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Some Asyects of the Covariant Two-Body Problem. II. The Scattering Problem*
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By way of extension of a previous study of the bound-state problem within the framework of the covariant
Bethe-Salpeter formalism, the scattering of nucleons by nucleons has been investigated in the ladder approxi-
mation, assuming scalar nucleons and zero-mass scalar rnesons. The solution of the scattering problem can
be effected by using an integral-transform method which is similar to that developed for the bound-state
problem, subject to the assumption that the nucleon mass is large compared to the kinetic energy in the
center-of-mass system. An essential complication which is now encountered is the appearance of an infrared
divergence. Two methods of circumventing this difficulty are discussed. The cross section can be calculated
from the Green's function by a limiting process; the usual S-matrix formalism leads to incorrect results in
this case, and an amplitude renormalization is required. In this connection, it is instructive to re-examine,
in detail, the Coulomb-scattering problem in momentum space, since this is very closely related to the
Bethe-Salpeter scattering problem. The Green's-function method turns out to be unsuitable for the calcu-
lation of higher-order corrections to the nucleon-nucleon scattering cross section, so that here a cuto6
procedure must be used.

I. INTRODUCTION
' 'N a previous paper, ' we developed a procedure for
~ - handling the bound states of the nucleon-antinucleon
system for the case of scalar nucleons. Here, we extend
the method to study the nucleon-nucleon scattering
problem in the ladder approximation in terms of the
covariant Bethe-Salpeter (3-S) formalism. Once again,
it is quite dificult to treat the spinor-nucleon case, and
so we restrict ourselves to the same model as was used
previously, vis'. , scalar nucleons and zero-mass scalar
mesons. One can hope that an extension of the method
may eventually be helpful in treating the problem of
the scattering of spinor nucleons by nucleons.

In our discussion of the scattering problem, we shall
find it very heIpful to use the integral-transform method
developed previously for the bound-state problem. A
similar approach has been presented independently by
Nishijima, ' but his results appear to be in error since he
did not treat properly the infrared divergence which
appears in the theory. The appearance of an infrared
divergence in the scattering problem represents an
important difference from the bound-state problem and
leads to complications. These are connected with the
existence of a distorted incoming wave in the Coulomb-
scattering problem, as will be seen later.

As is well-known, the infrared divergences which
appear in quantum electrodynamics have their origin
in the emission of virtual soft photons and should be
canceled by terms which come from the emission of
real soft photons. ' This is true to any order of pertur-
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bation theory and is also true in our scalar-photon
case. The diS.culty in our problem is that our solution
of the 8-S equation does not correspond to simple
perturbation theory, and so we must take into account
real soft-photon emission in a non-perturbation-theo-
retical way. To do this properly seems to be quite
diKcult; hence, we content ourselves in this paper with
solving the 3-S equation without considering soft-
photon emission. We introduce, instead, a low-frequency
cutoB for the virtual-photon energy.

Our treatment of the scattering problem is based on
a covariant form of nonrelativistic approximation which
is similar to that used in I. It turns out that, in the
lowest-order approximation, all infrared divergences are
contained in a phase factor and so do not lead to any
difficulties at all. In fact, the cross section is then given
exactly by the classical Rutherford formula for the
scattering of a particle by a Coulomb potential. How-
ever, in the calculation of higher-order corrections to
the Rutherford formula, the infrared divergences appear
in a nontrivial way.

In the extreme low-energy limit, the cross section
may be obtained from the Green's function by means of
a limiting process. Since we are dealing with zero-mass
mesons, however, the usual S-matrix formalism does
not give the correct answer, and an amplitude renormal-
ization for the wave function is required. This situation
is clarified by considering the classical Rutherford
scattering problem in momentum space.

For reasons that will be given later, the Green's-
function method is not suitable for the calculation of
higher-order corrections, so that here we must use a
cutoff procedure. In this case, an amplitude renormal-
ization is not necessary.

In Sec. II, we set up the general formulation of our
scattering problem; in Sec. III, we consider the appli-
cation of the integral-transform method; in Sec. IV,
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Zg2

~(p) =~(p—&)—
(2~)4 p' k'—+PE P' k'—PE—

II. FORMULATION OF THE PROBLEM

we investigate, in detail, the Coulomb-scattering prob- we find that p(p) satisfies the following equation:
lem in momentum space; in Sec. V, we return to
consider the solution of the 3-S equation.

x(x,y)=x;„(x,y) —g' ~

) d'xid'yiA);(x —xi)

X&s(y —yi)Ds(» —yi)x(», yi), (2)

where X;„represents the wave function of the incident
free particles. The functions hp and Dp are the same
as were used in I; notice also that g' in (2) corresponds
to 4g' of I. Equation (2) may be derived by the method
of Gell-Mann and Low.4

We now separate out the center-of-mass motion from
the internal motion by writing

~(x y)
—ei(mls) (a+@)f(x y) (3)

where E is the energy-momentum four-vector of the
total system (we use natural units with )s=c=1).
Denoting by pi and ps the four-momenta of the two
incident nucleons, we may set

pi=-,'8+k, ps=-,'Z —k;
since

For simplicity, we consider a charged scalar nucleon
field P in interaction with a neutral scalar field A with
zero rest mass, the interaction Hamiltonian being given
by

Hi= gg*PA.

