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In other words, the amplitudes of the incoming and
outgoing waves will now contain the factor ln(kr —ks)
which diverges at infinity. In this case, therefore, we
have difficulty in giving physical meaning to the wave
function P(x), and so we can calculate neither the cross
section nor the renormalization constant Z2.

The appearance of a logarithmically diverging ampli-
tude may be due to the failure of the expansion in k/e.
As we have noted earlier, a calculation of the potential
in terms of such an expansion leads, in the lowest-order
approximation, to the ordinary Coulomb potential; the
next-order approximation contains an r lnr term. This

r 'lnr potential has a much longer range than the
ordinary Coulomb potential 1jr and so would inevitably
lead to an additional distortion of the incoming and
outgoing waves. There remains the possibility that we
can circumvent these difficulties by avoiding a pertur-
bation-theoretical calculation in kje. Unfortunately,
this general case is extremely dificult to solve.

ACKNOWLEDGMENT

We should like to express our thanks to Dr. K.
Nishijima for useful comments.

P H YSI CAL REVIEW VOLU M E 117, NUM 8 ER 1 JAN UAR Y 1, 1960

Detection anti Generation of Gravitational Waves*

J. WzsER
Urssversv'ty of 3darytastd, Co/legs Park, 3IIaryland

(Received February 9, 1959; revised manuscript received July 20, 1959)

Methods are proposed for measurement of the Riemann tensor and detection of gravitational waves.
These make use of the f'act that relative motion of mass points, or strains in a crystal, can be produced by
second derivatives of the gravitational fields. The strains in a crystal may result in electric polarization
in consequence of the piezoelectric effect. Measurement of voltages then enables certain components of the
Riemann tensor to be determined. Mathematical analysis of the limitations is given. Arrangements are
presented for search for gravitational radiation.

The generation of gravitational waves in the laboratory is discussed. New methods are proposed which
employ electrically induced stresses in crystals. These give approximately a seventeen-order increase in
radiation over a spinning rod of the same length as the crystal. At the same frequency the crystal gives
radiation which is about thirty-nine orders greater than that of a spinning rod.

INTRODUCTION

HE question of gravitational radiation has always
been a central issue in the General Theory of

Relativity. Long ago, Einstein' and Eddington' studied
the problem and predicted that very small amounts of
energy would be radiated by a spinning rod or a double
star. A great deal of theoretical work on the radiation
problem has appeared, during the past four decades.

Experimental work along these lines now appears
possible. Two avenues of approach will be considered. '
First we should like to detect the presence of gravita-
tional radiation incident on earth from either the sun
or outside the solar system. Secondly it would be highly
desirable to be able to generate and detect this radiation
in a small laboratory.

Devices for detection of the radiation operate essen-
tially by measuring the Fourier transform of the

* Supported by the National Science Foundation.
A. Einstein, Sitzber. deut. Akad. Wiss. Berlin, Kl. Math.

Physik u, Tech. (1916),p. 688; (1918),p. 154.' A. S. Eddington, Proc. Roy. Soc. (London) A102, 268 (1923).
'A number of the results discussed here were given without

proof in the author's Gravity Research Foundation Prize Essays,
April 1958 and April 1959, and at the Royaumont Conference on
the Relativistic Theories of Gravitation, Royaumont, France,
June, 1959 (unpublished).

DETECTION OF GRAVITATIONAL RADIATION

Suppose we have a system of masses which may
interact with each other. We start with the action
principle

5I=6 —cm ds+W =0.

In (1) sit is the rest mass and W is the part of the action
function associated with forces arising from the motion
of the mass relative to other masses with which it
interacts. The line element ds is given by

ds'= g vdx"dx"

For BV we assume a function given by

(2)

—c5W= )( F„5x&ds; (3)

(3) identifies F„as the four-force. The Euler-I. agrange

Riemann tensor. These will be discussed first. This will

then be followed by proposals for generation of gravita-
tional radiation which may give an increase of many
orders over the gravitational radiation from a spin-
ning rod.
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equations resulting from (1) are arranged' 'to obtain

d'x~ dx dx~ I'I'
+I'P s

ds ds ds mc
(4)

FIG. 1. Harmonic oscil-
lator driven by gravita-
tional waves.

with r& defined by

be given by
F& p is the ChristoGel symbol of the second kind.
(4) may be written in terms of the four-velocity
p"=dx"/ds, as

n =r +$',

|' (dx~~ bp~ I' s

8s(ds I 8s mc'

br&/bs= 0 for all s,
rv —+ e~, (12)

"o'ps 8P~/m

bvbs c'bv
(6)

Employing the commutation law for covariant diGer-
entiation enables us to express (6) in the form

8'ps 5'ps axe
R"-s~p p-'

8v8s 8sbv Bv
(7)

In (7), Bx'r/Bv is a unit vector normal to the world
lines, and the four-velocity p& is a unit vector tangent
to the world lines. The vector e&, defined by

The symbol 8/bs means the covariant derivative with
respect to s.

