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Equations of motion for small-amplitude plasma oscillations interacting with the electromagnetic field
in slowly varying density or temperature gradients are set up. We then make a calculation of the radio
noise excited by a wave packet of plasma oscillations traversing such gradients using the WKB approxima-
tion. A similar calculation is also made for a density discontinuity.

1. INTRODUCTION

N this paper we are concerned with the excitation
of electromagnetic radiation inside a plasma by
plasma oscillations. The source of radiation will be
that which derives from the coupling between the
longitudinal electric vector and the transverse electro-
magnetic field as a result of density or temperature
gradients. We shall suppose that there is no externally
applied magnetostatic field so that the electromagnetic
fields present are those alternating fields associated
with the electron oscillations. In the first section we
set up an equation for the electric field in the plasma
supposing that the temperature and density are slowly
varying functions of position, and neglect all quantities
second order in their gradients. We then calculate the
radio noise excited by plasma oscillations for two
extreme cases, namely, gradients with a length scale
L>>\ for which we make use of the WKB approxima-
tion, and the case of density discontinuities L=0,
where A is the wavelength of the plasma oscillations.
A discussion of the propagation of purely longitudinal
waves using the WKB solutions for slowly varying
gradients has been given by Watson.!

Field? previously considered this problem. He gave
equations for the case of a slowly varying density
(L>>\) and also explicitly calculated the radio emission
produced by plasma oscillations striking a plasma-
vacuum boundary (L=0). In his derivation of the
electric field equations for large L, however, he omits
the anisotropy of the pressure in a tenuous plasma and
the restraining field E’ discussed below. Gould,? starting
with the same moment equations as Field, has made
calculations of the radiation excited by plasma oscilla-
tions in a region of random density fluctuations which
he characterized by a mean square fluctuation and a
correlation length. He developed a theory in which the
irregularities were treated as a perturbation from the
uniform case and his approach can be considered as
complementary to ours.

2. BASIC EQUATIONS

Consider a plasma which is so tenuous that collisions
of the electrons may be neglected and in which the ion
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temperature T'(x;) and density NV (x;) are slowly varying
functions of position. The plasma will, of course, not be
in hydrostatic equilibrium as a result of the nonvanish-
ing pressure gradient 2V(VkT,) of the electrons and
ions. However, any disturbances in the electron com-
ponent will propagate much more rapidly than the bulk
streaming of the plasma which will proceed with about
the ion thermal velocity. Thus one may approximately
consider the electron plasma motions to take place in
the presence of a static nonuniform ion distribution,
and our basic equations become the Boltzmann equa-
tion for the electron distribution function f(#:,%:1),

1
8f/6t+u-vf—e/m(8+—uXH) -df/ou=0, (1)
¢

together with Maxwell’s equations. We shall use the
following standard* kinetic theory definitions of the
electron fluid velocity v;, density 2, pressure II;; tem-
perature T, and heat tensor Qqjx,

o= [ jin,
! fjd

1 f y
Vi=— u;jau,
PN /
m
T=-—fc2fdu, (2)
3k=
H¢j=me¢ijdu,

m
Qijk = E— fCiCjCkfdu.

The random thermal velocity C; is simply #;—v;. The
first three moments of Eq. (1) become, neglecting terms
in the square of the electron fluid velocity,

oz 9
—+—(v2)=0, 3)
ot 6x@~
at‘i 1 aJ e 1
+——1IL;= —“*[&'"i“fijkijk], 4)
at  mZ dx; m c

¢S, Chapman and T. Cowling, Mathematical Theory of Non-
uniform Gases (Cambridge University Press, New York, 1958).
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d d 0
—ILij4+2—Qsjit+—"L[ 0L 40,1114, ]
at 0xx 0xx

e
+e2 (8wt vi) +—TLesunH L+ ernH 1 i, ]=0, (5)
me

where e;;x, is the unit antisymetric tensor. Now we can
close the set of coupled moment equations at the second
moment only if we make some assumption about the
third moment Q;;z occurring in (5). In the following
calculation we neglect this heat flow term in the plasma,
as is frequently done.'® We shall also in the following
discussion use suffix notation for vectors only when
they occur in equations with tensors.

