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A quantum-mechanical theory of transport of charge for an electron gas in a magnetic Geld is presented
that takes account of the quantization of the electron orbits. A transport equation for the necessary. elements
of the density matrix is developed for arbitrary values of the magnetic Geld. The scattering is taken to be
elastic and is treated only in the Born approximation. The effect of both the magnetic and electric fields on
the collisions is taken into account. The influence of the latter has been neglected in previous theories. It is
proven, however, to be important in high magnetic fields. It is established that the efkct of a transverse elec-
tric Geld on the scattering can be described as the tendency of the electrons to "relax" to a distribution
characteristic of thermal equilibrium in the presence of the electric Geld.

Previous theories of transport for large Hall angles are consistent with this theory. They can be obtained
as a special solution, found by iteration, of this transport equation.

The special case of isotropic scattering has been considered in detail. In this case it is demonstrated that
for small enough magnetic Gelds the usual classical result obtains.

I. INTRODUCTION

'HE phenomenon of charge transport in magnetic
fields so large that the quantization of the

electron orbits becomes important has received recently
considerable attention from both the experimental and
theoretical viewpoints. The primary theoretical interest
stems from the fact that this phenomenon provides a
very simple situation for which the usual Boltzmann
transport equation is not applicable and a quantum-
mechanical transport theory is necessary. We shall be
concerned here exclusively with the basic theory of this
phenomenon. In particular we shall present a theory
of the ohmic electric current that an electric Geld
induces in a gas of noninteracting electrons in the
presence of a magnetic held and a set of impurities that
scatter elastically.

The first calculation on this topic was done by
Titeica. ' He calculated the transverse current for large
Hall angles by tacitly assuming that it is produced only
by the drift of the centers of the cyclotron orbits of
the electrons in the magnetic field due to the electric
Geld and the scattering by phonons. Such a semi-

*The work reported in this paper was performed by Lincoln
Laboratory, a center for research operated by Massachusetts
Institute of Technology with the joint support of the U. S. Army,
Navy, and Air Force.' V. S. Titeica, Ann. Physik 22, 129 (1935).

classical procedure neglects the possibility that the
cyclotron motion itself may contribute to the current.
Essentially the same method of calculation was followed

by a number of diferent workers' in various applications
to metals and semiconductors. The question of the
validity of the method of calculation of the transverse
current was, however, left untouched.

Lifshitz' and the author' have attempted to develop
a transport theory for this phenomenon on the basis of
quantum-mechanical principles. The quantum-
mechanical generalization of the classical distribution
function, which is necessary for the calculation of the
current, is the density matrix. In the Landau' represen-
tation, i.e., in the stationary states of an electron in a
magnetic field, it is realized that for the calculation of
the current some oft-diagonal elements of the density
matrix are required. This is so because the Landau
states do not have any average velocity perpendicular
to the magnetic field, as they represent stationary

~ S. Davydov and I. Pomeranchuk, J. Phys. U.S.S.R. 2, 147
(1940); G. E. Zilberrnan, J. Exptl. Theoret. Phys. U.S.S.R. 29,
762 (1955) )translation: Soviet Phys. JETP 2, 650 (1956)g; J.
Appel, Z. Naturforsch. 11m, 892 (1956).

', E. M. Lifshitz, J. Phys. Chem. Solids 4, 11 {1958).
4 P. N. Argyres, Phys. Rev. 109, 1115 (1958); J. Phys. Chem.

Solids 8, 124 (1959);Westinghouse Research Report 6-94760-2R10
(unpublished).

~ L. Landau, Z. Physik 64, 629 (1930).
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circular motions. It was then suggested' that the
steady-state density matrix obeys a transport equation
analogous to the classical Boltzmann equation. The
collisions were there assumed to be described by some
operator, which was not, however, established ex-
plicitly. In reference 4 the quantum-mechanical
transport equation was established by use of time-
dependent perturbation theory, and an explicit expres-
sion was given for the scattering operator in the Landau
representation for elastic and inelastic collisions in the
case of coos))1, where coo=cyclotron frequency and
7 =relaxation time. These two theories gave, in general,
expressions for the transverse current different from
that assumed by Titeica. '

Recently Kubo et a/. ,' Adams and Holstein, " and
Argyres and Roth' have worked out theories for the
transverse current for the case odor»1, by finding the
steady-state density matrix directly from its equation
of motion in powers of the scattering interaction. Their
results justify rigorously the method of calculation of
Titeica and, at the same time, point out that it is
correct only for nonoscillating electric fields. It is,
therefore, of interest to investigate the, reasons for the
failure of the theories of Lifshitz' and the author. This
has been the motivation of the present work.

It is proposed that the latter calculations'4 are
deficient in the following respect. The terms arising
from the interference between the electric field and the
impurities have been left out of consideration. In other
words, in references 4, the terms of order (electric
Geld) && (scattering interaction)' in the time development
of the density matrix were neglected. For the off-
diagonal elements of the density matrix these terms
are of the same order as the other terms kept, as it can
be seen from the proposed transport equations. One
might say that, since the collisions take place in the
presence of the electric Geld, they force the electrons to a
"relaxation" distribution characteristic of thermo-
dynamic equilibrium in its presence. This turns out to
be the case in our problem. Although these interference
terms are of higher order for the usual distribution
function, for the oG-diagonal elements of the density
matrix they are as important as the usual terms.

These electric field-scattering interference terms can
be taken into account within the framework of the
calculation of reference 4. We shall not, however,
pursue this point of view. Instead, we shall investigate
the problem by a more rigorous approach, analogous to
that of Kohn and Luttinger. ' We demonstrate this in
the following section. We, thus, derive a quantum
transport equation for the matrix elements of the
density operator necessary for the calculation of the

6Kubo, Hasegawa, and Hashitsume, J. Phys. Soc. Japan 14,
56 (&9S9).'E. N. Adams and T. D. Holstein, J. Phys. Chem. Solids 10,
a54 (t95v).

8 P. N. Argyres and L. M. Roth, J. Phys. Chem. Solids (to be
published).' W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).

current for arbitrary values of the magnetic 6eld. The
collisions are treated only in the Born approximation.
It is shown in Sec. 3 that for ~or&) j. this calculation gives
results identical to those of other recent theories' ' for
this case. In the last section the case of isotropic
scattering is considered for arbitrary F07. It is proven
that in the classical limit, i.e, , high quantum numbers
and kT))kcoo, the usual result of the classical Boltzmann
equation obtains.

(x X)e~kvveikzz(I L )
—I (2.2)

where p (x—X) are t;he harmonic oscillator wave
functions, and X= —Akv/nuup is the center of the
cyclotron orbit corresponding to this particular state
(nkvk, ). The energy eigenvalues are

e„k——A~.k
——(e+-,')A~p+A'k, '/2m. (2.3)

We shall occasionally indicate a set of quantum
numbers, e.g. , (ekvk, ), by a single Greek letter, e.g. , v.

X„will then stand for (—Akv/mo~p). Also v&1 will

indicate the state (I+1,k„k,) and (v) the quantum
number n.

In this representation the velocity components are
given by the matrices

(vk'k'i v,+tvv ( rkk) = 2i(Ao~p/2m) '(ran+1) I~a', a+15k'k& (2 4)

(e'k'~ v, (mk) = (Ak, /m)6„„6k k. (2 5)

The current density J is given in general by the trace of
the velocity operator and the steady-state density
operator pr. Because of Zqs. (2.4) and (2.5),

J,+iJ„=(e/II) Tr{pr(v,+iv„))
=e2i(Appp/2m)-*'(2/0)

X Q (rk+1)l(pv) k, „+,k, (2.6)

J,= (e/n) Tr{p,v, )
= (eA/m)(2/II) Q k.(pr) k, „k, (2.7)

II. QUANTUM TRANSPORT EQUATION

In this section we derive the basic transport equation
for the density operator in the Landau representation.