Following essentially the method of Synge and
Schild, ' we now obtain from (5) an equation similar to
the equation of geodesic deviation. We introduce a
parameter v such that each world line corresponds to a
given value of u. Taking the covariant derivative of (5)
with respect to v gives

in the limit of large internal damping and all com-
ponents of R& p&=0. Equation (10) becomes

$2@
+R. sp.p (r~+Yj=

8s' mc'
(13)

We now let time run in the direction of the tangents
to the world lines. The center of mass of the oscillator
is a freely falling platform. We use coordinates in which

the Christoffel symbols vanish and write (14) in the
approximate form (assuming $«r)

In (13) we have denoted by f& the differences in (non-
gravitational) forces at the two masses. For f" we

assume a restoring force —k &g and a damping force
cD„I'(oe—/os); k I' and D I" are tensors associated with

the spring. (13) then becomes

gs(y, D p g(a k p(a
+ + =-R.&,p-p k.s+e'3. (14)

6s' cm 8s mc'

Bx~
Q~ = — dV)

Bv

d'P D:dP k$"
+ + = —csR"s sr".

dt' m df m
(15)

8 (Bx&y 8 (cjx&y bp&

ash cjv) bt 0Bs)
(9)

Employing (6), (7), (8), and (9) then gives

1 3F~/m
+R" prp Hp'r =—dv.

5s' c' R

MASS QUADRUPOLE DETECTOR

In order to discuss the detector' of Fig. 1, we imagine
the two world lines are those of the two masses. I et e

'See for example, W. Pauli, Theory of Relativity (Pergamon
Press, New York, 1958), p. 41.

5 J. L. Synge and A. Schild, Telsor Calculus (The University of
Toronto Press, Toronto, 1952), Chap. 3. See also F.A. E. Pirani,
Helv. Physica Acta Suppl. IV, p. 198.

An arrangement somewhat similar to this was indepen-
dently suggested by H. Bondi at the Royaumont Conference,
Royaumont, France, June, 1959 (unpublished).

is an infinitesimal vector joining points with the same
value of s on neighboring world lines with values of v

differing by dv. The covariant derivative of Bx'r/Bv with
respect to s can be written in the forms

In (15) we see that the driving force for the harmonic
oscillator is the Riemann tensor. Measurement of dis-

placement amplitude or power absorbed enables one to
calculate certain components of the Riemann tensor. 7

Suppose now that sinusoidal (weak-field approxima-
tion) gravitational waves are incident, with angular

frequency co. An orthogonal cornoving coordinate system
is employed, with the oscillator oriented in the direction
of the x' axis. k & and D I" are imagined to have one
component only, k&'= k, and D&' ——D. Taking the

' Measurement of the Riemann tensor by comparing accelera-
tions of free test particles has been considered by F. A. E. Pirani,
Proceedings of the Chapel Hill Conference on the Role of Gravi-
tation in Physics, page 61, Astia Document No. AD 118180 and
Acta Phys. Polon. XV 6, 389 (1956l. While iree particles are con-
venient for some thought experiments, interacting particles appear
to be essential, in practice, at low energies. The correspondence
between voltage in a piezoelectric crystal and some components
of the Riemann tensor, which is discussed in the next section, may
provide a basis for consideration of the measurement problem in
quantized General Relativity. In principle a very small crystal
may be used since the acoustic resonance vibrations have a wave-
length which is about 6ve orders smaller than that of the gravi-
tational wave which excites them.
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I'ourier transform of (15) leads to

—mc'R"p p(4o)r
F(~)=

(—ai m+44pD5i" +ktii")
(16)

(16) is a maximum at resonance, —ai'm+k=0. The
total dissipation D=D, +D; where D,„is the external
dissipation and D;„is the internal dissipation associated
with irreversible processes within the antenna. The
power which can be delivered to auxiliary apparatus
with D, is

m'c4(Rnp. pr )'D,„
-'-ai'D P=

2(D. +D; )'
(17)