Assuming, for definiteness, that both particles have
positive charge, the 3-S wave function g(x,y) which
characterizes the two-nucleon scattering state satisfies,
in the ladder approximation, the following inhomo-
geneous integral equation:

X "d'p' . (5)
, lj"(P')

(p p')'—

A vanishingly small negative imaginary part is under-
stood to be contained in all denominators; also, for
convenience, the constant in &;„has been taken to be
unity.

As we will see later, Eq. (5) has no finite solution
because of the appearance of an infrared divergence.
One way to avoid this difEculty is to consider that the
meson field has a small but finite rest mass JM, another
way is to work with the Green's function instead of
the B-S wave function. For the sake of reference, we
write down the equation for the Green's function in
the general case of a meson field of finite mass:

Zg2 1
G(p, ~,~)=~(p ~)

(2 )4 p2 $2+Pg P2 $2 PQ

x I d' ' - ; (6)
G( 'q&

(p-p)+"'
here, q is an arbitrary four-vector, and k' must be
interpreted from (4a) as a function of E'. Equation (6)
represents the transcription in terms of momentum
variables of the inhomogeneous integral equation satis-
fied by the two-nucleon Green's function G(x,y; x',y')
in the ladder approximation. 4

With q=k, G(p, /hE) is essentially the wave function
p(p) of the scattering problem with a finite meson
mass, where ip(p) satisfies the equation

we have also

pie+ms= p,s+ms=o

M=O,

The function &;„may now be written as follows:

(4a)

(4b) 4 (p')
X ~d'p' . (5')

(p —p')'+/ '

Zg 1
~(p) =~(p-&)-

(2ir)' p' k'+ pE p' I/' —pE——

X; (x,y) =constXe'(~/')(~»e'"(~»

Since the two nucleons are identical and obey Bose
statistics, we should, strictly speaking, symmetrize X;„
with respect to an interchange of the two particles.
However, this symmetrization can be effected at the
end by symmetrizing the total wave function with
respect to the replacement of k by —k.

On defining the Fourier transform of (3) by

g( y)= i( /)(M) Jdp '
(*-))p(p)

4 M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).

On setting /i=0, we of course regain Eq. (5).
Finally, we consider the physical meaning of the

vector k. In the center-of-mass system,

E= (0,0,0,ie), (7)
where e is the total energy of the system. From (4b),
it follows that k must have the form

k= (k,0), (g)

where k is a three-dimensional vector. From (4a), we
then have

e =2 (k'+nP) &. (9)
Evidently, k and —k are the wave numbers of the two
nucleons in the center-of-mass system.
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III. THE INTEGRAL-TRANSFORM METHOD

We now turn to a consideration of Eq. (6). Let

G(P,q,E) =~(p q)—+F(p,q,E);
we then find that

and then interchanging the order of the s and I, inte-
grations, we find that

(10) t" I" t" I" H(x,y, s)
I=oro t dx dy dt ds E(x,y, s,t)

o o "o "4 x+y+1

Xexp {—itI x(P2 —k'+PE)
F(p, q,E)=—

(2~)4 p' —k2+pE p2 —k2 —pE +y(P' k' —PE)—+ (P q)'+—t"3 I,

F(P'q E)
+ d4p/

(P q)'+—t" " (P P')'+—t"-

where we have introduced the abbreviation
(11)

x+y
(s—t)E(x,y, s,t) = exp ik'(x+y) (s—t) iq-'

x+y+1

y x E' (x—y)'
+iqE —(s—t)+i— (s—t)

x+y+1 4 x+y+1
F00 00 F00

F(p,q,E) = dx ll dy
~

ds s2H(x, y, s)

Next, we express F(p,q,E) in the form of a Gaussian
transform, vis. ,

Xexp { ist'(p' —k'+ pE—)x

+ (P' k' PE)—y+ (—P q)'+t"j—I (12)

sf
(x+y+1)+s t, (—14)

S—t

Next, we observe that

x expI —i24(P' —k'+ PE) —iit (P' —k' —PE)j.
Multiplying this by I and replacing the variables u and
~ by Nt and ~t, respectively, we obtain

It is worth while noticing that Nambu, in his investi-
gation of the general representation of Green's func- 1 t, Gtt GO

tions, found a form which is almost the same as (12). = — d24 dit

Since we are interested in the p dependence of F (q and P k +PE P k PE
E are fixed), H(x, y, s) is independent of p but may
depend upon q and E. ln (12), p' is understood to
include vanishingly small imaginary parts.