Now consider an initial state in which the electron
fluid is in equilibrium with the background ions of
nonuniform density N (x) and temperature To(x). The
momentum Eq. (4) then gives an expression for the
electrostatic field E’ which balances the gradient of the
electron pressure in this equilibrium state,?

VP=—e(N+n")E. (6)

The small density deviation #’ of the electrons from
that of the background protons N is from Maxwell’s
equation 4re(Z—N)=—VE,
vP
). (7

1
n =—V(
4wt \N-+n'

This is of order L2 where L is the scale of the density
or temperature nonuniformities and will be neglected.
Thus insofar as we neglect such terms, the equilibrium
state will be characterized by a distribution function fj
with its corresponding density N, pressure P§;;, fluid
velocity zero, temperature T, and a restraining elec-
trostatic field E'=—VP/eN with zero magnetic field.
Now suppose we perturb this system by writing the
distribution function as fo+ f’. The perturbed moments
will then be represented by

— Netn= f (fot-f")du, (8)
L= Pois+pij—m f C.Cilfot-f)du, 9)
=fu,~f’du, (10)

T=Ty+T' = fC2(fo+f’)du (11)

3k(N+1n)

The change » in the electron density will produce an
additional electric field E; such that

® The assumption of a scalar pressure for the quasi-equilibrium
state in the presence of arbitrary density and pressure gradients
is correct to order L™2.
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1 9
(n+n")=———(E+E/).
4ire 0

€ 0X;

(12)

Using the expressions (8)—(11) in the set of Egs. (3)-(5)
and dropping terms in the perturbations squared, we
obtain the linearized set of equations:

on 9
——+—(Nv,)=0, (13)
ot axz
d; =n oP 1 9 Ne
N———— (14)
ot mN dx; m dx; m
0pi; 9v; dv; a3
f P——+ P—+—(v,P8:;) =0, (15)
at ax,‘ ox; 0xg
together with Maxwell’s equations,
VE=—4xzen, (16)
cVXH=0E/0t—4rNev, an
cvXE=—9dH/ot. (18)

The energy flux transported in the plasma by the
electromagnetic field and electron fluid motions corre-
sponding to the above equations is readily shown to be

Cc
S i=4-7r-e¢jkEjH Kt 3vipiitvipis. (19)

We next require an equation for the electric field in
the nonuniform plasma. First differentiate (14) twice
with respect to time and use (13) and (15) to eliminate
In/ot and 9p;;/0t, respectively. Then differentiating
(17) with respect to time, and using (18) to eliminate
dH/d¢, we obtain

('97),‘ (92E,
=—+Q; (20)
at o2
where
a oE,
Qizczfijk_fkmn (21)
ax; X

We now use (20) to eliminate dv/d¢ obtaining finally
an equation for the electric field, namely

92 ( 9%E; RT[O’E;  O*E;
—{ +w3(x)Ei——[
arl a2 mLdx;?  dwi0x;
1 dTyfOE; 26E,~ 1 dNJE; 2 dN JE; ]}
Todx; \Ox;  0x; N dx; dx; N dx; Ox;
kTo[a2Q7, 1 dTo 6Q, 1 dN aQ,]
- Ix? Ty dx] dx; N dx; ox;
62 1 dTo/9 i 6Q
&, (2 ’). (22)
o To dx, dx; axi
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3. RADIATION EQUATIONS

In order to exhibit the coupling which occurs between
the electromagnetic field and plasma oscillations, we
shall first split the electric field E into its longitudinal
and transverse parts Ez and Er defined by

EZEL+ET, V'ET=O, vXEL=0. (23)

Using these, and denoting the root mean square
thermal velocity in the electron plasma by

V=(3kTo/m)}
and the plasma frequency
4rNe*\
(%)
m
Eq. (22) for the electric field becomes

3?2 92\ 9 V2 @ ? 9
[Ca . P
(”2 axkz 6t2 3 axk2 6x,~2 312

]ETi

9’ 9? 9?
+—|:_—+we2—' ]ELt_———-<SN1+STZ) (24)
sz 6152 axk
where
62SN,~ 272 9% AN aELj V2 3% ON (')Et
ar 3N 92 dx; ox; 3N 9 dx; 9%
Vi ON 3 9?
Er;, (25)
3N (*)x] ax] a2
and )
6257'5 2V2 62 aTo an 2V262 3T0 I¢] 62
==——— - —— e —_—— E71~
a2 3T, o8 0x; dx; 3T dx; dx; dx;2 !
V2 (92 aTo aE, V262 aTo d (")2
b 0 Er (26)

3T 0% 9x; dx; 3To dxj dxj dxp?

