D = (ksE1 cosgs cosHI+klEs cosfl cosHs)

X (3 2c Ep slII Hl/co )+klE1 cosf2 cosHs

X (3—2C Es SIII H I/cu )+k sEs Costtt'I COSH I

X (3—2c'EP sin'H s/cut)

3(M —Gl ) (c) ot

2QPC E V) cu (us
(89)

Next, consider the relations (80) and (86) between

Hl, pl and fs. We see that as Hl increases, QI and p2
inCreaSe. SinCe QI and ps Cannat inCreaSe beyOnd tr/2,
the maximum value of sin8j for which the erst radiation
wave exists is given by

sin Hl &El/kl ——V/c,

and for the second radiation wave

(90)

E2 V (ot' —otss ) '

kl C (Qt otp)
(91)

For both radiated waves to be propagated, the plasma
oscillations must be incident within a very narrow cone
around the normal to the density discontinuity.

Radiation EKciency for a Discontinuity

We also require to calculate the fraction RN of the
energy I' of a wave packet of plasma oscillations which

is emitted as radiation at the discontinuity. We shall
restrict ourselves here to angles 8~ suKciently less than
V/c so that both radiation waves contribute. Further,
since (V/c)«1, we shall neglect terms of relative
magnitude (U/c) in the derivation of Eq. (92). Using
the expressions (19) and (42) for the energy fluxes, the
components of the Quxes for the five waves at the dis-
continuity become

11cukleP (kT)

64m Sge'

(el ) (e ) s

X EI( —
[ cosli, +E,(

—
)

cosgs, (92)
Ee, )

where el and e2 are given by (87)-(89).

6. DISCUSSION

The expressions (73) and (92) for the radiation eK-
ciency in slowly varying gradients or at a discontinuity
are in general complicated. %e shall here give numerical
results for a simple limiting case of plasma waves
propagating almost directly along the gradient, i.e.,
HI«(V/c). We further consider the special case of /ong

ma7)elemgrh plasma waves incident from the dense side
Ni with Ni=2N2. Thus

k1V«col=co and ks V=col/v2 —co„

i.e., on the tenuous side, plasma waves with a short
wavelength just above the Debye radius are trans-
mitted. Under these limiting cases we find for a
discontinuity,

1 24(c y

HP el o 11(U)

and for our exponential gradient (64) of scale L the
WEB result (73) becomes

1 (c i (X(x=0)i—Z (H„Z,) =1.110-
l
—

))
HP el o (V) E I. )

These expressions are plotted in Fig. 3. We note that
in going from a discontinuity to a gradient for which I.
is a few wavelengths, the radiation eKciency drops by
two orders of magnitude which makes interpolation
across the region I.=X only very rough. Once in the
slowly varying gradient region J.))X, however, the
radiation eSciency varies simply as I. '.
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