For a magnetic field H in the z direction, i.e., H
= (O,O,H), it is convenient to use the Landau gauge
A = (O,Hx, 0). The Hamiltonian of an electron (charge e,
mass m) is then

Hp (1/2m) Lp,——'+ (pv+moipx)'1 p, 'g, (2.1)

where pip= ~e~H/mc is the cyclotron frequency. This
particular gauge has the advantage that the canonical
momenta p„and p, commute with Hp and, therefore,
the energy eigenfunctions can be taken to be states of
definite momenta in the y and s directions. Such a
choice defines the "Landau representation. " The basis
functions are then characterized by the oscillator
quantum number n=o, 1, 2, and the two-
dimensional wave vector k(k„,k,) as follows:
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with the following normalization:

(1/II) Tr{pr) =X=electron concentration. (2.8)

Ke shall carry this out only in the lowest approximation.
To begin with, we observe that the known operator

C can be expanded in powers of V as follows:
Here 0 denotes the volume of the specimen.

The determination of the steady-state density matrix
(pr) „p, „& is the task of the transport theory. An
assembly of dynamically independent electrons is
described by the one-electron density operator pr(t)
that satis6es the equation of motion

iMpr/dt=fHp+V+F, pr(t)]. (2.9)

F denotes the interaction with the electric field E, i.e.,

where
g=P,. g( )=P,. [f(') F]

f""'= f(Ho)"=f.4.,
f„&"= (f„,/p„, ) V„„

(2.19)

(2.20)

(2.21)

(2.22)

F= —eE r, (2.10)

and V is the "scattering" interaction, which we take
to be due to a set of identical impurities randomly
distributed in space, i.e.,

V(r) =p; v(r —r,). (2.11)

Before we turn on the electric field (at t =0) we assume
the ensemble to be in thermal equilibrium, i.e.,

p p (0)=f(Hp+ V), (2.12)

(")=f(H+V)+ (t)

where to the first order in the electric Geld

(2.13)

iMp(t)/dt= PHp+ V, p(t)]+LF, f(Hp+ V)];
p(0) =0. (2.14)

Following Kohn and Luttinger, ' we introduce the
Laplace transform of p(t), namely

g(s) =s e "p(t)dt, —
"p

(2.15)

The inverse transform gives p(t) in terms of g(s), i.e.,

where f(pp) is a Boltzmann or a Fermi-Dirac function.
The correlations brought about by the exclusion
principle are rigorously taken into account in this
manner for elastic collisions, as it was proved by Kohn
and Luttinger. ' It is easily seen then that at any later
time

In these expressions we have put f(e„)=f„,f„f„=f-„,.
The terms with vanishing denominators have the
limiting values obtained by letting these denominators
approach zero smoothly, e.g. , f„„/e„„—+ df(e„)/de„
=f'(e„) for e„=e„.

The matrix elements of the scattering interaction V,
Eq. (2.11), in the Landau representation present an
irregular behavior, because of the random spatial
distribution of the individual scattering centers. For
such an arrangement the matrix element V„~,„~ is a
rapidly varying function of k' with a mean value equal
to the diagonal matrix element of V. Its average value
over an ensemble where all possible distributions of the
scattering centers are equally probable is

(V p, pi )=&r~(0)5 4p,
where El=concentration of scattering centers and
w(iI) = J'e(r) exp( —iq r)dr is the Fourier transform of
the scattering interaction of each center. Without loss
of generality, we can take the diagonal element of V
to be zero. If it is not, it can be absorbed into Ho. It
just gives the shifting of the unperturbed energy levels
to the 6rst order in V. Since it is independent of the
particular state in this case, it corresponds to
a trivial uniform shifting of all levels. The product
V„I,, „q V y, I,",however, as a function of k" oscillates
about its nonvanishing value for k"=k. For a very
large system and a completely random arrangement it
is equal to its ensemble average

(V„p,„p.v p;,„p.)=ops-(Nr/II) g ~~e(q., k —k') ~'

g(s)
p(t) = — e" ds.

2+1~ c—t~ S
(2.16)

where
X&.p,.p (q*)& a, p*(q.), (2.23)

Letting C=gf(Hp+V), F], Eq. (2.14) gives for g(s)

EHp, g(s)]—i»g(s) =~+Lg(s), V] (2 1~)

In the Landau representation we have in general

(e,„its)g,;(s—)
=~-+Z. Eg"( )V."—V"g."(s)] (2 18)

where e„„=e„—e„.
Up to this point everything is quite general. We shall

now attempt to find a solution of this equation assuming
that the strength of the scattering interaction V is small.

J„„(q,) = e*'**y„(pp X„)y„(pp—X„)dg —(2.24).

Similar behavior is exhibited by higher products. Thus,
in this representation there is a sharp distinction
between the diagonal-in-k and oG-diagonal-in-k matrix
elements of V, V', etc., which is due to the randomness
of the distribution of the impurities. This singular
property has been made the basis of an extensive
study of the problem of approach to equilibrium by
Van Hove. "

"L.Van Hove, Physica 21, 517 (1955);25, 441 (1957).
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This suggests that we treat the oG-diagonal-in-k
and diagonal-in-k matrix elements of the density
operator differently. We shall see that by assuming that
certain diagonal-in-k density matrix elements are
larger than the others by an order of magnitude in V,
we can get solutions to the general Eq. (2.18) in some
form of a power series in the strength of V, which are
consistent with this assumption. What makes this
possible is the singular property of V discussed above.

Since the cases of transverse (EJ H) and longitudinal

(Ej~H) electric fields turn out to require di6'erent initial

assumptions, we shall consider them separately.

A. Transverse Electric Field

It is convenient to take the transverse electric field
in the x direction, E= (E„O,O). For then F= —eE,x:

and the matrix elements of x in the Landau represen-
tation are regular. There is, of course, no fundamental

difhculty with an electric Geld in the y direction. The
calculation of certain commutators needs only some
care.

We note, to begin with, that for this case we have,
according to (2.19) and (2.20) and the easily found
matrix elements of x,

C„„ipi= f„„F„„Bl,i,
——(—eE,)(it/2nuvp)&f „

XL(v+1) *'5„, +i+re'8„, i]Bii, . (2.25)

We note that, although x „=X„l,= —Ak„/mpipNO,

C„„ iP& has no diagonal matrix elements, since f„„=0
Only the diagonal-in-k matrix elements for which
e'=m&1 do not vanish.

Thus, in Eq. (2.18) only the matrix elements for

gvu' =
C„"'+Q„(G,„V„, V.„G—„,)

6t t i —ZAS

(2.26)

where, for economy, we have indicated the "large"
matrix by G„„,i.e.,

Gvv' =gvv'(~n. ', +pi+&n', n-i)&i'k. (2.27)

In Eq. (2.26) we have neglected the sum over the
"small" matrix elements of g(s) in the commutator
fg(s), V], as it is of smaller order of magnitude in V.
It is, however, important to realize that this proves to
be an acceptable procedure, because the dependence
of this sum on the volume of the specimen turns out
to be the same as that of the sum of the fewer "large"
matrix elements we have kept in (2.26). This is so
because of the singular properties of the scattering
interaction V. For a more detailed account of the nature
of the approximation involved here the reader is
referred to Appendix C.