Consider first the case in which the density and tempera-
ture gradients are zero, i.e., 92Sy./9?=02S7;/32=0
Then (24) gives for the equations describing the propa-
gation of a pure longitudinal plasma wave, or a pure
transverse electromagnetic wave, respectively:

62
—twd— WVZ)EL=0, (27)
o
and
62 62 2
[ —_+0) ‘_C2V2)—+"‘—‘V2( 2V2__)]
i (28)

Equation (27) yields the familiar dispersion relation
wr=wl+ k2, (29)

for the plasma oscillations of a uniform plasma. Further,
the second term in the square bracket of (28) is only
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important for a relativistically hot electron gas, and
will be neglected here since we did not start with a
relativistic Boltzmann equation anyway. Thus insofar
as ¢>>V? Eq. (28) yields the usual dispersion relation
for electromagnetic waves in a uniform plasma,

=024k (30)

Now we shall make a number of simplifications.
First consider separately the two cases of a tempera-
ture gradient only and a density gradient only, setting
the gradients along the x direction i in each case.
Then taking the curl of (24) for these two cases, we
obtain a pair of inhomogeneous wave equations for
Vv X (6°Er/d8#), namely :

d°Er
(—+w 2(x)—c2V2)v><
Sy &°E
=VX—= (Vo) X—, (31)
o il
for the case of constant temperature, and
02 &Er
‘—+we2*62V2)VX
o o
3*Sr A
=V X——F (V)X Vi— (32)
o ot

for constant density. In the source terms on the right
of the radiation Eqs. (31) and (32) we can neglect the
transverse field. This is because terms involving the
transverse field are of order A\,/Ar times those for the
longitudinal field, where N\, and Ay are the plasma
oscillation and radiation wavelengths, respectively, i.e.,
Ne/Mr=2(V /¢)<<1. Also the transverse field will be con-
sidered as a perturbation on the longitudinal field. Under
these circumstances we can reduce (31) and (32) to two
radiation equations for VX Ez with fairly simple sources
dependent on the longitudinal field, i.e., on the presence
of plasma oscillations. For T constant, the density
gradient equation becomes

62
(—4—wg2 (x)— GZVZ) vXEr
012

= (Vwe2)><[(-~v2 )EL], (33)

and with IV constant, the temperature gradient equation
becomes

[(0%/08)tw2—cVi IV X Er= (VV2) X (V?EL). (34)

Thus if we specify the longitudinal field Ez, say, for
a wave packet of plasma oscillations, we may calculate
the radiation produced from temperature or density
gradients. The longitudinal field will first be calculated
from (24) by setting Er=0, since as far as the propaga-
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tion of plasma oscillations goes the radiation field will
make only a small perturbation. From (33) and (34)
we see that the component of Ey across the gradient is
the radiative one.

4. PLASMA OSCILLATION SOLUTION
IN GRADIENTS

If one sets the perturbation transverse field Er=0,
the wave equation for plasma oscillations in a density
gradient along the « direction i becomes, from (24),

62
—twl(®)— V2V2)E L
o

2V2dN
VB,
3N dx

VN &
——— —F,.

(33)
3N dx 9x

If we now write the irrotational vector Ez as V¢ in(35)
and drop terms O(L™2), we find a wave equation for the
scalar potential ¢,

9
(-—-I—w,,2 (x)— V2V2) Vi
A
0¢ dws

V2dw? 0¢
Ix dx

—=0. (36)

we dx  Ox

We shall examine the behavior of an infinite plane
plasma wave with its propagation vector k in the xy
plane.

W (w,ky,x) exp(—iwi+ikyy).