(17) is a maximum when D, =D; and the maximum
power P,& is given by

P =m'c'(R ...r-) /(8D, „) . (18)

The sinusoidal gravitational waves are now assumed
to be radiated by a linear mass quadrupole oscillator.
The transformation laws indicate that to a good
approximation E"p p as seen in a frame fixed in the
center of mass of the radiator is the same as that seen
in a frame Axed in the center of mass of the detector,
for small velocities. Using the known' ' solution for the
linear mass quadrupole oscillator, the mean squared
value of R&p pr is calculated and averaged over all
possible orientations of the receiving antenna. I.et Ip, be
the radiated power per unit area averaged over a sphere,
for the linear mass quadrupole oscillator. The total
radiated power P is given by

P= 44rrotp, ——GIpoioo/(604rc'), (19)

where Ip is the amplitude of the quadrupole tensor.
(19) and the known expressions for the fields then give,
for the mean squared value of E&p pr, in a direction
normal to the quadrupole radiator axis.

[R"o oral'4 ——L4irp'
I
r

I
'G/c'jtp„. (20)

In (20), P is the propagation vector of the gravitational
wave. Employing (18) and (20) gives

Ppr g.m'P'Ir I'G——tp„/(2cD; ) (21. )

The influence of the internal dissipation D;„will now be
considered. First we assume that no irreversible processes
take place within the antenna itself and that D;„ is due
entirely to radiation damping of the detector. The
known solution for a linear mass quadrupole oscillator

enables us to calculate the radiation resistance of the
detector, D;„, as

D; =2Goi4m'IrI'/(15c').

(21) and (22) give, in terms of the wavelength X,

PM (radiation damping only) = (15'~ /16ir) tpr

(22)

(23)

The implication of (23) is that the average absorption
cross section S& for a detector which is damped only
by its own reradiation is

S~= (15/164r) X'. (24)

We see from (24) that under these conditions the
average absorption cross section is roughly a wave-
length squared, and is independent of the constant of
gravitation. Unfortunately the condition that the in-
ternal damping be only due to radiation cannot be
attained in practice because other irreversible phe-
nomena within the antenna are many orders greater
than the radiation damping. In order to make this
clear, we calculate the quality factor, denoted by the
symbol Q, which is defined by

Q=oi(maximum stored energy)/(power dissipated).

The Q associa, ted with radiation damping, denoted by
Qii, is

Qii ——15c'/(2Gaipm
I
r

I
'). (25)

For an antenna at or=2m&(107, a reasonable value of
mr'=10 g crn' and (25) gives Qii 10'4. A practical
antenna might be expected to have a Q 10'.

We therefore must deal with systems limited by
internal damping orders larger than gravitational radi-
ation damping, and under these conditions the average
absorbed power will not be independent of the kind of
antenna. For an antenna orientation arranged for
maximum response, we write

(R&p pr )'=15irGp'Irl'c 'tp„. (26)

(26) and (18) lead to power absorbed, Pz, given by

Pz —(]5/8)irGm P IrI (cD;n)
= (15/8)irGmg;„p'IrI '(cuc) 'tp„. (27)

In (27), Q;„ is the Q associated with internal irreversible
processes, Q;„=aim/D;„. The cross section, S, implied
by (27) is

S= (15/8)irGmg;. P'Ir I
'&u 'c—' (28)

For a continuous spectrum the absorbed power is

i" m'c4D, „ci4o'R"oap(ni)R"ppo(co')r rt'e'&" ""
p„=1'—'

I A&da&'dt= 7r'Gmp
I
r

I
'c 'tpr(ipp).

„~ „2( 4p'm+4rdD+K) —( "oimt'oi'D+K—)
(29)

In (29), tp„(alp) is the power spectrum of tp„ in the
vicinity of the resonant frequency Mp.

N. Rosen and H. Sharnir, Revs. Modern Phys. 29, 429 (1957).
9 W. B. Bonnor, Phil. Trans. Roy. Soc. London A251, 233

(&959).