Substituting the "small" elements (2.26) into Eq.
(2.18) for i'=i&1, somewhat rearranged, we obtain
the following equation for the "large" matrix elements
in the lowest approximation (dropping the common k):

which v'= v&1 are "driven" in the lowest order in V.
We shall now assume that the matrix elements g„„(s)
for which v'= v~1 are larger than the others by an order
of magnitude in V. We can then find from Eq. (2.18)
the "small" matrix elements of g(s) in terms of the
"large" ones, g„, „~i(s), by iteration. We have for
v'~v&1 the "small" matrix elements in the lowest
approximation

G„„(s) (i ) 1
G- ($) = —i~- + I

—
I (C- "'+C-. i2i)-+@-' 2 V.„C„„.&') —C~„(')V„„

$(s+i pi„„) $(s+icu„„)j
G"($)

+A 'Q Q V„„V,„+V„„V,„
P s s 2Ãnp

G„,(s) G„„(s) G,„(s)—V,„V„„—V„„V„„
$($+Rdp~i) $($+$pp~~) $($+Lcop~i)

(2.28)

Here we have not written down the terms proportional
to U, as their ensemble average is zero. We have also
included in the sums a few terms Le.g. , the terms
ti= (e'&1, k) in the first term of the first sum] which

do not belong there. Their contribution, however, is
vanishing small for a large specimen compared to the
rest of the sum. Finally, although not explicitly indi-

cated, all products V„„V„.„. in (2.28) and in what
follows should be replaced by their ensemble averages,
given by Eq. (2.23). This is justifmd in Appendix D.

With the help of the inverse Laplace transform, Kq.
(2.16), we can find, from the previous equation for
G,„(s), the corresponding one for the density matrix

R„„(t), where

R.;=p.. (b, ~i+ti„, i)5i, i. (2.29)

It will be noticed from Eq. (2.6) that this is exactly
the matrix necessary for the calculation of the trans-

verse current dens ity. Since p (0) =0, we find for
e'= m&1 and t) 0

~t
+V„„V,„R„„(t r) e '"~"'"dr- —

Jp
t

—V„„V„„.I R„„(t r)e ™n~~dr—
0

—V„„V„, R,„.(t r)e '""~"dr . —
Jp

(2.30)

dR„„.(t)/dt

ipse„„R„„.

(t)+—(i/ft) (C„„iP~+C„„~'i+B„„.)
I pt

+ft ' P P V „V„R,(t r)e '"""dr— —
V i'
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Here we have introduced the notation

&nn =Z. [Cn."'V"8(p")—V"C.""'8("-)5, (2 31)
dR(t)/dt = —i~„„R„„(t)—

(0)-

+ (2 34)
Cvp

8(p) = (i/h) exp( i—pr/k)dr ~
0

g-+oo

i~8(p)+~I —
I (2 32)

(1)

This is a transport equation that describes the approach
of the density matrix R„„(t) to the steady state. The
first term on the right-hand side gives the rate of
change due to the unperturbed motion of the system.
The next three inhomogeneous terms describe the
various effects of the electric field. The last four are
recognized as describing the eGects of the interaction
with the impurities alone. They have the feature that
they make the rate of change of the density matrix at a
certain instant depend not on the instantaneous value
of the density matrix, but on all its previous values up
to that instant. We can, however, simplify these terms
as follows. We expand formally R(t—r) in powers of r,

R(t—r) =R(t) —rdR(t)/dt+ prPdPR(t)/dP ~ . (2.—33)

Now, for, say, the first of the collision terms we have
from Eq. (2.30)

The neglected terms above are of orders V' and V'E
and, therefore, can be dropped, as they would give rise
to terms in the transport equation of higher order in V
compared to the other terms that have been kept. By
successive differentiation and iteration of Eq. (2.34) all

the terms of Eq. (2.33) are obtained. Upon substitution
in Eq. (2.33) we get an infinite series for R(t r), —
which can be summed, however, to give in this
approximation

C (0)

R»(t —r) =R, (t)e'"»'+ (1 e' —»')+ . . (2.35)
tv',

Using this expression in the transport equation (2.30)
we can carry out the integrations over r in terms of the
function 8(p), Eq. (2.32), and thus find in the lowest
approximation a transport equation for the desired
density matrix elements (e'=n&1), which can be
written as

dR /dt= (i/h)[R, Hp5„„+(i/A)C„

+ (i/0) (C &"+8 „+2 )+(S[R5), (2.36)

where

8(p„„)—8(.„„) 8(.„.)—8(p,.)
v4 nn' = P VnjvCnv Vvn' +VnvCvv Vnn'

8(p„„)—8(p„„)
, ,

8(p")—8("- )

(S[R5)nn, = (L/A) Q [VnvVlvvRvn 8(plvv)+RnvVvvVnn, 8(pvtv) —VnjvRIvvVvn, 8(pvn, ) —VnvRvtvVvn, 8(pnv)5. (2.38)

8„„ is given by Eq. (2.31) and C„„.&'& through Eqs.
(2.22) and (2.19).

The transport equation (2.36) constitutes the main
result of this section. [R,Hp5 and C&" give the rates of
change due to the "unperturbed" motion of the system
and the action of the electric field alone, respectively.
C "&, 8, and 2 describe the interference eGects between
the electric Geld and the interaction with the impurities.
As we shall see below, these are particularly important
in the case of high magnetic fields. The effects of the
interaction with the impurities alone are described by
the operator S, given by (2.38).

The eGects of the scattering interaction are given in
(2.36) in the lowest order. Higher approxima, tions are
obtained by iterating (2.18) for the "small" matrix
elements with the help of their lowest approximation
(2.26). These in turn are used in (2.18) for the "large"
matrix elements, giving rise, in the same manner as
before, to a transport equation for the density matrix
R ~ analogous to (2.36). The difFerence is that the
eGects of the scattering interaction, in both the scatter-

ing operator S and the operators C, 8, A, that describe
its interference with the electric field, will now be given
in a power series in V, the lowest terms of which are
those given above. Among these higher order terms are
the ones that describe the broadening of the Landau
levels due to the interaction with the impurities. These
terms are quite important for the details (amplitude,
phase) of the oscillations of the resistivity with the
magnetic field and other points (see next section). We
shall not examine these higher order terms of the
transport equation here, thus restricting ourselves to
the "Born approximation" for the various effects of
the scattering interaction. (For higher approximations
and a more detailed discussion of this point see Ap-
pendix C.)

For long times the real part of 8(p), according to
(2.32), becomes equal to J'(1/p), the "principal part"
of (1/p). These terms can be interpreted generally as
representing the shifting of the Landau levels due to
the interaction with the impurities in the second order.
Although they could bc significant in some special
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cases, they are not of an essential nature and we shall,
for simplicity, neglect them in the following.

We can then rewrite the scattering operator S more
simply. From Eqs. (2.38) and (2.32) we have for long
times

(5Ãj)- = (~/A) 2 f V P"V- L~(e")+~("-)j

(VnpvsvRvn'+Rnpvpvvup')&(sou) }~ (2 39)

The structure of this scattering operator is quite analo-
gous to the corresponding one of the usual Boltzmann
equation for zero magnetic field. The transition
probabilities, that give there the net rate of increase of
the occupation probabilities due to the collisions, are
replaced here by matrices of the general form
(2pr/A)V „V, 8(s „) that give in turn the rate of
increase of the density matrix E„„due to scattering in
the Born approximation.

