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The Boltzmann method is applied to the problem of calculating the electron velocity distribution in a
partially ionized gas. Inelastic collisions with neutral molecules as well as random two-body Coulomb
interactions are included. The latter are treated by use of the Fokker-Planck equation. Application is
made to a hydrogen plasma subjected to an externally applied electric field. Static solutions are obtained,
by numerical means, as a function of the ionization degree, and the classical gas discharge parameter, E/p.
It is shown that the evolution of the electron velocity distribution function from that characteristic of a
poorly ionized gas to the Maxwellian distribution occurs over a very large range in ionization degree.
Several applications are also made to energy relaxation phenomena, and the electrical conductivity is

evaluated.

I. INTRODUCTION

N the theoretical treatment of ionized gases, a
problem of fundamental importance is that of
determining the electron velocity distribution. A
knowledge of it permits the calculation of ionization
rates, electrical current, heat flow, and other important
transport phenomena. A number of authors have dealt
with this problem, and there are now well-developed
techniques available for the completely ionized gas,’
and for the poorly ionized gas?® in which encounters
between electrons and neutral molecules alone are
considered.

The purpose of the present paper is to combine, and
apply these methods to the intermediate case where
both Coulomb and electron-neutral encounters are of
importance. Different methods of treating this case
have been formulated by Cahn? and by Hazeltine,* who
have, however, neglected the inelastic collisions between
electrons and neutrals. These collisions are important
because they can have a pronounced effect upon the
nature of the electron velocity distribution. In this
paper we take account of inelastic collisions, and employ
the Fokker-Planck equation to describe Coulomb inter-
actions. Our main objective is to study the transition
from the non-Maxwellian distribution characteristic of
a poorly ionized gas to the Maxwellian distribution as
the degree of ionization rises. The results we obtain®
may be applied to various laboratory as well as astro-
physical gas discharge phenomena.

II. FORMULATION OF THE BASIC EQUATIONS

Following standard procedure we define the electron
velocity distribution function F(v,f) such that Fdd%
gives the number of electrons whose velocities lie in

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

! Cohen, Spitzer, and Routley, Phys. Rev. 80, 230 (1950);
L. Spitzer and R. Hirm, Phys. Rev. 89, 977 (1953).

2'T. Holstein, Phys. Rev. 70, 367 (1946).

#J. H. Cahn, Phys. Rev. 75, 293 (1949); J. H. Cahn, Phys.
Rev. 75, 838 (1949).

4+W. R. Hazeltine, J. Math. Phys. 18, 174 (1939).

% These results were first reported at the Ninth Annual Gaseous
Electronics Conference, Pittsburgh, 1956 [H. Dreicer, Bull. Am.
Phys. Soc. 2, 85 (1957)].

the element d@®v located around the point v in velocity
space. We restrict our treatment to plasmas whose
macroscopic properties do not vary from point to
point in space. Therefore, F satisfies the Boltzmann
equation in the form

9F /01— (¢/m)E-V,F=(3F/d1).. )

In this equation, V,F denotes the gradient of F in
velocity space, and E is an externally applied electric
field. Magnetic fields are assumed to be absent. (8F/ %),
is a symbolic notation for the time rate of change in F
due to collisions, and it consists of contributions from
various types of encounters which we now proceed to
examine in detail.

A. Coulomb Collisions

The mechanism of Coulomb interactions in a plasma
has recently been clarified by a number of authors.®
In these treatments it is shown that the interactions
can be roughly divided into two kinds. The first
associated with distances larger than the Debye length,
A, originally introduced in the theory of electrolytes’
represents organized or collective plasma oscillations.
The second kind associated with distances smaller than
\ represents random interactions which are character-
istic of the thermal motion of the individual particles,
and seems best described by two-body encounters. In
this paper it is assumed that the mechanism for exciting
collective oscillations is absent. The random two-body
encounter is therefore the sole mechanism for Coulomb
interaction considered here.

Our choice of collision term is based upon the fact
that distant encounters, resulting in small-angle scat-
tering, are generally much more important in deter-
mining F than collisions which result in large momen-
tum interchange. This fact allows us to expand the
Boltzmann collision integral, ordinarily used in gas
kinetics, in powers of the momentum interchange.® To
the first approximation this results in the Fokker-

6 See, for example, D. Pines and D. Bohm, Phys. Rev. 85, 338
1952).
( 7 P. Debye and E. Huckel, Physik. Z. 24, 185 (1923).

8 J. Keilson and J. E. Storer, Quart. Appl. Math. 10, 243 (1952).
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Planck equation

62
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(5) =S (@i £ ——(ananim, @

ot/ i 0v; i,7 0V; Vj
which has found important application in the theory of
the Brownian motion. In this equation v; and v; are the
components of the particle velocity in the 7 and j
directions, and the indicated summations are carried
out over the three Cartesian coordinates x, vy, z in a
fixed frame of reference. Every encounter between a
test particle of velocity v and a field particle® of velocity
v’ results in an incremental change Av; in the velocity
v along the % direction. The exact value of Av; depends
upon the velocities v, and v/, upon the angle € between
the orbital plane and the plane determined by v and v’,
and upon the scattering angle, 8, as measured in a
coordinate frame moving with the center of mass. The
average increments (Av;) and (Av,Av;) which a test
particle of velocity v experiences in its motion through
an ionized gas are given by

<A7)k>=zf: A{:[Ff(vl)ds'l)"l;dgA’l)de, (3)

(Avavj)=¥ f Fy(v)d%' f 0gAvAv;dQ, 4)

where
dQ=sinBdpde,

g=lv-—v’|,

17 elef \?
o= —(———) csct(8/2),
4 \ 4megmog®

mo=mgmy/ (mst+my),
and

47 ep=[1/(97)]10~°* Coulomb-volt—-meter—.