Equation (36) then becomes for ¥,

@37

v 1 dwl2d¥ ¥
- ___(k 2__ 2)
dxt wl dx dx* dx?
a¥ /1 dw? kp2dwd
—(— S )+k1,2k;\p=o, (38)
V? dx w? dx
where

k2 () Vi=w?—w’(x) — R,V (39)

This is now in a form suitable for solution by the WKB
approximation since the characteristic length L of the
density gradient is >\, i.e., k(x) is slowly varying.
Thus writing

T =exp(So+Si+--+),

and calculating Sy and S; from (38) in the usual way,
yields for an arbitrary wave packet defined by ¢,

¥ (w0, ky)we ()

d=(2 )—lf .d dk

G ) ot k)

Xexp[—iwt-l—ik,,y—l—i f kx(x’)dx’J (40)
0

from which the electric field E;= V¢ is easily calculated.
In a way similar to the foregoing, the behavior of a
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wave packet of plasma oscillations in a temperature
gradient can be calculated from (24), which becomes

9° 2V 4T V2 dT 9
(——I—wﬁ— V2 (x)V“’) Er=——VE;,+———E1,
02 3T dx 3T dx dx

and gives for the WKB solution,

‘pT(kaﬁl)

=(2m)! dwdk, ——M
¢=(2r) L, k”kﬁ(x)VQ(x)kz(x)

Xexp[—iwt—}—ik,,y—{—if k,,(x’)dx']. (41)
0

The plasma oscillations given by (40) and (41) are
refracted out of the direction of increasing NV or T, i.e.,

(]}

Further, the electric vector rotates about an elongated
ellipse whose major axis along the direction of propa-
gation is of order LX~! times the minor axis. The ampli-
tude of the electric vector given by (40) decreases in
the direction of decreasing N, the energy being trans-
ferred to the temperature fluctuation as the wave tends
to propagate more like a sound wave.

The energies ¥y and Y7 carried by the wave packets
(40) and (41) are obtained by integrating the flux S
over ¢t and y. Using (14) and (17), (19) becomes for our
longitudinal field,
kT, [7 oE. (
327NeL2 9t

where we have neglected terms O(L™). Thus from (40)
and (41), we find

*)+z(3§tf--v)EL*], (42)

vl (43)

® 11V2
Yy= f S dydt=
—w 487

Vo= f dwdk k1. (44)

487 V7w 2

The slow dependence of ¥'r on x derives simply from
the neglect of terms in L7 in the approx1mate ex-
pression (42).

5. RADIATION BY PLASMA OSCILLATIONS

Basically there are two extreme cases of gradients
which we are able to investigate from the point of view
of radiation. The first are slowly varying gradients for
which L>>\ and to which the radiation Egs. (33) and
(34) apply. The second, which for practical purposes
will be considered as density discontinuities, are those
for which L<K\. These can be treated by applying
boundary conditions to the solutions of the homo-
geneous wave equation across a discontinuity.
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Case 1, L>)

We shall consider the density radiation equation first.
We also consider a two-dimensional radiation problem
by using a plasma wave packet localized with its
propagation vector in the xy plane, but of infinite
extent in the z direction. This will be incident on a
region of infinite plane density variation N (x). The
source term in Eq. (33) then gives rise to a z component
of VXEr, ie., essentially the magnetic field. Thus
writing ®= (VX Er),=—H.,/c, we need to solve

92 dws /277
(———l—wﬁ(x)——cZVY‘)(I): ( v2— 1)EL,,. (45)
o2 dx \3w?2

We shall take for £y, that given by the two-dimensional
wave packet (40) with wave numbers k and frequencies
w. Those of the radiation field will be written K and ».
Then taking Fourier transforms over y and ¢,

- (m.—)-lf DK A 0,K,) exp(—ivi+-iK,p), (46)

(45) becomes

dZ
(xa Ja=s), (a)
where
P—we
Ki=——K; (48)
c
and
) 1dwe2, % \iK,,we 2V2k2¢
g(x —;2‘ P Yn (7, y) b (Swez 1 1)
Xexp[if kx(x')dx’} (49)
0
with now
k2Vi=p—wl2—K2V? (50)
and

BV=r—ol,

The amplitude A of the radiation in (46) is determined
by (47) in which the source g(x) derives from those
frequencies w=» and wave numbers k,=K, in the
plasma oscillation packet. An approximate solution of
(47) can now be generated from the two WKB solutions
of the homogeneous equation,

A1, ==K (x) exp[:f:ifz Kx(x’)dx’], (51)