A similar simpli6cation occurs for the driving
terms of the transport equation that describe the
effect of the electric field on the collisions, namely,
(i/A) (C&'~+8+3), which we shall denote collectively
by D. From Eqs. (2.25) and (2.37) one finds A„„.
Similarly, (2.19) and (2.21) give C„„o~.We note that
the diagonal elements of x contribute to C &'&, in
contrast to the case of C tp~. With the help of (2.31),
B„„canthen be determined. We thus find for long times

—
~

V„„V„,F.„. +F.„v„,v.„. ~s(.„„) . (2.40)

For the diagonal matrix elements of F it is essential to
recall that f„„/s„„~f'(e„) for s„=e„.

Upon examination of expressions (2.39) and (2.40),
it is obvious that the driving term D„„can be written
in terms of the scattering operator 5 as follows:

D- = —(SLf(Hp+F) j)-, (2 41)

where f(Hp+F) is to be taken to the erst order
in the electric field. This is so, because F„„(f„„/s„„)
= Pf(Hp+F) —f(Hp) $„, to terms linear in F and
Sff(Hp))=0, as it can easily be verified. Thus, one may
describe the effect of the transverse electric field on the
scattering by saying that the electrons "relax" through
collisions to a distribution appropriate to a state of
thermal equilibrium in the presence of the electric field.

Therefore, for the transverse case the transport
equation for the "large" matrix elements of the density
operator can be written, to the first order in the electric
Geld and for long times,

dR„„/dt= (i/A)LR, Hp7„„+(i/A)Lf(Hp), Fj„„.
+(5/E f(Hp+F) j)„„, (2.—42)

where 5 is given through Eq. (2.39). For the steady
state we have, of course, dR/dt=0. Clearly e'= v&1.

It is important to observe that the transport equation
(2.42) has a solution R„q, „p that is independent of k„,
i.e., representing a uniform distribution of electrons in
space. This, of course, is just the solution of interest in
calculating the usual conductivity. This can be seen as
follows. According to (2.23) and (2.24), the product
U„„U„„, that comes into the expressions for the
scattering operator 5 and the driving term D, is easily
seen to depend on k„and k„' only through the combina-
tion (k„'—k„), since the range of integration in (2.24)
is infinite. For the diagonal elements of F, the additional
dependence of D on k„and k„' is again of the same form,
as only F» F„„~(k—„'—k„) comes in. With the ansatz
for a k„-independent solution E „,we may sum over
k„'. This eliminates any dependence on k„of the
operators 5 and D, since both are functions of (k„'—k„)
and the range of integration of k„' is infinite. The other
terms of the transport equation are clearly k„-
independent. It is thus possible to obtain a solution
R„„ that does not depend on k„.

It is also of interest to point out that the predicted
conductivity tensor 0;; satisfies the reciprocity relations
which have been proven" to follow from a generali-
zation of Onsager's relations in irreversible processes.
In their general form these are

oe(H) =~~'(- H) (2.43)

"P. M@zur .and S, g, , DeGroot, Phys. Rev. 94, 224 (1954).

i.e., the symmetric part of the tensor is an even function
of the magnetic field, whereas the antisymmetric part
is an odd function of H. Clearly we cannot establish
these relations for our system in this general form, as
we can only find 0-„, r„ in the coordinate system we
have chosen. If, however, the scattering interaction is
symmetric enough, e.g. , if v(x, —y, s) =v(x, y, s), the cal-
culated cr„will be then an element of the antisymmetric
part of the conductivity tensor, and as such, according to
(2.43), it must satisfy the relation o „,(—H) = —o „,(H).
On the other hand o, (—H) = o „(H).These somewhat
restricted Onsager's relations can be established for our
system on the basis of this formalism as follows. Upon
reversal of the magnetic 6eld, i.e., for H= (0, 0, H), —
the new Hamiltonian Hp is obtained from H p, Eq. (2.1),
by changing the sign of meso@. The new eigenfunctions,
which will be denoted by p, diGer from the old ones
only in the sign of X= —Ak„/ma)p in the argument of

p . This is clearly so, as a reversal of H is equivalent to
a change of sign of the electric charge of the carrier.
It is easy to see, by a mere change of variables in (2.23),
that Px„' V„-„-V„- „- is equal to Pa„' V „U„.„because
of the symmetry of v(r). Thus 8=S, i.e., the scattering
operator 5 is an even function of H. The same holds true
for the part of the operator D that comes from the
off-diagonal matrix elements of F, as x„„(nNn') do
not depend on the sign of H and are k„-independent.
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For the spatially uniform current distributions we have
then

(~Ep)) . +
= (2v./0) Q«{p„,„yiV «V«+i, yH(&» )
—p..-+iC2I V;I'~( e)

+2 I
V +i,«I 6(e kl, »)))' (2.45)

This is identical to the collision operator of reference 4.
It was established there by a time-dependent pertur-
bation method for large magnetic Geld, i.e., coos))1.
The selection rule (2.44) makes this restriction un-
necessary, however. A similar simplilcation occurs for
the operator D.

The determination of the steady-state density matrix
from the transport equation is not a simple matter. The
difhculty stems from the complicated nature of the
scattering operator S, which connects a particular
matrix element 8 „ in general to all other elements. A
systematic way, however, of solving this system of
equations consists in starting from the lowest Landau
state, n=0, and proceeding to higher ones. The case of
the "quantum limit, " i.e., when all carriers occupy the
state associated with the quantum number n=0, is
easily tractable. We shall not exhibit this here, however.

B. Longitudinal Electric Field

When the electric field. is in the s direction,
E=(O,O,E,), we have Ii= —eE,s. The driving term
representing the acceleration due to the electric 6eld
alone is now

C- "'=—eE.Lf(&o)»)-
eE, (A/i) (Ak, /—m) f'(e, )b„„. (2.46).

The diagonal matrix elements of Ii do change sign upon
reversal of H and contribute to operator D a term
L Pa„(k„—k„')V-„-V„-„-. This is again easily proven to
be equal to the corresponding part of D that comes from
the diagonal elements of Ii, namely L Pi„' (k„'—k„)
XV „V„.That is, D is also an even function of H.
Clearly, since only the oG-diagonal elements of Ii
contribute to C "', this term of the transport equation
is an even function of H too. Thus, the density matrix

as determined from Eq. (2.42) does not change
sign upon reversal of H. Now it is easily verifiable that
whereas the matrix elements of v,= v, =p,/m are even
functions of H, the elements of v„= (p„—mcoox)/m in
the p basis are opposite to those of v„= (p„+nuuox)/m
in the p, basis. From the relation J Tr{pv), we thus
have the desired relations.

There is a large class of scattering interactions v(r)
for which the scattering operator S simplifies somewhat.
It is shown in Appendix A that interactions for which
Iw(q) I' can be expanded in powers of (q,'+g„') have
the following property:

P V i, ~ V i, ,„&NO only if m' —m=e' —e. (2.44)

(g —g")V-
g., (s)=

6t y~
—ZAS

(2.42)

Substituting this into Eq. (2.18) for the diagonal
elements, we 6nd

g (s)—g (s)
g„(s)= (i/b)C„„~O&—+A—'P 2I V„„I' . (2.48)

s +cd««

In terms of the density matrix, this equation gives,
with the help of (2.16), the following transport equation
for the diagonal matrix elements:

dp„(t)/dt= (i/A)C„„&"+5 ' P 2I V „I'

pt
Q«(t —r) —p„(t—r)) cosi0~»~dr (2.49).