The subscripts ¢ and f refer to test and field particle,
respectively. The distribution function associated with
the test particle will be denoted simply by F.
Chandrasekhar® has termed the quantity (Av)/v the
coefficient of dynamical friction, since (Av) is the
average deceleration experienced by a particle of
velocity v in its motion through a plasma. It is im-
portant to note that (Av) and Av differ dimensionally
by sec™?, because the average involves the rate at which
collisions occur. If dynamical friction were the sole
result of Coulomb encounters, all particles would
eventually assume the average velocity of the gas, and
their average random energy as viewed in a frame
moving with the gas would vanish. That this mechanism

9 We follow the terminology introduced by S. Chandrasekhar,
Astrophys. J. 93, 285 (1941); and denote the particle whose
motion we are following by the name test particle. All other
particles are called field particles.

10 S, Chandrasekhar, Revs. Modern Phys. 15, 1 (1943).

H. DREICER

by itself provides an insufficient description, may
therefore be seen from energy considerations. In Sec.
V, A, it will become more apparent that the second
derivative term in the Fokker-Planck equation causes
a particle diffusion in velocity space, and thus describes
the effect of random fluctuations about the average
force. This provides the mechanism required for
maintaining a nonzero mean square velocity.

Rosenbluth, MacDonald, and Judd" have shown
that the average increments can be expressed in the
simple form

{Avy)y=0H,/ vy, (5)
(Av4Avj)= 3G,/ 30,075, ©)
where
+ P (v)d%'
m=x ", f A
ro my 4
Gv)= T [ B(v)g, (Th)
f
elef \?
th=47r( ) In(\/p0), (8)
(720}

and po is the average impact parameter for a 90°
Coulomb deflection.

. The summation over f takes account of the various
types of field particles which contribute to the H and
G function. The relation between H, G, and F can be
expressed in the following alternative forms

ath mri—mf

vill= T ==t (T ), )
ko Qv? s mys
mys

V2G=2 Z( )Hf, (9b)

7 \myt+my

3G,
ViGi =Y, =—8r 3 F(v). (9¢)
7

k. j (91)k237)j2
By substituting Egs. (5) and (6) into Eq. (2) we obtain

the Cartesian form of the Fokker-Planck equation in
terms of the H and G functions:

oF i} 0H,
ot/ ce k vy Vi

9? %G
HE—(r—) W
k,j avkav,- avkavj :

With the help of tensor calculus, Eq. (10) is readily
transformed to spherical coordinates where it takes the

11 Rosenbluth, MacDonald, and Judd, Phys. Rev. 107, 1 (1957).
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form

(5).-

19 0H, 10
— ————( Fo*— ) — ————[F(l uz)—]
22 9v 1] 22 du I

1 92 G, 1 02 %G,
+~——(Fv2 )+ [ — )
212 9v? dv? 2 ou? ou?
G
+—(1-p)— - -—u(l—nz)*]
23 v ot u
1 4 G, F G,
-~ —a-0- |
22 0vdu Oudv 7 u
1 6 2/.LF 6Gt F 62Gt 6Gt
————[——— — —(1—w2) —ZF———]
202 9ol v Au v du? v
a[F 3G 2Fu dG,
AL AL
2 dul v* our ¥ v
2F G, 2F 3G,
- === ap
2 dudv vt du

In this coordinate system F is a function of » and g,
where u=cosf, and @ is the angle subtended by v, and v.
All quantities are assumed to be invariant to rotation
about the v, axis.

B. Elastic and Inelastic Collisions Between
Electrons and Molecules

The collision terms are well-known for these inter-
actions,? and will not be re-derived here. For the elastic
case we have, to first order in the small quantity m/M,

F
(%t—) cm= N‘vjf; [F (#I’?}) —F (#77))]0'3(‘3,'0)d9'

+N———[ f (1= cos8)o(B,2)F (& ,v>dsz'] (12)

where N=density of neutral molecules, m=electron
mass, M =molecular mass, o¢.(8,v)=differential cross
section for elastic scattering, through the angle g.
dQ' =sinBdBda, and v=electron velocity after collision
with a molecule. We also introduce w, the electron
velocity before collision with a molecule, and use it to
define the angles u’ and « as follows: u’=cosine of the
angle subtended by w and k, the unit vector in the z
direction. a=azimuthal angle subtended by the vector
vX (kX v) and the plane determined by v and w.
Figure 1 illustrates the geometry of the collision.
The relation between the angles is easily seen to be

w'=pu cosf+ (1—u?)? sinB cosa.
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Fic. 1. Geometry of the collision between an electron and an
infinitely massive molecule. The velocity vector v is the polar
axis for the azimuthal angle .