A z A, z
A=———f Aggdx'———f Agdx’.
2 J, 2¢ Jy

Suppose we now consider the density gradient region
to be confined between two infinite planes, || <L,

as

(52)
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about the origin and the plasma to be of uniform
density outside this region. Then for large |x| > L the
two terms of (52) correspond to waves traveling to the
right and left, respectively. In the plasma to the left
of the gradient region there should be no transverse
wave traveling to the right, and similarly on the right
of the gradient there should be no wave traveling to
the left. Thus we take the constants a=—c, b=,
Equation (46) then breaks up into two radiation wave
packets for large |x|>>L, ®y1 traveling to the right
in the positive « region, and ®y; to the left in the region
x negative, i.e.,
P=2y1-+Py2,
with

0
2

K.
N
Py1,n2= (47r62)_1f dVdeE?yGl.2(V;Ky)

Xexp[—ivt—}—iKyy:l:if K,(x’)dx’], (53)
0

® dxwe(x) dwe f2V2E?
G1,2=f ( +1)
w KAkRk2 dx \ 3w?

Xexp[:Fi f " K ()i f xkx(x')dx’]. (54)
0 0

The integrand of Gy,» is a product of a rapidly oscillating
function with a slowly varying wavelength A\, and a
slowly varying function with a gradient scale L. Ex-
plicit calculation of the radiation field now depends on
evaluating these integrals for a particular density
gradient N (x) and wave packet of plasma oscillations
defined by ¢n.

In a similar way the radiation field resulting from
plasma oscillations traversing a temperature gradient
follows from the wave equation (34). Writing ®7 for the
z component of VX Er, we again have 2 waves traveling
to the right and left, respectively,

Bp=Pp;4Bry,

where

° K ‘//T(V,K )
(I)TLTQ: (4’"‘62)_1f dVde—iI’—‘—yFl_z(V,Ky)

x

Xexp[—ivt+iKy+iKx] (55)
and

© dx dV? z
F1,2=f ——exp[?inx—{—if kx(x')dx’]. (56)
w VY dx

0

We shall require in the following discussion the
radiated energies represented by the radiation wave
packets (53) and (55). These are derived from the flux
in a similar way to that for the plasma oscillations,
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namely, by using

6 o0
r=— f B, H . *dydl. 57)

8

We shall attach suffixes Twi, Tw2, T71, T2 for the
energies of the two waves originating in the density or
temperature gradients respectively. The electric and
magnetic vectors E and H of the four radiation fields
required in (57) can be obtained from ®y1, @2, P11, and
&, using Maxwell’s equations = —H,/c and V-E=0.
Thus for example the components of the magnetic and
electric fields of wave 1 for a density gradient are

E12=H1x=H1y=0,

7 © dvdK, _
le= - —.°G1)
drcV_o v
1 ® dvdK, K, _
E1x=_ #Gly
drc?J_, K2
1 * dvdKy K, _
Ey=—— 1
4 J_, K2
where
- Ky‘I/N . . . i
Gi= P G1 exp ——wt-}-v,K,,y—I—'Lf Kx(x’)dx’]. (58)
z 0

Similar expressions are easily obtained for the other
radiation waves. Using these in (57), the radiated
energies become

* dvdK,
TN1,2= (327!'62)'—lf N IG1,2 | 2IPN2Ky2 (59)
—0 14
from the density gradient, and
® dvdK,
TT1,2= (321!'62)_1f I F1‘2 I 2¢T2Ky2 (60)
K.K*

—o0 V

from a temperature gradient. We next calculated the
functions G and F for a particular physically plausible
gradient.

Approximate Evaluation of F and G

The WKB solutions (53) and (55) obviously break
down at the classical turning points represented by the
zeros of K, or k, Better solutions are obtainable but
we shall restrict ourselves here to this simpler case
| K%K ,/dx|<<1. Further, the functions F and G
contain exponentially decaying factors as soon as
K, becomes complex. Thus the condition we need
to satisfy in order to obtain radiation capable of
propagating is

P—we

———K>0,
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F16. 1. Radiation by
plasma oscillations tra-
versing a slowly varying
density gradient in the
neighborhood | x| < L.

welb-0)=w

we(x)

i.e., the angle y=arctan(K,/K,) which the two radia-
tion waves make with the 4« axis at the point of
emission (Fig. 1) must be less than w/2. The radiated
waves have the same frequencies y=w and wave number
components K,=k, as the plasma oscillations. Only the
x component of the wave number changes so that the
condition for radiation can also be written

T
tanf=—<—— o0 (61)
k. (@—VH)F ¢

where 6; is the angle the plasma oscillation wave
number k makes with the gradient direction; i.e., the
plasma oscillations must propagate in a narrow “radia-
tion cone” about the gradient direction in order to
produce radiation capable of propagating in the plasma.