In order to further discuss these results we must
consider the excitation of a continuous medium by a
gravitational wave. This is necessary in order to be
able to account for the interaction of the mass of the
spring with the wave and to account for the eGects of
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the finite velocity of propagation of the elastic forces
of the spring.

ts"=r"+e "r . (3o)

INTERACTION OF A CRYSTAL WITH A
GRAVITATIONAL WAVE

The starting point for our discussion is expression
(10). The infinitesimal vector rs" is from a reference
point in the crystal to a neighboring point. The mass nz

is imagined to belong to an infinitesimal volume sur-
rounding the neighboring point. On the right side of
(10) we must now include both elastic forces and
dissipative forces. We write e& as

If (34), p is the density, y is an appropriate modulus,
and b is a damping constant. We assume that R'Oyo has
its origin in incident sinusoidal gravitational waves so
that

c—'R'pt p f——exp ji (tot P—;oo )j' (35)

In (35) the index j runs from 1 to 3. Let t, be the sound
velocity (y/p) ', X, be the wavelength of sound, k, = 2m./X. ,
n= fi/pn„and y= n+ik, . Then to a good approximation
the solution of (34) may be written

e = t AY coshyx' —fa&
—' exp (—t'P, x')$e'". (36)

Making use of the boundary condition that ~ vanishes
at the ends leads to

r& is defined by the conditions

8r"/bs=0 for all s; (31)

fX cosPrl

2or&o'(td sink, l+cosk, t)
(37)

r~~ e",

in the limit of large internal damping and Oat space.
We may now write Eq. (10) in the form

8'e„v ~& (ap) 6 (py)
rv +rvB„" +rv I'"ti

Ss2 8s Bx Sxt'

+R„„sfr"+e„orrJp P~=O. (32)

In (32) the quantity e&„„& is the symmetric part of e„„
and is therefore the strain tensor of the crystal. The
second term accounts for internal damping and the
third term accounts for the elastic forces. B„and F &

are normalized to unit mass density. Again p is a unit
vector tangent to the world lines. Since rI' can be
arbitrarily specified, we may write

~ &p.v I5&(ap.) ~ &(p,v)

+B +I' ~

Ss2 8s 8x 6x&

+R-.sp P'+R-vip P'"'= o (33)

In (33) the fourth term is clearly symmetric in the
indices v and p. The last term in (33) may ordinarily be
dropped because it is many orders smaller than the
fourth one. For the strain tensor we may therefore
write

& (pv)
2

+B
~&(ay) ~ &{pv)

+Y & — =-R„.„pP"p&. (33A}—
bs 6x bx|'Ss2

In (37), t is half the length of the. crystal. The first
term of (36) gives the contribution of the acoustic
waves and the second term gives the strains which
would be set up if there were no internal forces at alit
(37) must be modified if the crystal is piezoelectric.

(37) has maxima when k,t is an odd multiple of or/2;
however, it is clear from the denominator that the
largest maximum is the first one, for which the total
length is half an acoustic wavelength. The system com-
posed of the two masses and spring (Fig. 1) must be
described by an equation such as (34), when the spacing
of the masses approaches half an acoustic wavelength.
The largest value we can expect from (28) will occur
when r is half an acoustic wavelength in the spring.
This is an important limitation because the velocity of
acoustic waves is about five orders smaller than the
velocity of light, so the cross sections implied by (28)
are limited to values ten orders smaller than would be
the case if the elastic forces of the spring were propa-
gated with the velocity of light. Such a limitation could
be overcome in a number of ways. One might employ
restoring forces transmitted by electric and magnetic
6elds, with the velocity of light. The piezoelectric
e6'ect may be employed, in which case the polarization
charges in the crystal faces may give rise to some stress
components which do not change sign every half
acoustic wavelength.

In a piezoelectrical crystal a strain results in an
electric polarization P„given by

I'„=e.p8„&.

c c) t 8Q

p 6 —c pE oyo.
8(x')' R' at

(34)

We now consider a special case of (33A), namely
excitation of longitudinal waves in an isotropic medium.
An approximate form suitable for the present discussion,
for waves in the direction x' of an orthogonal coordinate
systein (with the time direction tangent to the world
lines), is

Here 8„ t' is the piezoelectric stress tensor. The electric
polarization gives rise to an electric field over the
crystal. Its integrated value may give a terminal
voltage large enough to be observed with a low-noise

$&ote oitded i' proof Integration of.—(36} gives relative dis-
placements. If the result is applied to effects of gravitational waves
interacting with the earth, the contribution of the first term of
(36) is found to be very small. Apparatus on the earth's surface
acts therefore as if it were in free fall insofar as the waves are
concerned. This is a consequence of the fact that the velocity of
sound is much smaller than the velocity of light.
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radio receiver. Measurement of this voltage measures
components E Opo of the Riemann tensor if a crystal
with suitable constants is employed.