The inelastic collision term is given by

aF .
(;)ci% Nv j; ’[F(”f’w)%@(g,w)
~Fluplor(5) oty 19

where w?= 1,212, 1mv,2=energy required to excite the
hth excited state of the molecule, o,(8,w)=differ-
ential cross section for the excitation of the Ath energy
state, and >_; denotes the summation over all excited
states. Our basic equation consists of Eq. (1) supple-
mented by Egs. (11), (12), and (13).

III. LORENTZ APPROXIMATION

The combined Boltzmann-Fokker-Planck equation
is a nonlinear integropartial-differential equation for F
in terms of the » and u variables which cannot be
solved exactly by known mathematical techniques. To
achieve some simplification of our basic equation, we
shall employ a perturbation method, originally due to
Lorentz,’2 whose basic assumption is that collisions are
instrumental in setting up a nearly spherically sym-
metric velocity distribution. Small deviations from
spherical symmetry are then described accurately
enough by the second coefficient, F'(v), in the spherical
harmonic expansion of F:

F(M,YJ)’:Z" Fn(v)Pn(:u')ZFO(v)'*"ﬂFl(v))

where the P, are Legendre polynomials. In our formu-
lation the perturbation requirement,

(14)

FIKPY,

is tantamount to the physical condition that the
average velocity of the electron gas be small compared

12H. A. Lorentz, The Theory of Electrons (B. G. Teubner,
Leipzig, 1909, and G. E. Stechert and Company, New York
1923).
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to the root mean square electron speed, i.e.,

3
f Fluvd® <<[ f F"de%] .

Subject to this requirement we may, as is well known,
eliminate u by averaging over angles. The resulting two
coupled equations for ° and F! involve the variables v
and ¢ only. We shall derive these equations by applying
the Lorentz approximation to each of the collision
terms separately. '

A. Coulomb Collision Terms

The G (and H) potential is determined by the
distribution function, and therefore must also be
expanded in Legendre polynomials. A simple procedure
consists of expanding the relative velocity g itself in
Legendre polynomials:

§= 2 Aa(v,9)Pa(2),
n=0
where
z=cosf= pu’+[1—u? T [1— (u')?]* cos(p—¢").
We make use of the addition theorem and the orthogo-

nality relations of spherical harmonics and find with
the help of Eq. (14) that

Cilow) = 3 1 Po) f AF W) ()
+1 0

f n=02n
~G O (v)+uGi(v), (15)
where
2n+1 ptt }
A (o) =—= f [0+ (o= 2005 P (2)d.
2 J,
Further reduction results in
GO0) =3 Go(0)=4r 3 rtf[v f F ()
7 7 0
f (v")*F dv'+ f o' )3F Ody’
0
’1)2 0
+= [ <v’>F,0dv'], (16)
3 J,
and
47 1 ®
Gi0=L =2 1| — [ yF e
7 15 7 2 J,
-5 f FAW)'do +8 f Fdo
0 v
—Svf (v’)zFfldv’]. an
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Substitution of Egs. (14), (16), and (17) into Eq. (11),
and use of Egs. (9b) and (9c) results after appropriate
integrations over the angle variable u in the following
two equations:

(50). om0 G5

47bT F PFO4—
and

dv \ 22 9v
2¢ F*GL 3G, 1 9°G,° 9*F°
+— +¢ )+~
y  J7? 97° 2 92 07?
JdF! 1 8G,° *F* OF' s G 2¢ 0°G)
AT
ot 7L2 92 92 Jv 9® v 91?
b IG,° b 3G 203G 1 9GS
+ +
2 0t 2 97 ¥ Iy
1 62Ff° %G c')FO( 63Gf 2¢ %G
—_ ]
2 92 9? I v 97® ! 2 91?
26—19G;+ 1—-2b b ¥'G;
I| + Gfl) _FO (_

], (18)

2”2 v 23 2 9t
20 #¥*GL 20 PGS 4 9GS
—_—— = )J, (19)
9 07° 22 992 ¥ 9
where
b=m/mj, (20)

c= (my—m¢)/(2my). (21)

Equation (18) is equivalent to an equation derived
earlier by the author.®* Chandrasekhar* has applied a
linearized version of Eq. (18) to astrophysical problems
by assuming that the velocity distribution of field
particles is Maxwellian, and their temperature inde-
pendent of time. Cohen, Spitzer, and Routley’ have
used the same approximation in their solution of Eq.
(19). These calculations precede the introduction of
the H and G functions.

B. Electron-Molecule Collision Terms

Substitution of the Lorentz expansion into the elastic
and inelastic collision terms given in Egs. (12) and (13)
results after integration over angles in

AF° OF° 1m o
< ) ( ) oM _(vaFoye)
cz VM v

+§[3:—F°<w>vh<w>—F°<v>vh<v>], 22)

oF!
(=) -,
0t/ em

18 H. Dreicer, Massachusetts Institute of Technology, Ph.D.
thesis, 1955 (unpublished). The main results of this thesis also
appear in W. P. Allis, Handbuch der Physik (Springer-Verlag,
Berlin, 1956), Vol. 21.