0

The collision terms can be simplified as before. Expand-
ing p(t r) in p—owers of r and neglecting terms of order
V'p we find in the lowest approximation and for long
times, using (2.32),

dp„/dt= (i/A)C +g„ I IV„p (t)—IV,p (t)), (2 5O)

where
~-«= IV»-= (2~/&) I V:I'~(e- ")—(2.51)

is the Born approximation for the rate of transition
probability from Landau state n to p. The structure
of the scattering operator here is quite transparent and
identical to the one of reference 4. Clearly the terms
describing the effect of the electric field on the collisions
are of higher order in this case. For the steady-state
dp„/dt=O.

For some scattering interactions the collision operator
simplifies considerably. For a solution of the form

p-= &.X(e-~), (2.52)

the scattering operator can be simply described by a
momentum relaxation time, namely,

where
Z«IV» (p« p)= p /&»— —(2.53)

~ ~-'=r« IV .(1—t4'/&*) (2 54)

For the solution (2.52) to exist, it is suflicient that the
relaxation time r„i, as given by (2.54) turn out to
depend on the state only through its energy e &. The

Thus, only the diagonal matrix elements p„„are
"driven" in this case, and they are, according to (2.7), .

the ones that give rise to the longitudinal current.
We shall now develop a transport equation for the

diagonal density matrix elements p„—=p, . In contrast to
the transverse case, we assume now that the diagonal
matrix elements p„are larger than the others. They will
turn out to be of order V '. Proceeding as in the
previous case, we find from Eq. (2.18) for the "small"
matrix elements (v'Wv) in the lowest approximation,
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solution of the transport equation is trivial in this case.
Such solutions have been considered in reference 4.

We shall not discuss the longitudinal case here any
further.

III. CURRENT DENSITY FOR LARGE
HALL ANGLES

E (2)

nn'
[D„„+(S[R&'&j)„]. (3.3)

From the structure of the operators D and S, Eqs.
(2.39) and (2.40), and the expression (3.1) for R"& it is
clear that the terms in D+S[R&'&j arising from the
o6-diagonal matrix elements of P and E"& cancel each
other. The only nonvanishing terms are the contri-
butions in D„„of the diagonal elements of the
matrix F„„f„„/e„„,namely f'(e„)F„„= eE,f'(e„)X„—
=eE (Ak„/m~do) f'( ). Tehus

zm'

E„„"&=(—eE,) P V„„V„„(X„X„)f'( „)—
o"

X[8(e„„)+8(e„„)j. (3.4)

As we shall see below R„, ~&&'& for symmetric enough
scattering interactions contributes only to J . On the

We shall be concerned here with the solution of the
transport equation (2.42) and the calculation of the
transverse current for the special case of large Hall
angles. It is well known that classically in the absence
of any scattering, a transverse electric Geld induces a
steady current in a direction perpendicular to both E
and I, which we shall denote as the y direction. The
quantization of the electron orbits by the magnetic field
does not aGect this result, as we shall see presently.
If a weak scattering is introduced into the model, a
small component of the current develops in the direction
of the electric Geld. The current then Qows on the
transverse plane in a direction that makes with the
direction of the electric field an angle, the so-called
Hall angle, slightly less than 90'. More quantitatively,
"weak" scattering is understood here to mean copT))1,
where r is a measure of the relaxation time. This region
is fairly frequently encountered experimentally, and it
is almost always the case for semiconductors in magnetic
Gelds such that Scop& kT, where characteristic quantum
effects can be observed.

This case can be treated simply on the basis of the
transport equation (2.42). We note that for V=O a
steady-state density matrix exists and is

&nn' =&nn' /&nn' = fnn'Fnn'/&nn' (3 ~ 1)

Ke can thus seek a solution of the transport equation
in powers of t/',

8=8"'+2&"+2"'+ (3.2)

By iteration we obtain for the desired matrix elements

other hand R„+i"',according to (3.1) and (2.25), is
real and gives rise only to the Hall current J„.We thus
find, using (2.8),

J„=(—e'E,/mego) (2/0) P„y (ii+1)
X[f(~n+i) —f(~n)]= &«E—./&, (3.5)

J,= (—e'E,)(2/0) +„„8(e„„)
Xf'(.„)(X„—X„)(~/&) (@/~,)-:
X {[2 (ii+1)$'V,.V, ,„pi

+[2(u)3'Vn-i, .V') (3.6)

Clearly Eq. (3.5) gives the unperturbed current in
the y direction. The collisions do not acct it in the
second order, and it is identical to its classical value.
The quantization of the levels has no eGect upon it.
We are neglecting, as we mentioned above, the changes
from the shifting of the energy levels due to the inter-
action with the impurities.

The component of the current in the direction of the
electric field, J„is brought about by the collisions. The
physical meaning of the various terms in (3.6) is not
obvious in this form. This equation can, however, be
transformed into a physically more meaningful expres-
sion with the help of the well-known properties of the
Hermite polynomials. It is found' that if v( —x, y, s)
=v(x, y, s)

J,= (—e'E,) (1/0) P„„f'(e„)(X„—X„)2W„., (3.7)

where

W„„=(2~/fi)
~
V„,~'8(e„e,) — (3.&)

is the transition probability rate from state p to v in the
Born approximation. Since X„denotes the center of the
cyclotron orbit associated with the state p, Eq. (3.7)
describes the current in the direction of the electric
field as due entirely to the net drift of the centers of the
cyclotron orbits of the electrons. The detailed motion
around these centers does not contribute anything to the
net current.

Expression (3.7) is essentially the same that Titeica'
and others' Grst assumed in their work. It has been
recently derived by Kubo et a/. ,

' Adams and Holstein, '
and Argyres and Roth' by diferent methods. Adams
and Holsteinv have made extensive applications of Eq.
(3.7) for different scattering mechanisms. The interested
reader is referred to this work for detailed results on the
phenomenon of oscillatory magnetoresistance and its
dependence on the magnetic field in the "quantum
limit. " In references 6 and 8 it was also proved that for
inelastic collisions

J,= (e'E,/kT) (1/0) P„„f(e„)(X„X„)'W„, —
X[1-f(.„)~, (3.9)

where the transition probability is given by

W„„=(2m/A) Q~~ P (X) ~ V„~,„~
~

'
X8(en+EN e„E¹).(3.10)
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Here, S and Z& stand for the stationary states and
eigenenergies, respectively, of the scattering system
and E(E) is the probability for it to be in state E.

It was also pointed out in these last two references
that the electronic motions around their cyclotron
centers are uncorrelated, and therefore contribute
nothing to the current, only for a static electric field.
Thus the description of the irreversible current in terms
of the drift of the cyclotron centers alone is not valid
for oscillating electric 6elds. This can easily be seen in
the framework of this calculation, as the denominators
in the expression for D„„will be shifted by the fre-
quency of the oscillating field and will not cancel the
corresponding terms of (SLEEP&])„„.

It must finally be noticed that expression (3.'I) for
the irreversible current in the case of elastic collisions
does not give in general convergent results. This is due
primarily to the neglect of the broadening of the Landau
states we mentioned earlier and the fact that there are
packets of electrons with energies such that pip7. (p)&1
(for an example, see next section). In practical appli-
cations, however, this divergence can be qualitatively
circumvented, as Adams and Holstein~ have done.