The system of stresses in the crystal is modified in a
significant way if it is piezoelectric. Additional terms
involving the piezoelectric constants need to be added
to Eq. (33).We consider a very simple example. Suppose
a single longitudinal mode is excited, with sound
velocity in the x' direction. I et the thickness in the x'
direction be small and assume that the crystal faces
normal to the x' direction are plated with a conductor.
The piezoelectric relations" are

—T= eF'p+DH/4rr,

E=D/E+ He.

In (38), T is the stress, E is the dielectric constant,
e is the strain, Vo is the elastic modulus, E is the electric
field intensity, and D is the electric displacement. Both
D and E are assumed to have components in the x'
direction only. H is the piezoelectric constant relating
open-circuit voltage to strain. A study of (38) and the

equations of motion of mass elements of the crystal
indicates that a wave equation similar to (34) results
with

y = Fp[1 'HsE—/4rr].

Since the crystal surface normal to the x' direction is
plated with a conductor, BE/Bx'=0. At the free ends
of the crystal, T=O. If the crystal is coupled to an
external impedance Z, we may write

f
Edx'= Z— 1M''dx'.

8k~

These boundary conditions and the wave equation
(34) then lead to the result

e= [Aiy coshpx' —fop
' exp( r'P,—x')]e'"', (36A)

where y, p, and f are as defined earlier; this has the
same form as (36), but now the constant A, is given in
terms of the length /~ in the x' direction, and lengths l~

and l3 in directions x' and x' and the "clamped"
capacitance C/4 arrs

(f/Pirp') [2rrPrLs(1+i&vCZ)(Vp HsK/4rr) —cos(P,L,/2)+iH'E'Ls&pZ sin(PiLi/2)]
Ag=

2rrLp(7p HsE/4rr)/y —cosh(yLr/2)](1+icpCZ)+i ZrpH'KsLssinh(y Lr/2)

and the voltage which appears at the crystal terminals
when coupled to an impedance Z is

Vz ——72i,rpZHKLs/(1+i oiCZ)]

X[Ai sinh(pLi/2) —(f/Ptoi') sin(PiLi/2)]. (40)

The electrical network theorems now permit straight-
forward calculation of the power which can be delivered
by the detector to a radio receiver. For a crystal with
constants similar to polarized barium titanate on which
sinusoidal gravitational waves are incident the power
which can be transferred is, roughly,

P~ =10 "rp 'UQ, L erpgs/sec ndo. (41)

In (41), rp is again the angular frequency and fp„ is the
incident gravitational power Row in ergs per square
centimeter per second. V is the volume of the crystal.
Q, is the Q of the crystal and associated electric circuit.
A cubic meter of crystal at co 10' gives a cross section
for absorption 10 " cm'. tA'hile this is a small
quantity it appears sufficiently large to start some
experiments. For a continuous spectrum of gravita-
tional radiation with gravitational power Qow having a
power spectrum function tp„(cp), the power absorbed is
about

Pg 10 VLp„(cpp) ergs/second. (42)

(41) and (42) provide a basis for discussion of sensi-
tivity. In microwave spectroscopy it has been found
that all spurious effects other than random Quctuations

1o See, for example, W. P. Mason, E/ectromechanica/ Transducers
arLd 8'ave Ei/ters (D. Van Nostrand Co., Princeton, N. J., 1948),
Chap. VI, Second Edition.

can be recognized. A similar assumption will be made
here. The random Quctuations are partly thermal in
origin, partly the result of spontaneous emission
processes. For synchronous detection of sinusoidal
waves the power output of the detector must exceed
the noise" power P~~ given by

P~i Nk(d/[8r~ (e"""—— 1)], —
where k is Boltzmann's constant, T is the gravitational
antenna temperature, and E is the noise factor of the
receiver which is expected to be less than 25 and more
than 1. 7-g is the averaging time. A diferent expression
is required if radiation with a continuous spectrum is
being studied. In this case the power delivered by the
detector must exceed"

P~s [7r'(o/(64vgQ) ]——*Nb(p/$e" '".r 1]. —
Experiments are being planned to search for inter-

stel1ar gravitational radiation" using methods de-
"R. H. Dicke, Rev. Sci. Instr. 17, 268 (1946)."J. A. Wheeler has noted LOnzieme Conseil de l'Institut

International de Physique Solvay, I.a Structure et /'Eeo/ution de
L'UNiverse (Editions Stoops, Brussels, 1958), p. 112j that the
density of gravitational radiation could be as high as 10~' to
10 's grams/cmp (~10p ergs/cm second) and still be consistent
with present information about the rate of expansion of the
universe. He and M. Schwarzschild (private communication) have
subsequently noted that if this radiation were set free by the same
process which caused the inhomogeneous collection of matter into
galaxies, it would be characterized at that time, and therefore also
now, by the saIne scale of lengths, of the order of 10~ cm today
(106 years vibration period).