1S, Chandrasekhar Astrophys. J. 98, 54 (1943).

(23)
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where »,, the frequency for momentum transfer, and
vy are defined by

vo(v) =2 Nv f (1—cosp) sinBo.(8,2)dB,  (24)

0

vi(v)=27Nv f sinB0(B8,v)dB. (25)

0

Equation (22) describes the effect on F° of energy
transferred both elastically and inelastically to neutral
molecules. The possibility of energy transfer from
molecules to electrons has been ignored. Equation (23)
describes the effect on F! (and therefore on the electron
current) of the collisional friction force which neutral
molecules exert on electrons. This mechanism is re-
sponsible for the electrical conductivity of a poorly
ionized gas. The contribution from inelastic collisions
to dF'/0t is smaller than F'p,, the contribution from
elastic collisions with neutrals, by the factor 35 v4/ve.
In the range of average electron energies considered in
this paper (up to 10 ev) we shall find this factor to be
1072 and less. For this reason we shall neglect the effect
of inelastic collisions upon current flow.

C. Complete Form of the F° and F! Equations

The collision terms just derived, when supplemented
by the terms originating from the spherical harmonic
expansion of (¢/m)E-V,F, give us the following 0 and
F' equations:

or°

eE 0
— (22FY)

at 3mv? dv
()G (). e
it (5) ().

Simultaneous analytic solution of these equations is
possible only if a number of simplifying assumptions
are made. For example, in the theory of electrical
breakdown, Coulomb terms may be completely ignored,
and steady state solutions can be obtained provided
tractable forms are chosen for », and ;. In the opposite
limit of a fully ionized gas, the steady state F! equation
must be solved numerically even when F° is assumed
to be Maxwellian. In our application of Eqs. (26) and
(27) to the partially ionized gas we shall neglect
(8F'/81).c, and assume the positive ions and molecules
to be infinitely massive. The physical limitations im-~
posed by these approximations will be made clear by
several minor applications into which we enter next.

(27)
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IV. ILLUSTRATIVE EXAMPLES
A. Energy Relaxation in a Fully Ionized Gas

In this section we apply Eq. (18) to the problem of
calculating the rate of energy transfer between particles
of a highly ionized gas.

1. Electron-Ion Encounters

The rate of energy transfer between particles of
equal masses greatly exceeds the rate of energy transfer
between particles of widely differing masses. For this
reason the electrons and ions of a plasma approach
Maxwellian distributions characteristic of the tempera-
tures T°; and T';long before these temperatures approach
each other. Thus only a small error is committed in
assigning Maxwellian distributions to the ions and
electrons. With this choice, self collisions do not
contribute to Eq. (18), and the G° function for electron-
ion encounters is given by

oo (Y e}, o

where

6 2 @ (B (Mfu2 3
x)=— exp(—F)dt, x=
=7 fo P 2T

™

and T',; is defined by Eq. (8) with the ions playing the

role of the field particles. The energy equation is derived

with the help of Eq. (28) by integrating Eq. (18)

appropriately over all velocities. The result

aT, ar; 8 m T.—T;

= = 1] o — y
3/m M QQkT;/M~-2kT./m)}

agrees with a different derivation due to Spitzer.!®

dt dat
Equation (29) may be integrated conveniently with the
help of the following definitions

EW=[T()/Tal-1, Ta=

In terms of these, we obtain

(29)

[T.()+ T /2.

M__.
e/ G
where
1 16
It wP“_ )
Tei N/ 2kT 4
3kTA -4
=1.2X1 -——) In—sect. (31)
2 e Po

In the last expression the density, #, is to be expressed
in cm™3, and the average energy, $(kT'4/e), in electron
volts. W is the atomic weight of the ion, and Z; its

5 L. Spitzer, Physics of Fully Ionized Gases (Interscience
Publishers, Inc., New York, 1956).
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Fi16. 2. The variation with normalized time of the temperature
deviation ratio, £, characteristic of electron-ion energy exchange.
The curves are parametric in the ratio of initial temperatures.

state of ionization. The relaxation time is a function
of the average temperature, 74, the reduced mass, g,
and the total mass of the colliding particles. With the
neglect of m compared to M, we finally have

t
—=3[14+£0) P—3[1+ (O P+2[1+£(0)

—2[1+£(O 1 +In[£(0)/£(0].  (32)

The temperature deviation ratio £ is shown in Fig. 2
as a function of ¢/7.:. Positive and negative values of £
correspond to T.(0)>T;(0) and T.(0) <T;(0), respec-
tively. The curves shown are parametric in the initial
temperature ratio v which is defined to be T';(0)/T.(0)
when £ is positive, and T,(0)/7T;(0) when £ is negative.