Now both the quantities F and G of (54) and (56)
may be written in the form

0 deZ
G1,2=f dx g(x)
o dx

Xexp[:Fifo,(x')dxl_;_ifz k,(x')dxr]’ (62)

2

© d
F1,2=f dx f(x)—-—
. dx

Xexp[:Finx-{—if kz(x’)dx’], (63)
0

where g and f are slowly varying provided we avoid
the zero of K, or k,. We next choose particular func-
tions to represent the gradient regions in the plasma,
namely,

(O)22_6012) z x2
wi(x)=wlit——— f dx exp(———), (64)
L —w 12

e

vi( )—V2+(V22—V12)fzd ( xz) (65)
x)="V; B 3 x exp %)

]
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ie., either the density changes from N; to NV, or the
temperature from 7' to T'; in a region |x| S L about the
origin. Such gradients might, for example, describe the
density or temperature transition through a shock wave.
The integrals (62) and (63) are complicated and we
shall here only approximately evaluate them. Consider
first (62). Expanding the slowly varying wave numbers
K.(x) and k,(x), we can write for the exponentials in
(62) approximately

exp[in(k+(0) F K +(0))+3ia’ (ks (0)F K./ (0)) ],

which is valid for |«x| <L. The integrand vanishes
rapidly for larger ». Similarly for the functions f(x)

(66)

and g(x):
~ ’
J@=fotxf ° ©7)
g(®)=go+uxg0,
with
f0= V——2ka;_%l =0y
We 2V%k?
p— (1) (68)
KRk A\ 3w 20

Thus (62) becomes

(w22_ w12) ©
e f dx(go+gy)

G152 -
Lzt —»

x2
X exp[ — —L—z—l—iax+ibx2], (69)

where a= k,(0)F K ,(0) and b= (%’ (0)F K. (0))/2, and
the suffixes 1 and 2 on G correspond to the — or +
values, respectively, in @ or d. The above Fourier in-
tegral becomes simply

go'ial? L2
) e e
2(3bI2—1) 4(1—4bL?)
ie.,

|G1’212N(w2.:;1:|1 (g _ﬂ) ( 2b2L2) 0

since b=0(\"1L7Y), i.e., L2Kb% Further since K Lk,
and K/<<k,/, we have a=2k,(0) and 62k, (0)/2 so that
| G1]?22| G2|? and the energies of the two radiated wave
packets from (59) become

(w—ar?) [
(1—irpl®’

Gy, =

Viwd|dw?| r* dvdK, K Yn?A?
Trii==T no= —_— f s —
8¢ | dx K*K B
[ 8wk AV 1)
Xexp -———] s
(wt—w1®)?J| zm0

2BV R2VE k2 RIVE(wdH2RV?)
A= ( 1+ ) [% i = }
2K2¢ B wlQRVH30d)
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and we have also used

1 dwg
2k, V? dx

(w0 —wi?)

kS (0)=— —
o 2k VL

In a similar way to the above, the functions Fy,» may
be approximated and yield for the radiated energies
in a temperature gradient

av? r* dvdK K Y1 2k2V2\2
TT1=TT2_ f ( . )
82| dx |V_ vK K2R2V? we
[ 8wV (72)
Xexp ———~———]
(V2—V )

Radiation Efficiency for Slowly
Varying Gradients

The radiation efficiencies for these plasma waves
propagating in the xy plane and encountering a region
of density or temperature variation will be defined as
RN= (TN1+TN2)/ YN and RT= (TT1+TT2)/YT, i.e., the
fractional energy radiated away in traversing the in-
finite plane inhomogeneity considered here. Taking ¢
and ¢7 to be highly peaked functions about some partic-
ular values » and K, for which we use the same notation,
the above efficiencies become from (43), (44), (71), and

(72),
121r dws? (we> sm201
1152 K2K
8wk AVA 73)
Xexp[——————]
(we?—wy?)? 0
and
127|dV? 2sin%0; / k \?2 2k2V2\ 2
o ) ()
11| dx K, \K we
L% (74)
ol e
(V22____V12)2

where sinfi=K,/k. It should be emphasized that these
expressions are restricted both to large L>>\ and to
angles 6; of the plasma oscillation across the gradient
which are sufficiently smaller than V/c that we avoid
the singularity at K,=0, i.e., the classical turning
points of the WKB solutions. Oscillations propagating
at an angle 6;>V /¢ do not produce radiation capable
of propagating.