IV. CURRENT DENSITY FOR ISOTROPIC
SCATTERING

It is interesting to consider some special scattering
mechanisms for which the solution of the transport
equation (2.42) can be obtained for arbitrary values of
capt'. One can thus see in a fairly simple way the transi-
tion from the classical case, i.e., when the quantum of
the electronic energy in a magnetic field, A~p, is much
smaller than the energy of the electron and kT, to the
quantum-mechanical one, where the quantization of the
orbits induces characteristic changes in the galvano-
magnetic properties of the system. The classical limit
can be treated independently, as is well known, on the
basis of the usual Boltzmann equation for the distri-
bution function. The magnetic field is treated there
simply as an additional driving force. Its possible eGect
on the relaxation time is not considered, although the
6nal results are taken to be valid for arbitrary values of
07p7'. The neglect of the inAuence of the magnetic field
on the scattering has not been justified, as far as we are
aware. It will become clear from this quantum-
mechanical calculation that in the classical limit such a
procedure is correct for the scattering mechanisms
considered here. It becomes also possible to study the
first quantum-mechanical deviations from the classical
result. It is, for example, conceivable that for some
scattering mechanisms the quantization of the electron
orbits might bring about, apart from the characteristic
oscillatory behavior, a smooth dependence of the
relaxation time on the magnetic field, much the same
way as it induces a nonvamishing diamagnetism in an
electron gas.

Ke consider now some particular scattering mecha-
nisms. They have the common feature that in the

where 6=a'E~. Another isotropic scattering mechanism
is the interaction with acoustical phonons (in the usual
Debye approximation and in temperature ranges such
that. the collisions are effectively elastic). It is easy to
see' that in such a case expression (4.1) is valid for
semiconductors and semimetals with G= C'kT/Iis',
where C=electron-lattice interaction constant in the
deformation potential approximation, p, =mass density,
and s= velocity of sound.

We can now seek a solution of the transport equation
for the desired matrix elements, namely

0=ipipp„, „~i+(i/»C„„+i"i,

+D„,„„y(sLzj)„„+„
such that p, „+~ are independent of k„.

For such solutions and scattering interactions
satisfying the condition (4.1) the scattering operator S,
given by (2.39), can be described in terms of a scalar
relaxation time. Since e„~ is also independent of k„, we
have )see Appendix 8, (8.7)j
Q V it. , i~ V 'i', ~'x =G(1/2wJ ) (mp)p/»8~~~5~~~. (4.3)

Thus, since in our case e'= n+1, the first two terms of
the scattering operator vanish and the other two reduce
simply to multiplicative constants. More explicitly,

where
(~L&3) ..+i= u, +i/~, — (4 4)

r~ '= ri—'(e)+ri '(v+1)
= (-/» Z. L.

I
I',

I b(o..)
+ I I'-+i..I'~(".-+i)3 (4.3)

Thus for isotropic scattering mechanisms, the decay of
p„„+~ due to collisions is described by an effective
transition probability rate equal to one half the proba-
bility rate of transition from state (ek) to all other
states plus one-half the corresponding probability rate
of transition from state (v+1, k). This is quite analogous
to the circumstance in zero magnetic field, where the
scattering can be described by a relaxation time equal
to the "broadening" relaxation time. %Pith the help of
(4.3) we can write

ri '(o o)=g&fi oZ~ t p.o —(~'+o)&~o) *) (4.6)

absence of any magnetic field they scatter isotropically.
Thus the Fourier transform of the scattering interaction,
w(iI), is a constant independent of q, e.g., if the inter-
action with a scattering center is infinitely localized,
i.e., n(r) =a8(r), w(q) =a. The needed matrix elements
of the interaction with a random distribution of such
centers are, according to (2.23),

(&i, a& o, o)

=G(1/n) P S„,,„,.(q.)S.. „.,*(q.), (4.1)
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where E= G(2«m«/~A'). That is, ri '(e) is proportional
to the density of states in the magnetic Geld. Thus the
effect of the magnetic field on the collisions is described
in this case in a direct fashion in terms of its eGect on
the energy spectrum. Since the density of states, as a
function of the magnetic field, only "oscillates" about
its value for vanishing Geld, there is no smooth de-
pendence of the relaxation time on the magnetic field.
According to (4.6) the relaxation time presents sharp
discontinuities at energies e= (e'+-', )Rvo, the collision
rate becoming infinite for electrons with these energies.
This is a result of the neglect of the collision broadening
terms. For the details of the oscillations (amplitude and
phase) of the current these are quite important.

The term D„,„~i is given in general by (2.40). The
terms from the off-diagonal matrix elements of F can
easily be evaluated with the help of (4.3).The diagonal
elements of F give rise, however, to terms which, again
with help of the selection rule (4.3), involve the
quantities

Pk„'V~, i V i, pii
ky'

= —G(1/2ÃL ) (map/A)«2 «(M+ 1)«. (4.7)

This last equality is proved in Appendix B, (B.5). We
thus Gnd that the term describing the interference
between the electric Geld and the scattering can also be
given in terms of the relaxation time r„, Eq. (4.5),

as follows:

D„,„+i (eE——,h) (2mh~ep)
—'*(e+1)'*

n
X f.pi'»-'(ii+1)+f. '~i-'(n)—

~no
(4.8)

p„,„+i=(—eE,A) (2mfuop) «(++1)«

f-+i f f-'—ri '(&)+f-+i'» '(ii+1)
X +

Zoo 7 n
(4 9)

which is indeed independent of k„, in accordance with
our ansatz.

The steady-state density matrix having been deter-
mined, the current density is obtained from Eq. (2.6).
It is thus found that an electric Geld in the x direction
induces a transverse current density with components

It is clear that in the classical limit, i.e., for high
quantum numbers, e„))kcuo, and kT&&faro, this term
vanishes. For higher Acro, however, it is appreciable and
leads to important modifications in the Gnal expression
for the current density.

With the help of the expressions (4.4) and (4.8), the
transport equation (4.2) becomes a simple algebraic
equation. C„,„+iso~ is given by (2.25). The sought
solution is thus

(I+1)~o[f.'~i '(e)+f„+i'~ (m+1)$J,= (—e'E./m) (2/0) P
nk NO +7'~

fr+i f~ &n [fa &i (ii)+feyl &1 '(ii+1)
J„=(—e'E,/m) (1/~o) (2/0) P (I+1)A~o

(4 10)

(4.11)

It is proposed that these expressions are valid in the whole range from classical to quantum limits, subject, of
course, to the basic approximations of the theory.

To prove that in the classical limit these equations reduce to the usual ones obtained from the Boltzmann
equation, it is helpful to carry out the summation over k in terms of am integral over the total energy q of the
electron. It is found that

F00

S,= (—e'E,/m),
(~~O/2)

cK(e)[f (e)Ti ( )+ef ( e+Acv )0'7 i (I+I«MO)]le

~o'+r '(e)
(4.12)

J„=(—e'E,/m) (1/(oo) )t
(hoop/2) AMo cop + 7' (e)

f(~+k o) —f(e) ~-'(~)[f'(~) ~i-'(e)+f'(e+&~o)~i-'(e+k~o)g
n(e) dc, (4.13)

where

n(e) = (2m/A, ')l(2ir) —
%a)p Q„(++1)@~0

X [e—(e+-,')Aa&01
—«. (4.14)

1n the definition of a(e) the summation goes over all
non-negative integers for which the summand is
positive.