2. Encounters Between Identical Particles

Again we assume that the particles are distributed
according to a Maxwellian distribution. We then focus
our attention on a single test particle whose initial
energy is 3m,12(0), and calculate the time required for
its energy to approach the average energy, k7T, of the

H. DREICER

gas. The G® function for self collision is given by

G°<v)=nr,«f(3@)%{82<y> [y+~1—]+35§3},

(33)
mys 2yl 2 ady

where
y=(ms?*/2kT )}

The energy equation is again obtained by averaging
Eq. (18) over all velocities, with the result

d va2) 1 Imp®—3kT; 34)
a\ 2 ] r[(me/3kT)+1]F

The relaxation rate is given by

1 8 2m \*}
—=-—nI‘,,g( ) , (35)
Tee 3N/T 3kT,
for electron-electron encounters, and by
1 m\*} 1
—=zi(2)— (36)
Tii M Tee

for ion-ion encounters, provided the temperatures
involved are equal.

Equation (34) can be integrated exactly for the
temperature deviation ratio £,

£W)= (mp?/3kTs)—1,

in terms of {/7, and several examples of the solution
are shown in Fig. 3 with the ratio im2(0)/3kT,
treated as a parameter. Comparison of Eq. (35) and
(36) with Eq. (31) shows that for energy relaxation
we have

Tee m T\
:2Z¢2— ), (358.)
Tei M\T,
and
Tei 1 m H T, 3
L
Tei Zi2 M T4

These results help to justify the use of two Maxwellian
distributions characterized by different temperatures in
the calculation of the electron-ion relaxation rate. In
our later treatment of the partially ionized gas we
ignore the energy transfer between electrons and ions
by taking the ions to be infinitely massive. We justify
this approximation in Sec. V, D, where we show that
this transfer of energy is negligible compared to the
electron energy lost inelastically in the electronic
excitation of neutrals.

B. The Electrical Conductivity of a
Partially Ionized Gas

We consider next the dependence of electrical con-
ductivity upon ionization degree. It is clear that the
resistance is controlled by collisions with neutral mole-
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cules when the ionization degree is sufficiently low. On
the other hand scattering in the Coulomb field of the
positive ions dominates the resistance in a highly
ionized gas. The ionization degree for which these
encounters have equal effects upon the conductivity
depends upon the electron temperature and the collision
cross-sections involved. Mutual encounters between
electrons alter the momentum of the electron gas only
indirectly by influencing the rate of electron-ion en-
counters, and these self-collisions will be ignored here.
We also ignore the small contributions, amounting to
m/M of the total momentum interchange, which arise
from the recoil motion of molecules and ions by taking
these to be infinitely massive. Equation (19) then
yields the simple form

(8F*/ 38) co= —nl iF1 /43, 37

where use has been made of =0, ¢=0.5, G*=nl';,
G'=0. Substitution of Egs. (23) and (37) into (27)
yields the static solution

3 (e/m)E R0
 [re()+ (L) ] 0

and the electrical conductivity, o, is given by

Fl

dre ;o 19(3F%/0)
=———f—————-—dv (38)
ImJy v (v)*+nle
AT T T T T T T T T T T T T T
3 .
5
2 n
3
\ _
2
[o]
o}
172
Y A T T T SO SN S S TR T S T N R
o 2 4 ’B 10 12 14
T

Fi16. 3. The variation with normalized time of the temperature
deviation ratio, £, characteristic of self-collision in a plasma. The
curves are parametric in the ratio of the initial particle energy to
the average particle energy in the gas.
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Fic. 4. The variation with ionization degree of the normalized
electrical conductivity of a hydrogen plasma. These curves are
parametric in the average electron energy. The uppermost curve
describes the residual conductivity when Coulomb encounters -
are ignored.

With a known F° we can obtain o after a single numer-
ical integration. As an illustration we have chosen the
case of a hydrogen plasma, for which », is independent
of v above several electron volts. It is given by the
following alternative forms!®:

ve=1.67X 107N sec!=goN

=35.9X10% sec?, (39)

where the neutral gas density N is measured in units
of cm™2, and p is the neutral gas pressure in mm-Hg at
0°C. The results of numerical integration for a Max-
wellian distribution of electrons are shown in Fig. 4
where ¢, normalized to

ao=4€*/ (31/mmgo),

is plotted against the single stage ionization degree
B=n/(n+N) with average electron energy as a pa-
rameter. The conductivity controlled by scattering
with neutrals only, shown as a separate curve in this
figure, is asymptotic to all other curves as 8 tends to
zero, and diverges as 8 tends to unity. In the tempera-
ture range of several electron volts, deviations from
this curve first become important at a transition
ionization degree, which we denote by B, of about
101, The electron-ion collision rate decreases with
increasing temperature and causes 8 to increase with
increasing temperature. As we have stated earlier, we
shall neglect (3F'/d¢) . in our study of partially ionized

16 W, P. Allis and S. C. Brown, Phys. Rev. 87, 419 (1952).
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gases. Our treatment is therefore restricted to plasmas

whose ionization degree does not exceed Bi. Neverthe-

less, as we shall see, mutual electron interaction first
comes into play at a much smaller 8 and, of course,
these terms are retained in Eq. (26).