We shall next consider radiation by plasma oscilla-
tions incident on density discontinuities, i.e., L=0.
The radiation Eq. (33) will not be applicable to this
case since it was derived neglecting terms of order A?/L?
and above.



RADIO EMISSION BY PLASMA OSCILLATIONS

Case 2, L=0

Consider a sharp density transition from N; to N.
inside the plasma (e.g., a shock front) and long wave-
length plasma oscillations incident on it (A\>>L), i.e.,
the opposite extreme to the case above. Then we may
again calculate a radiation efficiency for such an en-
counter by treating the sharp transition as a discon-
tinuity and applying boundary conditions to the uni-
form plasma solutions on either side. The boundary
conditions are obtained from the exact Egs. (3)-(5),
together with Maxwell’s equations by considering a
sharp but continuous density variation from N; to N2
and then performing the usual limiting processes.® In
crossing the density ‘“‘discontinuity,” we shall hold the
temperature of the electron component of the plasma
constant. Thus, for example, such a discontinuity might
correspond to a plasma shock wave in which the
characteristic length over which the electrons are
heated by the shocked ions is somewhat larger than
the shock thickness.

Writing Ei, E,, Hy, and H; for the total electric and
magnetic fields on the sides 1 and 2 of the boundary,
we find the boundary conditions at x=0,

H,—H,;=0, (75)

iX (B;—E) =0, (76)

i- (Ea— E,) =4mei (Naca— Nicy), )
P2i(2) —P=i(1)=0, (78)

where 1 is a unit vector in the % direction pointing
towards the side 2 of the discontinuity. p.; are the x
components of the pressure tensor fluctuation. Equation
(77) reduces to

i- (VX H,—vXH,;)=0. (79)

It should be noted that these do not reduce to Field’s?
boundary conditions for a plasma vacuum boundary.
He neglected the surface charge in the condition on the
normal component of electric field. Now consider a
plasma wave e;(k;) incident on the side 1 of the
boundary. The boundary conditions are then satisfied
by a reflected and transmitted plasma wave es(kz) and
e3(ks), together with two radiation waves £ (K;) and
e,(K,) (see Fig. 2). These waves have wave numbers
k;, ki, etc. We shall further consider them as plane
waves, exp[¢(k-x—wt)] propagating in the xy plane
with a frequency w. Thus we have five dispersion rela-
tions for these waves,

=itk =0tk =0+ Kic

=w22—|— k32V2=w22+K2262, (80)

8 J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book
Company, New York, 1941).
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F16. 2. Radiation by a plasma wave incident
on a discontinuity in density.

where
w1 _222 47['62N1 ,2/77’1'

(81)

are the plasma frequencies on either side of the
discontinuity.

Now in simplifying the boundary conditions (75)—
(79), we note that E1=e1+e2-l—sl and E2=33+£2.
Further we use Maxwell’s Egs. (17) and (18) to express
the electron fluid velocities v; and v, and H; and H, in
terms of the electric fields, together with (15) for the
pressure tensor p;;. They then reduce to the four
relations:

€1K1— €2K2= 0, (82)
e sinfy— 3 sinfs+ €1 cosy1+-€2 cosga= —ey sinf;  (83)
— €3 Cosfy— e3 Cosfz+ €1 (sinZy ;1 — costy)wi®/ 2e? sing;
— ez (Sin®p — cosYa)wo?/20? singe= —e; cosf;  (84)
e2ka (142 cos?0y) —esks(14-2 cos?ds)
— 12K cosyy sinyg (wi?/w?)
— 22K cosyp singp (ws?/w?)
= —kie1(142 cos?6;). (85)

We have used a further relation between the angles and
wave numbers, namely the equality of phase for the
various waves along the boundary, i.e.,

k1 sinf; =k, sinfy= k3 sinf;= K sing1= K, sings.  (86)

The angles in these equations are between the wave
numbers and the x axis as shown in Fig. 2. Thus, for
example, from (80) and (86), k1=Fk; and 6;=0,.