(agtypical/Bx)'~pGc '-0.2X 10 "cm ',
Bgtypica~~0. $ &(10 cm (10 cm) ~10 4.

This would appear to be not too small, but too slow to measure,
by these methods.
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scribed here. f For the first method the earth itself is the
block of material constituting the antenna. The normal
modes of the earth (about 1 cycle per hour) are excited
by incident gravitational waves. This procedure is
limited by the relatively low Q of the earth and the
high noise temperature of its core. The apparatus of
Fig. 2 is employed in the second method, in which the
strains induced in the crystal are employed. Search at
frequencies 10' cycles per second is planned. The
earth rotates the apparatus. If radiation is incident from
some given direction it may be observed from the
diurnal change in amplifier noise output. The arrange-
ment of Fig. 3 should not require rotation. If radiation
is incident it will cause correlated outputs. All sources
of internal fluctuations will be uncorrelated. Low-noise

amplifiers such as masers" may be employed.
The discussion given here predicts that gravitational

Qux with a power spectrum tp, (&o) 10 ' ergs/cm' second
cycle should be detectable.

5 dx d dx
v„.p„r = v„.—p„rp —+v..p,r r.:p p

bs ds ds ds
= v .p rPF /rrtc'. (43)

Here again p' is a unit vector tangent to the world
lines and in the second term of (43) we have used the
identity v„p,p~P'=0. Let the world line of the origin
be a path for which the ChristoGel symbols vanish.

FIG. 2. Schematic dia-
gram of piezoelectric
crystal for detection of
gravitational waves.
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t lt ote added in proof.—Experimental work along these lines has
begun recently. It is being carried out by Dr. David M. Zipoy
and Mr. Robert L. Forward, in collaboration with the author.
The piezoelectric effect gives enhanced sensitivity when a mass
which is many acoustic wavelengths on a side is used. At low fre-
quencies this is not important because a mass which is one half
acoustic wavelength long is already quite large and may not be
obtainable as a piezoelectric crystal. Excitation of resonant
acoustic vibrations in a block of metal, in accordance with expres-
sions (36) and (37) is being considered along with the arrange-
ments of Figs. 2 and 3. Detection of the motion of the crystal ends
is by the change in capacitance to a nearby electrode."A review of these developments has been published PJ. Weber,
Revs. Modern Phys. 31, 681 (1959)g.

'e P. Dirac (private communication).

ROTATIONS INDUCED BY GRAVITATIONAL
RADIATION

Dirac" has suggested that astronomical anomalies
might be correlated with sects of gravitational radi-
ation. To discuss this and to consider detection by
observing rotations we return to expression (5). Let a
group of masses be situated near the space origin of
a coordinate system and let the infinitesimal vector r&

be the position vector of one of the masses. Let u„p„be
the Levi Civita tensor density. Multiply (5) by v„p„rP
to obtain

CONDUCTING BOX q

P&EZO

ELEC TRI&

CPY'5TItl LS

L.ow
NO I5 E
AQPLIEIE'P

LOW
NOISE

AP1PL tEIER

CROSS

CORREL ATOR

FIG. 3. Schematic diagram of cross correlation detection
of gravitational waves.

In these coordinates R v„o=r)I' „o/r)oo", so (44) be-
comes

8 dx" d dx
v„„p„rP = v„p„—rP v—„p„RP,„—oPvP'r r". (45)

bs ds ds ds

If we now use (43) and (45) and sum over all masses,
we obtain

dx
v„.p,rP—= Q v„.p,RP,„oP&P'r r"

masses ds ds masses

masses
v„p„r FP/rrtc' (46).

(46) is a generalization of the relation between torque
and change of angular momentum. If there are no non-
gravitational forces acting and if we take the time direc-
tion tangent to the world lines (46) becomes

d dx"
v„porp = p v„—poRpo„or r".

masses ds ds masses
(47)

We have applied (47) to the calculation. of the
irregular fluctuations in the period of rotation of the
earth caused by incident gravitational radiation with a
continuous spectrum. Under these conditions a straight-
forward calculation leads to the result

(I')o,/I '=25orGtp, to 'c '. (48)

Here (I')&, is the mean square fluctuation in the earth' s
angular momentum; I, is the angular momentum of
rotation; to„ is the total gravitational wave Qux in ergs
per square centimeter per second, assuming its Fourier
transform to be concentrated near zero frequency;
cv is the angular frequency of rotation. If we arbitrarily
assume that, all the earth's rotational anomalies are
due to incident gravitational waves, to„ is calculated to
be 5&10' ergs per square centimeter per second. It is
clear from this that the earth's rotation is not a useful
detector unless the size of the anomaly can be reduced.
The other astronomical anomalies lead to larger figures.