V. MUTUAL ELECTRON INTERACTION
A. Physical Description

The neglect of the Coulomb terms in Eq. (27)
greatly simplifies this equation. For the steady state
solution we now obtain

F'=(eE/mv.) (0F/ dv),
and substitution of this result into Eq. (26) yields
1/eEN\?1 9 /4* 9F° 1 dG° 9F°
_( ) ( )+47TF66(F0)2+_ —_—
2> v \», dv ”® dv I
1 8°G° 9*F°
2 61}2 9%

+z[—ﬁ“<w>uh<w> FO(vm(v)] (40)

Here we have ignored the energy exchange resulting
from elastic electron-neutral and electron-ion encounters
compared to the energy exchanged by mutual electron
interaction and inelastic collision. Equation (40) may
also be written in terms of the average velocity incre-
ments which are the result of electron-electron encoun-
ters. It then takes the form,

LG (5) v )
w
+§[;F°(w>vh<w>—F°<v>uh<v>]=o, (41)

where Av is the component of the incremental velocity
change along the velocity of the test electron. In this
equation the coefficient of dF°/dv plays the role of a
diffusion constant in velocity space. Both terms in this
coefficient describe a radial outward flow in velocity
space. The first is due to the Joule heating of the
electrons by the electric field. The second is caused by
mutual electron encounters. The average velocity incre-
ments {A2)° and {(Av)2)° involve only the spherically
symmetric part, F°, of the distribution function. Since
Coulomb interactions by themselves cannot alter the
total energy in the electron gas, the average rate at
which fluctuations [proportional to ((A)?)] deposit
energy in the electrons must be exactly balanced by
the rate at which dynamical friction (proportional to
{Av)) removes energy from the electrons. To show this
we multiply the Fokker-Planck equation by 3m? and
integrate over all velocities. The result takes the form

—(Gm()n) = 51V - (AV)Int-3m(((A0)")) v,
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where the average is taken over all velocities. By the
conservation of energy this expression must vanish.
Equation (40) [or (41)] of course satisfies this criterion
also, for if we multiply each of its terms by 3m?, and
integrate over all velocities we find for the power
conservation law

( 6E) 2 A®
f —Ar?dyv=—3
m 0 Ve h

°rw
[—FO(w)»h<w>
0 ? R

m
—Fo(9)v,(v) ]—2-47rv2dv, (42)

which does not involve mutual electron encounters
directly. This equation states that the rate of energy
input from the electric field is exactly balanced by the
rate of inelastic energy loss. The G function does not
appear implicitly in Eq. (42) since electron-electron
encounters only influence the distribution of energy
among the electrons, and do not alter the total energy
of the electron gas. Indeed, as the ionization degree of
the gas rises the increasingly frequent encounters
between electrons tend to arrange the electron velocities
according to a Maxwellian distribution characteristic
of the temperature which satisfies this power balance
statement.

B. Approximate Inelastic Collision Term

Only a few of the cross sections, o4, appearing in the
inelastic population and depopulation collision terms
are known. We have therefore resorted to a model,
already used by Allis and Brown,'® whose features are
the following:

(a) Electrons lose all of their energy in each inelastic
collision.

(b) The sum over all inelastic collisionrates, >, v (v),
is replaced by the total frequency for excitation, ».(v).
This quantity is expressed in terms of the experimen-
tally defined excitation probability, P,, by the relation

£ (7)) = 7’? P zy
where p is the neutral gas pressure.
With the use of this model and the energy variable,
u, defined by
u=m/2e,

our final equation becomes
a?F 2d dF°

+- —(u§ucve)—+47rree‘ ut(F0)2
u?  3du du

dF°
[ f FO()ddiAub f TO(t)dt]d
u

u

{ f P43l f F°(t)dt] 2F0}

+8(u) f FO@)wo(0)Bdi— P (o ()it =0, (43)

2uduoy,
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where #, is the energy of the lowest electronic excitation
level, and the parameter

we=eE*/mv 2 (E/p)*= (E/N)

is the energy gained by an electron from the electric
field in the time interval between its elastic collisions
with neutrals. The Dirac delta function §(x) appears
as a consequence of our inelastic collision model.
Integration of the inelastic population term over all
energies yields

f oo5(u) f wFO(t)Vx(t)ﬁdtdu= f wFo(t)vx(t)t*dt,

which is just the average inelastic excitation rate.
Equation (43) involves the eléctron and neutral gas
densities, # and NV, as well as the electric field, E. If we
wish to study F° as a function of #/N, keeping (n+N)
constant, then we must permit #, to vary if E is fixed.
On the other hand if %, (or E/p) is held constant then
the total number density of particles, (#+N), must be
allowed to vary as n/N changes. The problem con-
sidered is time independent, and for each set of the
parameters, #, N, E, we are considering a different
steady state. Whether a plasma corresponding to a
chosen set of parameters can actually exist in nature
or not, depends upon the plasma distribution in real
space, upon recombination, and upon a host of inter-
actions involving excited molecules and radiation,
which are not included in this simplified treatment.

C. Numerical Method of Solution for Hydrogen

Equation (43) is a nonlinear integro-differential
equation in the variable #. The customary scheme of
linearizing such an equation makes use of a method of
successive approximations, and results in an ordinary
second order differential equation at each stage of
approximation. Its coefficients include the Coulomb
collision integrals evaluated in terms of a distribution
function obtained during the previous stage of the
calculation. In general this ordinary differential equa-
tion cannot be evaluated in terms of known functions,
and numerical techniques must be resorted to. If one
considers that equations of the type-(43) are not too
involved for modern digital computers, then it becomes
a matter of practicality to handle the nonlinear problem
directly in this way. This approach was chosen, and
applied to a hydrogen plasma.