The solution of Egs. (82)-(85) for the amplitudes €
and e, of the radiated waves are then simply

-61=K262/K1=|:€1]/D, (87)
where the determinants [e; ] and D reduce to

Vv
[el:|=6e1( ) sinfy costy (wt—wi?)/V?,  (88)

c
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®
NIFIOLNCY
6ENC/ NN F16. 3. Radiation effi-
ciency Rn(L) for long-
ol o wavelength plasma oscil-
. lations incident at small
W.K.B. Approximation 6, on a density change
from N, to N;/2.
[o1o]] o
0.00! 1 | 1 |
(0] | 2 3 4 5
(L/x)
and

D= (k3K cosys cosfi+ k1K, cosyr costs)
X (3—2c2K {2 sin?0;/w?)+ k1K1 cosy cosls
X (3— 262K 2? sin%01/w?)+ k3K » cosyy cosby
X (3—2c2K? sin?03/w?)

3(w—wd)? cN? ot
——*————[1—-2 sin201(—) ] (89)
2w V/ w—w?

Next, consider the relations (80) and (86) between
01, Y1 and yo. We see that as 6 increases, ¢1 and ¢
increase. Since ¥; and ¥, cannot increase beyond /2,
the maximum value of sin; for which the first radiation
wave exists is given by

sin6: <Ki/k1=V/c, (90)
and for the second radiation wave
Kz V wz-—wf 3
sin01<——=-—~( ) . (91)
k1 Cc w2—w12

For both radiated waves to be propagated, the plasma
oscillations must be incident within a very narrow cone
around the normal to the density discontinuity.

Radiation Efficiency for a Discontinuity

We also require to calculate the fraction Ry of the
energy Y of a wave packet of plasma oscillations which
is emitted as radiation at the discontinuity. We shall
restrict ourselves here to angles 6; sufficiently less than
V/c so that both radiation waves contribute. Further,
since (V/c)<<1, we shall neglect terms of relative
magnitude (V/c)? in the derivation of Eq. (92). Using
the expressions (19) and (42) for the energy fluxes, the
components of the fluxes for the five waves at the dis-
continuity become :

1 1wk1612 (kT)
T 6N e

D. A. TIDMAN

for the plasma waves, and

62K1€ 12 COSl,l/1

Slzrad —_ — ,

8mw

C2K2622 COSlpz
S ‘)Irad —_—
8w

for the radiation. Thus the fractional energy of the
incident plasma wave radiated becomes, for a
discontinuity,

20,2 (mc2)

11wk, \ET
€1 2 € 2

X[Kl(—-) cosxlxﬁ-l(}(—) cosrlxz], (92)
e €1

where €; and e; are given by (87)—(89).

Ry (01) =

6. DISCUSSION

The expressions (73) and (92) for the radiation effi-
clency in slowly varying gradients or at a discontinuity
are in general complicated. We shall here give numerical
results for a simple limiting case of plasma waves
propagating almost directly along the gradient, i.e.,
6:<KL(V/c). We further consider the special case of long-
wavelength plasma waves incident from the dense side
N1 Wlth N1= 2N2 Thus

k1V<<w1%w and szE’wl/\/Z—%wz,

i.e., on the tenuous side, plasma waves with a short
wavelength just above the Debye radius are trans-
mitted. Under these limiting cases we find for a

discontinuity,
24 c)
a0 1I\V/

and for our exponential gradient (64) of scale L the
WKB result (73) becomes

LG

These expressions are plotted in Fig. 3. We note that
in going from a discontinuity to a gradient for which L
is a few wavelengths, the radiation efficiency drops by
two orders of magnitude which makes interpolation
across the region L=<\ only very rough. Once in the
slowly varying gradient region L>>\, however, the
radiation efficiency varies simply as L™,

1
-—2RN(01, L=0)

0:

1
""RN(GI;L)
0 2

1

ACKNOWLEDGMENT

The author is indebted to Dr. E. N. Parker for many
useful discussions.