Then it follows that (43) can be written

8 dx" d dx /pa
v„„p„rp —= v„.p„rp —+v„.p„rp p&p'r". (44)

8$ ds ds dSBx
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l=z, (2&)-:/~. (50)

In (50), 8 is the maximum allowed strain for the
material and ), is the wavelength of sound in the rod
at the angular frequency of rupture. The implication of
(50) is that the wavelength of the gravitational waves
which can be radiated by a rod is at least 1000000
times the length of the rod. Also the moment of inertia
is limited to values less than about

10 'pX, '6"'/(12m'). (51)

In (51), p is again the density, and we are considering
a fairly slender rod, for which the length is an order
larger than the lateral dimensions. Employing (51) in
(49) leads to

Pa&4X10 PPp v '
SPAN@ ergs/sec. (52)

(52) shows that contrary to the appearance of (49),
low-frequency operation with large rods gives more
radiation than high-frequency spinning of small rods.
About 10 "erg per second can be radiated by such a
one-meter rod.

A new method for generation of gravitational waves
is suggested by the Geld equations of general relativity.
The source of the gravitational Geld is the stress-energy
tensor. Time-dependent stresses can be produced elec-
trically in a piezoelectric crystal, and these give rise to
radiation. The weak-field solutions are entirely adequate
for this kind of discussion since the metric is expected
to differ from the I orentz metric by perhaps one part
in 10'o. The weak-Geld solutions are

ply"k= (4G/c ) ~ r (Ta")retardedid X. (53)

In (53), T„"is the stress-energy tensor, r is the distance
from the source to the observer, and h„" is defined by
g„"=8„"+k„",where 8„„ is the Lorentz metric. The
coordinate conditions required for (53) are 8$„"/Bx"=0.

In order to apply (53) to the problem of radiation by
a crystal, we Grst assume that acoustic resonance
is employed and that one-dimensional compressional

GENERATION OF GRAVITATIONAL WAVES

It would be very desirable to be able to generate
gravitational waves with sufFicient energy to be detected
in the laboratory. A number of important experiments
could be done.

For a spinning rod, Einstein, ' and later Eddington, '
gave the formula for the radiated power I'g as

Pii ——1.73X10 "I 'p ergs/sec. (49)

Here I is the moment of inertia and co is the angular
frequency. co can be increased until the rod ultimately
breaks. If we write the maximum value of co in terms of
the tensile strength and express the result in terms of
the elastic modulus and strain, we obtain for the
length l the formula

waves are set up. The components of T„" are then
given by

Tp'= —pc'L1 —(V„/v, ) cos(p~t) cos(k,x')j
X$1—U(x' —l—A p coscot)

—U( x—' l—A—p cosrpt) 7, (54)

Tp =p V&c sinrpt sink, xP/1 —U(x' l —A—p cosppt)
—U(—x' —l—Ap cosset)$, (55)

Tpp =—pV„v, cospit cosk,x'$1—U(x' —l—A p cosppt)
—U( —x' —l—A p cosrpt) j. (56)

In these expressions it is assumed that the waves
travel in the direction x; V„ is the particle velocity;
~, is the sound velocity; U is a step function defined by
U(x) =0 for x&0, U(x) =1 for x)0. A p is the vibration
amplitude of the free end. Making use of these ex-
pressions in (46) and employing the Einstein form of
the stress-energy pseudotensor enables the total radi-
ated power to be calculated. The maximum value of Ao
is determined by the maximum strain which is allowed
before rupture takes place. The maximum strain corre-
sponds to a value of Ao about four orders smaller than
the acoustic wavelength X,.