The elastic collision rate, v, for this gas has already
been listed in Eq. (39). The total inelastic collision
frequency in hydrogen can be represented by'®

Vz (M) = Ve[hou_}ll— (h2/7/l):’, (44)

where %=8.7X10"3 volt™, /&=76X10-3, and »,
vanishes below the lowest excitation potential, %,=8.9
volts. The frequency of ionization can be represented
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by16

(45)
where %;=9.2X 1073 volt™, and »; vanishes below the
ionization potential, #;=16.2 volts.

Equation (43) is equivalent to the following set of
simultaneous equations:

dFi/du=F;s, dF;/du=uFy,
sz/du=F1, dF4/du=u%F1,

Vi (M) = Vzh'i (M_ uz) )

(46)

where

Fl(u)=21r(§nf)§F°(u)=AF°(u),
Fy(u)= j; uFl(t)dt,
Fy(u)= L uFl(t)t%dt,
Fy(u)= j(: uFl(t)ﬁdt,

and

R(u)=ul+

47T,

2 (i Fa(0)— Fala) T+ Fu(a0)},

ucg 0

(§7. AP

S(u)=fub+

2 () AL Fs( )~ Fa() T},

24 N

6mLee 7

T(u)= —utFy(u)
A'Mcgo N

3ro(w) = vt vs(u)
+—[ f Fi() tidt—u} ]
2LF 1(”) Uz Ve Ve
The procedure for simultaneous solution of these
equations may be summarized as follows:

(1) The parameters %, and #/N are chosen.

(2) u= oo is approximated by a finite number, which
is denoted #,. In practice it has been chosen in the
range 3u; to 6u;.

(3) Best initial guesses are made at Fi1®(#,),
Fo®(uy), Fi(u,), and Fs®(u,). The superscripts
denote the number of the iteration cycle.

(4) F3(u.) is assigned the value unity at the start of
each iteration, because F; must satisfy normalization.

(5) Using a standard Runge-Kutta routine, the
equations in (46) are integrated from #,, to zero, and the
resulting solution F;® is utilized in the evaluation of
Fo® (1), F3® (1), and F4® (u,,).

(6) In addition the computer evaluates

(a) the average inelastic collision rate,

(P = f ““’“(u)F 1D () utdu 47)
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(b) the average ionization rate,

(v)y® = f vi(u) F1® (u)urdu; (48)
and (c) the power output
(uyy® = f vo (1) F1O (u)uddu. (49)

Uz

This last quantity according to Eq. (42) must equal
the power input, ve,. Thus it is determined by our
choice of #. (or E/p).

(7) A second Runge-Kutta cycle proceeds with the
new starting conditions Fo® (u,), F4? (u,), or some
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F1G. 5. Variation with electron energy (in ev) of the number of
electrons per unit energy interval in a hydrogen plasma. In this
illustration E/p was held constant at the value 28.3 volts cm™
(mm Hg)™, and the density ratio was varied from zero to 0.167.
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F1G. 6. Variation with electron energy (in ev) of the number of
electrons per unit energy interval in a hydrogen plasma. In this
illustration E/p was held constant at the value 48.9 volts cm™
(mm Hg)™, and the density ratio was varied from zero to 0.167.
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F16. 7. Variation with electron energy (in ev) of the number
of electrons per unit energy interval in a hydrogen plasma. In
this illustration E/p was held constant at the value 70.7 volts cm™1
(mm Hg)™, and the density ratio was varied from zero to 0.167.
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Fic. 8. Variation with electron energy (in ev) of the number
of electrons per unit energy interval in a hydrogen plasma. In
this illustration E/p was held constant at the value 28.3 volts cm™!
(mm Hg)™, and the density ratio was varied from zero to 0.167.

weighted average between these and Fo® (u,,), F1® (u,,).
The starting slope, F5® (u.,), and value of the function
F19(u,), assumed in step 3 are not altered, and steps
5 to 7 are repeated % times until successive iteration
cycles converge to a final set of F1™(u), Fy™ (u),
Fg® (1), F™ (u), (v)™, ()™, and {v2)™. A solution
is accepted when successive iterations produce results
differing by less than 19 in these quantities.
Moreover, a solution is accepted only if normaliza-
tion, and the power balance described in steps 4 and
6(c) converge to unity and #.v,, respectively. In
practice it is found that with reasonable starting values
for F1® (#,), Foa® (#4,,), Fa® (#,,), and Fs® (u,,) conver-
gence is obtained in less than 10 iteration cycles. A
poor choice of F5® (u,,) and F;® (u,) is reflected in the
violation of normalization and power conservation after
the very first iteration cycle. Succeeding cycles then
result in increasingly diverging values of Fi(w). It
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appears that highly accurate solutions can be obtained
in' the high-energy tail of the distribution by requiring
convergence in the functions (v.), (v:), and {v,%), which
receive their contribution in this energy region.