In the classical limit, i.e., e»&coo and kT»keno, we
have clearly f'(e+Aa&0) ~ f'(c), [f(e+fuoo) f(e)$/—

@coo—+ f'(c), r,—'(e)+»—'(e+A(vo) = r—'(e) ~ ~,—i(e),
and n(e) +no(e), where-

~0 '(e) =Ke«, ao(e) = (2ir)—'(2m/A, ')«(4/3) e«. (4.15)

~0(e) is just the relaxation time for zero magnetic field.
The transverse current in the classical region is then

t'" ~o(e)ro '(e)f'(e)J,= ( e'L'./m) — if, , (4.16)
coo 7 p
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0!0
J„=(—e'E./m) ppo de,

p~p +ro (&)
(4.17)

which is identical to the result of the classical Boltzmann
equation for the distribution function.

V. SUMMARY AND DISCUSSION

Using a method similar to that of Kohn and
Luttinger, ' we have developed a transport equation for
the elements of the quantum-mechanical density
operator that are necessary for the calculation of the
current induced by an electric Geld in a gas of non-
interacting electrons in the presence of a magnetic
Geld and a set of randomly distributed impurities that
scatter elastically. The effects of the quantization of the
electron orbits are taken into account from the start, by
working in the Landau representation. In the lowest
Born approximation for the collisions, this transport
equation is given by Eq. (2.36) for a transverse electric
field and by Eq. (2.50) for a longitudinal one.

The problem of electrical conduction by an ensemble
of "Bloch" electrons with a band energy spectrum has
been discussed by Kohn and Luttinger' and it is in
some ways similar to the problem under consideration
here. The main difFerence lies in the fact that for the
case of the "Bloch" electrons it has not been proved
possible to Gnd a single transport equation for all the
density matrix elements necessary for the calculation of
the current. Instead, only the diagonal elements satisfy
such a transport equation and the remaining "inter-
band" matrix elements are found from the diagonal ones.
For the case of the "Landau" electrons, however, it has
been shown above that all the density matrix elements
required for the calculation of the induced current
(separately for the transverse and longitudinal cases)
obey a transport equation. This is a consequence of the
nature of the matrix elements of the coordinate and
velocity operators in the Landau representation.

It is worth noting that the method of discussion of
the transport problem we have followed above is
based on the study of the long time behavior of an
isolated system. It is, however, easily proved that this
is in a certain sense mathematically equivalent to the
long time behavior of an open system. More specifically,
we may assume that the system under consideration
interacts with the rest of the universe and that this
interaction can be described" by a relaxation time (1/y).
That is, the equation of motion (2.9) for the density
matrix pr(t) should be supplemented by adding a term

ihyfpr(t) f(Hp+—V)j in the—right-hand side, or,
equivalently, adding a term —ikyp(t) in the right-hand
side of Eq. (2.14) for p(t)=pr(t) f(Ho+ V). Proceed--
ing as before, we see that the fundamental equation
(2.18) changes only in that the energy differences e„„
acquire a small imaginary part to become (e,.—iky).
The only consequence of this for the final transport

"M. Lax, Phys. Rev. 109, 1921 (1958).

equation (2.36) is that the function

~t
0(e) = (i/t's) exp( —ier/A) dr —+

4 0
t~

isa ( s) +P(1/e),

LEq. (2.32)j, is replaced everywhere by

e(e ik—y) —+ (1/e —i7iy).

For very long relaxation times 1/p, however,
these expressions are identical, since lim~ o+(1/e —iky)
= ivr5(e)+P(1/e).

YVe have restricted ourselves to the lowest Born
approximation for the collisions, although higher

approximations are easily obtained by iterating (2.18)
for i'Hi&1 with the help of (2.26). This restriction
entails the omission, among other things, of the efFects
of broadening of the "unperturbed" states due to
interaction with the impurities. This is, however, quite
important for the detailed description of the amplitude
and phase of the oscillations that the resistivity presents
as a function of the magnetic field.

The effect of the magnetic field on the collisions is
automatically taken into consideration. The eGects
arising from the interference between the electric Geld
and the interaction with the impurities, which were
neglected. in previous theories, '4 have also been taken
into account. They are particularly important for high
magnetic fields. In the simplifying approximation of
neglecting the shifting of the unperturbed states due to
the scattering interaction, it was proven that the efFect
of a transverse electric field on the collisions can be
described by saying that the collisions force the electrons
to a distribution appropriate to a state of thermal
equilibrium in the presence of the electric Geld.

It was demonstrated that for large Hall angles the
induced current can easily be calculated from the
transport equation. It turned out that the component
of the current in the direction of the electric Geld can be
described by the net drift only of the centers of the
cyclotron orbits of the electrons, as it was assumed by
Titeica' and proved recently by others.™

For the case of completely isotropic scattering, it was
shown that the effects of the collisions can be described
simply by a relaxation time v and the current can be
calculated for all values of +Or. For magnetic fields
small enough for the magnetic quantum of energy,
Acro, to be much smaller than both the energy of the
electrons and kT, it was shown that the usual result of
the classical Boltzmann equation obtains. This indicates
that in the lowest Born approximation the magnetic
field has no classical eGect on the collisions with isotropic
scatterers.

All results are applicable to both classical and
quantum statistics, since we have been concerned only
with elastic collisions.
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Finally, the phenomena of cyclotron resonance
absorption, Faraday rotation, etc., can be studied
quantum mechanically along similar lines.

The author wishes to thank Dr. L. M. Roth for
pointing out the selection rule (2.44) and for a number
of helpful conversations. He is also indebted to Dr.
P. A. Wolff of Bell Telephone Laboratories for en-
lightening correspondence and to Dr. T. D. Holstein of
Westinghouse Research Laboratories for very helpful
talks in the beginning stages of this work.

We note that for each term (A.6) is a product of the
general form

+00 +00

dsctp„(s)PP„(s) dt's„(t)yP (t), (A.7)

where always PP„(s) ~p ~,(s) and yp (t) ~p +„(t),
with the same integer r. It is thus clear that all terms,
and, therefore, their sum ~Q, vanish unless qt' —qp

=m —m.

APPENDIX A

We establish here the selection rule (2.43). Assuming
that

l~(q, q.,q*) I'=Z G (q'+q')", (A1)

APPENDIX B

We evaluate here the expression

Ii= Z k,'& a, p & a, .+ip
ky'

(B.1)

we can write, according to (2.23) and (2.24),
(a—=h/mcpp),

Q—= Q V p p & p p~ dxdydkp'
J

�kg'
—00

for isotropic scattering interactions. According to their
basic property (4.1) we can write, making use of the
definitions of I's, Eq. (2.24), rearranging the order of
integrations, and putting s =hk„'/mcpp,

Xg.(x+ak„)4 (x+ak„')4 (y+ak, ')4. (y+ak, ) Ii——G(1/Q)LL.Lp/(2~)'3(m p/k)'

I ~(q. k —k') I'&"*' "'dq*. XJ sdsJ y„(x—X„)y„(x+s)dx

We can clearly write (1/i)r 8/8(x y)] in—stead of q in

~it (q„k—k') ~' in the last integral. Integration over q,
can then be carried out to give 2qr8(x —y). By successive
integrations by parts over x we have for each of the
terms (A.1)

X dy 4.+i(y —X„+&)4' (y+s)

+00

X I pqq~(q p&dq ('B 2)—x.