For quartz the result for acoustic resonance is

8&L(16/15)Gp'S'v, (v,/c)'X10 'j
+f(7r/15)Gp'S'ei, 'v, (v,/c)PX10 "jp„ergs/sec. (57)

In (57), S is the cross-sectional area, the term with
subscript cu gives the radiated power at the fundamental
frequency, and the second term gives the power radi-
ated at twice the fundamental frequency. The resonator
must be a multiple e), of a half acoustic wavelength
long. The first term of (57) is seen to be independent
of m). This is because for e&1 the crystal is essentially
an assemblage of electric quadrupoles with a given
quadrupole driven out of phase with respect to its
nearest neighbors. The resulting fundamental-frequency
radiation is approximately that of a single quadrupole.
Each half-wave section has an equivalent moment

MA ply, /2', where M is the mass of a single (acoustic)
half-wave resonator; Ap and li, are defined by (54), (55),
and (56). U a large number of separate resonators are
located within a region of dimensions less than a gravi-
tational-wave half wavelength, the radiated power will
be proportional to the square of the total number of
crystals. (57) depends on the frequency through the
requirement that each resonator be a multiple of a half
wavelength long. In order to radiate 10 "erg per second
at the fundamental frequency, 10 crystals would be
needed, each one-half acoustic wavelength thick and
with a cross-sectional area of 50 cm'. A complex phasing
arrangement would be needed in order to drive the
array properly.

It appears better to suppress the acoustic resonance
vibrations and create, by the piezoelectric eGect or by
electrostriction, mechanical stress components which
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do not reverse sign every acoustic half-wavelength. In
order to see that this is possible it is only necessary to
study the solution given in the literature" for the
component T» of the stress in a longitudinally vibrating
crystal with x as the thickness direction, with a con-
ducting plating on the faces normal to x'. The thickness
is assumed small, for simplicity, and an externally
applied electric field parallel to x' drives the crystal.
The component T~i is then

&u ——(dg3g&g sin&at) {sinL(o (L—x)/e, ]
+sinLa&x/v, j—sin)cvL/v, $)/sin(+L/v, ). (58)

In (58), d, ;z is the tensor relating stress to electric
field, E3 is the electric field, and I is the total length.
At resonance a&L/v, =s and losses would have to be
taken into account in (58) by a hyperbolic function in
the denominator. However, off resonance, for example
at coL/v, =s./2, (58) becomes

Tn= d~E~E3(cos(co@/e)+sin(co@/n) —1$ singlet. (59)

(59) is seen to have a component —d~~~ES singlet which
does not reverse sign every half acoustic wavelength.
A single large crystal, driven in this manner, will then
give volume-integrated stress components which are
large. The radiated power would be expected to be

Pg =GP, 'X4s-'/(120c'). (60)

In (60), P,„is the effective tensile strength and again X
is the gravitational wave wavelength.

Waves one meter long could be radiated by a crystal
with dimensions about Nty centimeters on a side. If it
is driven just below the breaking point, each crystal
would radiate 10 "erg per second, assuming I',„to
be its static published value. Single-crystal detectors of

"W. P. Mason, Piezoelectric Crystals amd The& Applications to
Ultrasolics (D. Van Nostrand Company, Inc., Princeton, New
Jersey, 1950), p. 64.

the type considered earlier may detect a power of
about 10 ' erg per second at these wavelengths. A large
gap therefore still exists between what can be generated
and what can be detected in a small laboratory. Com-
plex detection and generation arrays can narrow this
gap. Large amounts of electrical power would have to
be dissipated in crystals driven to the fracture point—
perhaps 10' watts in a crystal fifty centimeters on a
side. This might well be substantially reduced if low-
temperature operation can be achieved, Also one might
hope that low-temperature high-frequency operation
might raise the eGective tensile strengths. All of these
issues need careful experimental investigation. If the
numbers employed earlier cannot be improved upon, it
would require a crystal roughly one hundred meters on
a side, and a large detection system, to generate and
detect the gravitational radiation. We are not pro-
posing that this be done. We are suggesting some
investigations of crystals at low temperatures, for the
purpose of exploring the possibility of improvements.

CONCLUSION

The detectors which have been proposed are suS.-
ciently good to search for interstellar gravitational
radiation. Further advances are necessary in order to
generate and detect gravitational waves in the labora-
tory. If we compare a crystal which is excited as
described above with a spinning rod of the same linear
dimensions, we 6nd that the radiation from the crystal
is about seventeen orders greater and the frequency
radiated by the crystal about one million times greater.
If both the rod and the crystal radiate at the same
frequency the crystal radiation is about thirty-nine
orders greater than that of the rod. We acknowledge,
with thanks, the helpful criticism of F. A. E. Pirani,
P. G. Bergmann, and J. A. Wheeler. We have had very
helpful discussions with R. H. Dicke.