D. Discussion of Solutions

Three numerical solutions corresponding to different
values of #, are illustrated in Figs. 5 to 7. There we
show the evolution of (n/%)F;as n/N is varied by many
orders of magnitude. Figure 8 is the extension of Fig. 5
to higher energies. Figures 6 and 7 extend to higher
energies in a very similar manner. At very low energies
we find that the density of electrons per unit energy
interval, (\/#)Fi, decreases as the ionization degree
increases. In the neighborhood of 1 ev the distributions
cross each other, and the situation is reversed. At still
higher energies, the distributions cross each other two
more times until in the very-high-energy tail we find
the population increasing with ionization degree. The
average electron energy, and the normalized collision
rates (v;)/v. and (v;)/v. are pictured in Figs. 9 to 13.
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F16. 9. The variation of average electron energy (in ev) with
the density ratio #/N, for E/p=28.3 volts cm™ (mm Hg)™.
The curve was calculated for a hydrogen plasma.
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FiG. 10. The variation of average electron energy (in ev) with
the density ratio n/N, for E/p=48.9 volts cm™ (mm Hg) .
The curve was calculated for a hydrogen plasma.

IONIZED GAS 353

58 T T T

T T T T T T TT71T1Tm T T

<u> g5 |
5.4 g

5.3 - B

5.2 I EEEET Lol Lo Lol

1078 1074 1073 102 107!
n

Fi1c. 11. The variation of average electron energy (in ev) with
the density ratio #/N, for E/p=70.7 volts cm™ (mm Hg)™.
The curve was calculated for a hydrogen plasma.
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Fic. 12. The ratio of the average inelastic collision rate to the
elastic collision rate is shown for a hydrogen plasma as a function
of the energy parameter #, expressed in ev. The density ratio
n/N plays the role of a parameter.

For comparison these quantities were also calculated
using a Maxwellian distribution of electrons, and
covering a similar range of #,. In this case, the original
Egs. (47), (48), and (49) become

2
UVe=""T"""1
/7 (kT/e)*

X j; :)vx(u) exp[——u / (k—j)]uidu, (50)
(Vz)=m
Xﬁjvz(u) exp[—u/ (féj—‘)]u*du, (51)
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F1c. 13. The ratio of the average ionization rate to the elastic
collision rate is shown for a hydrogen plasma as a function of the
energy parameter %, expressed in ev. The density ratio n/N
plays the role of a parameter.

b= T

Xﬁwv,(u) exp[—-u/ (E;)]u*du. (52)

For each assigned value of #., Eq. (50) yields a value
of T, and Eqs. (51) and (52) are then used to obtain
the Maxwellian collision rates.

For the range of u, illustrated in Fig. (12), the change
in ionization degree gave rise to remarkably little
change in the inelastic collision rate. At this point, we
may also note that the power output (or input), #.v.,
in each case studied exceeds by far the power which
electrons can transfer in elastic collisions with the
positive ions. [See Eq. (39).] This result justifies the
complete neglect of electron-ion collision terms in the
F° equation provided the ionization degree lies below
B, 1.e., in the region where the Joule heating is con-
trolled by encounters with neutral molecules. The
distribution F; converges towards a Maxwellian distri-

- bution with rising ionization degree, and for the range
of #, studied in this paper becomes identical with one
when the density ratio /N has reached the value
0.167. The distribution probably becomes Maxwellian
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for a somewhat smaller #/N, lying somewhere between
0.167 and 1.67X1072%, but no attempt was made to
locate the exact value.

Some of the effects of electron interaction become
apparent from the variation of average energy with
n/N. As the ionization degree increases, we see that
the average energy first rises and then falls. The rise
is due to the fact that the slow electrons which arise
from inelastic encounters exchange energy with other
electrons, and are quickly redistributed over the body
of the distribution. If we fix E/p and N, then this rise
in average energy is accomplished by the addition to
the distribution of electrons whose average energy
exceeds the average energy corresponding to #/N=0.
The subsequent fall in average energy as n//N increases
even further, reflects the fact that Coulomb encounters
have decreased the population in the neighborhood of
the first excitation potential and have redistributed
these electrons primarily into lower energy regions. A
small number of electrons are also redistributed into
the very-high-energy tail, giving rise to rather im-
portant variations in the ionization rate at low E/p.

Ultimately #/N becomes large enough so that the
rate at which electrons exchange energy with each other
very much exceeds the rate of energy gain from the
field, and a Maxwell distribution prevails. The evolution
of the distribution function from that characteristic of
the Lorentz gas to the equilibrium distribution occurs
roughly over four orders of magnitude in ionization
degree. The omset of this transition may be approxi-
mately predicted by equating the electron-electron
energy relaxation rate given in Eq. (34) with u.:

BT/ 7ee)tve.

This equation yields the transition density ratio in
terms of temperature and E/p as follows:

(n/N)==10"7(E/p)* (RT/ €)%, (53)

where kT/e and E/p are to be expressed in ev and
volt-cm™!/(mm-Hg), respectively. Since the transition
takes place over a large range of #/N, we cannot
employ Eq. (53) to predict the existence of a Maxwell
distribution. As we see from Fig. 13, indiscriminate use
of the Maxwell distribution in the transition region
can lead to significant error in the ionization rate,
especially at low E/p.
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