Q cc
J J

dydk„'P (y+ak„')P„(y+ak„) Since the last integral equals 2qt.b(x—y), the integral
over y can be carried out immediately to give

X (k„—k„')'—
d2 -v

p„(y+ak„)cd~(y+ak&'). (A.3) Ii=G(1/2qrLz) (mcpp/'k)

A@2

Introducing new variables s=y+ ak„and t =y+ ak„', we

note that d/dy= (d/ds)+(d/dt), (k„—k„')=a '(~—t),
and

(d
a '(s —t)' —

(

—+—
~

(ds dt)

=L -()—+(t)lL +()—-(t)j (A4)

where ~, n are the raising and lowering operators for
the oscillator eigenfunctions, i.e.,

y„(x—X„)y„+i(x—X„yi)dx

~+00

X sP„(x+s)P„(x+s)ds. (8.3)

The last integral is clearly equal to (—x), if use is made
of the known properties of the oscillator eigenfunctions.
Since now X~+i=X~= —Akp/mcpp and p„(x) is ortho-
gonal to Q„+i(x) we can write

We then have

g) =
I

a g~ lp&(g)

ccrc

+&(g) (A 5) I,= —G(1/2qrL, ) (mcpp/A)
J W„(x)y„+,(x)dx (B 4)

ds) 00

The integral above is equal to (2mcpp/h)
—*'(qt+1)'* and

thus 6nally

Q ~ dsdt y„(t)y„(s)Lcq (s) —n+(t) j" Ii —G(1/2qrL, ) (mcpp/k) '*2—q (qt——+1)-*'.

J
XLa+(s) —n (t)$"P„(s)P (t). (A.6) This proves Eq. (4.7) we used in the text.

(B.S)
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Ig= Q V~&, ). Vm)
ky'

we get in a similar fashion

I2= G(1/27rL ) (TSAR)0/A)

X p„(x—X„)y„.(g—X„.)dh

p+Ck)

y (x+s)y .(x+s)ds

(B 6)

=C„('&+[G,V]..+ Q C„("&
n=l

+ Q [J'"',V].. . (C.8)
n=l

If we now substitute in (C.8) the final expression for
J'"&, analogous to (C.6) for J"', we obtain a transport
equation for the operator G of the following form:

G(1/2+L ) (rmv, /h)t), 8, (B 7) [PO,G]—+i»G+ ( P S "')G

since X =X„.. This proves Eq. (4.3). It is a special
case of the selection rule established in the previous
Appendix.

APPENDIX C

Since, perhaps, the nature of the approximation made
in deriving the basic transport equation (2.28) is not
quite clear, a more detailed account of this point is

given below.
Let us write the matrix g„as the sum of the matrix

t"„„and another one, J„„,i.e.,

+C(o)+ P D(~) =0 (C 9)
n=l

and in general

S('&G= [V,G],

S("G=[V,cu '[V,G]],

(C.10)

(C 11)

Here S&"' are operators of order e in the strength of the
scattering interaction V. D("& are similarly given
operators of order n in V. We have explicitly

g=G+J. (C 1) S'"'G= [V,&u
'S(" "G] (e& 2). (C.12)

I'"rom the exact Eq. (2.18) we have for ) '&) +1
(e„—i»)J„,=C„+[G,V]„+[J,V]„,. (C.2)

We now observe that a solution of this equation is

obtained in the following form:

J' g J(n)
n—1

where

(e„„—i»)J„„.('& =C„„('&+[G,V],„,

(C.3)

(C.4)

(e„„its)J„("—& =C„'"&+[J(" '&,V]„"(e&~2). (C.S)

It is important to realize that this is rot an expansion
in powers of the strength of the scattering interaction.
By repeated use of (C.4) and (C.S) all J("' are ulti-

mately given in terms o& C"', C"', etc., G, and V. For
example,

J(2) —~—)C(2)+„—i[„—)Co) V]
+(u '[rv '[G,V],V], (C.6)

where we have introduced for convenience the operator
co ' to denote the energy denominators, i.e.,

Similarly

Do) —Co)

D(2) —C(2)y[(g—iCo) V]

(C.13)

(C.14)

APPENDIX D

D(&) —C(n)+[~—lD(n —i) V] (~) 2) (C 15)

Thus we have obtained a general transport equation
for G, where the "collision" operator, S=Q i" S'"),
and the operator describing the effects of inter-
ference between the electric field and the scattering,
D=g„ i" D("&, are given in the form of a power series
in the strength of the scattering interaction V.

Now we make the approximation that for suSciently
small V, we may neglect S"), etc., compared to
S('&+S"& (and similarly for D), i.e., we approximate
only the "collision" and "driving" operators by their
leading terms in their power series expansion. This
gives exactly Eq. (2.28). Note that this procedure does
not imply any assumption about the relative magni-
tudes of the relaxation time and the cyclotron period.
It only calculates the effects of the scattering inter-
action in the first Born approximation.

A„„

Cpi ~ ZAS
(co 'A)„„.—= (C 7) We prove here the ensemble average theorem of

Kohn and Luttinger, for the problem at hand. Since
this proof follows closely the method of KL,' we shall

Again from the exact Eq. (2.18) we have for ) '=) &1 only indicate here the main steps of the calculation.
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(M') —(M)'
lim =0,

N-+~ (M)'

where in this case

M= — Q V~k, mk Umk ~ k.
p Ic'(A)

It is sufficient to prove that

(D.1)

(D.2)

(Vkk Vk kVkk" Vk"k)

E
=—p p g bkk (q.)bk. (q.')bkk" (q.")

04 e C'a"
Ã(1V—1)

Xbk" k ( —q.—q.' —q.")+
n4

2 z Lbkk (q*)bk k(—q*)bkk"(q. ')bk"k( —q.')
q&

+bkk (q.)bk k(q. ')bkk"( —q.')bk"k( —q.)&k k"

Here k'(A) indicates that k' lies in a small area A in
k'-space (two-dimensions, l) over which G(k'), k(k'),
etc., vary very little aod v is the number of states in

A, i.e.,

+bkk (q.)bk k(q. ')bkk"(- q.)bk".(—q.')

X82k, k ~k .$. (D.7)

From this we can write down directly the quantity
v =ALvL, /(27r)'. (D.3)

Clearly v is of order 0:, or, equivalently, of order E',
since E/0= 1Vr remains finite in the limit 1V' —+ ~.

Now, by direct calculation we find, dropping the
irrelevant oscillator indices e, m, etc. ,

(M)= Q(Vkk —Vk k)
p k'(a)

(M')= —2 2 (Vkk Vk kVkk" Vk" k) (D 8)
p a~(A) a«(A)

Since, however, bees, use of (D.3)

(E'/v') P g b =1P/v =0(1Pi') (D.9)
Ik'(A) k" (A)

and similarly,

9"/v') Q Q &kk, k+k" & 1V'/v=0()V'i'), (D.10)

where

1=- 2 & —2 bkk (q.)bk k( —q.)
p &'(A) Q c~

=N —p bkk (q.)bk k(—q.),
Q2 e~

(D.4)

Ic'(A) k" (A)

it is clear that the dominant term of (M') for large 1V

is given by the first term in the square brackets of
(D.7), all other terms, including the first term of
(D.7), being of relative order ( V'i'/LV') =X ' or
smaller. Thus

bkk (q,) =w(q. , k—k') Jkk (q.).

Therefore,

1
(D.5) (M') =1V' —2 bkk (q.)bk k(-q.)

.Q2 a~

X51+0(cV "')3. (D.11)
-2

(M)'=N' —p bkk (q.)bk k( —q.)
02 e~

Similarly we find by a straightforward calculation

(D.6) Upon comparison of (D.11) and (D.6) it is per-
spicuous that the condition (D.1) is satisfied. This
proves the validity of the ensemble average theorem for
this problem.