Now, using

1 00

=i
l

d24 exp {—i24{ (p —p')2+t42j I,
(P P')'+t"— J=-

p2 k2+pE p2 k2 pE J
~, , F(P', q,E)

(P P')'+t"—
and (12), we find, upon replacing the integration
variable I by Ns,

F(P', q,E)I= d4p'—
(P P')'+p'—

=i dx I dy ds d24 soH(x, y, z)
t'"

"C O 0 0

X ~d4P' exp( —is((P"—k'+P'E)x

F00 00 GO

tO
Ott GO 00

2r2 d24 ~ dO t dX dy II dt~ dS
"o "o Jo "o

H(,y,s)
Xt' E'(x,y, s,t) exp { it-

x+y+1

X I:(x+~)(P' —k'+PE)+(y+o) (P' —k' —PE)

+ (P q)'+t"jt—
Kith the substitution of u —x, n —y for the variables

+(P'2 k2 P'E)y+(Pi q)2y&2+L(P& P)oy&2)24}) 24, it, resPectively, followed by an interchange of the
order of the x and I integrations, etc. , we obtain finally

The integration over p' may be carried out with aid of
the integral formula

d'p' exp (imp") =i

Upon carrying out, subsequently, a change of the
integration variable from I to t by setting

t=24s/(x+y+ 24+ 1),
' Y. Nambu, Nuovo cimento 6, 1064 (1957).

t'I= —2r' ' d24 ' do dt t'exp{ —itL24(p2 —k'+pE)

+o(p' —k' —PE)+ (P—q)'+t '3 I

H (x,y, s)
X, dx i dy ds X(x,y,s,t). (15)

Jo o "o x+y+1

Notice that this has exactly the same form as (12).
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For the inhomogeneous term of (11), we write p integration with the help of (13), we derive the
following equation:

P2 k2+PE P2 k2 pE (p q)2+~2

g Zg

H(u, v, t) = — +
(2v)' 16v-'

H(x, y, s)
X dx dy ds E (x,y,s,t), (17)

o ~ o "i x+y+1

where E is given by (14).
Now, in view of Eqs. (10) and (12), it is clear that

(17) is an integral equation for the Green's function
for axed q and E. Since we are interested in the real
scattering problem, we have to set q=k. Making use
of (14) and (4b), we find

H(u, v, t) =— g' ig' t'" t" t
" H(x,y, s)

+ dx dy ds
(2v-)4 16v-' & ~ o x+y+1

(x+y)' ." (x—y)'
Xexp ik' (s—t) —i— (s—t)

x+y+1 4 x+y+1

sf
(x+y+1)+s—t, (q=k), (18)

s—3

where we have replaced E' by —o', according to (7).
We investigate next the relation between H(x, y,s)

and the scattering cross section. The wave function in
coordinate space is defined by

f(x) = d'P 4(p)s'"

r

i ~
d—u dv dt t2 exp I i t/u—(p' k'+—pE)

&0 ~0 -0

+v(p' k' pE—)+ (—p q)'+—ti'j }. (16)

Upon inserting (12), (15), and (16) into (11), we infer
that H must satisfy the integral equation

H(u, v, s)
P(x)=e'"*—iv' du ~ dv ' dsJ, (u+v+1)'

t'ix' 1 1
Xexp

~

+ikx( 4 s(u+v+1) u+v+1

Ex Q—v

z
2 u+v+1

iE' s(u —v)' s(u+v)'
+ik' —ip's ~. (19)

4 u+v+1 u+v+1 )

Now, we are interested in the asymptotic form of

P(x) as r ~ ~. Since the exponential factor will

oscillate quite rapidly in this limit, we can use the
so-called method of stationary phase. ' We then find

Actually, the physical interpretation of the 8-S wave
function f(x) is not well established, particularly since
it involves x4, the relative time coordinate of the two
nucleons. Since, in scattering experiments, we measure
the scattered waves of the two nucleons at the same
time, it seems reasonable to take x4=0. Indeed, in this
case, the 3-S wave function corresponds to a Tamm-
DancoG amplitude, ' whose physical meaning is clear.

Then, going over to the center-of-mass system for
which (7) is applicable, so that Ex=0, and introducing
the notations

x'=x'= r', kx= k x= kr cos8,

we obtain from Eq. (19)

P(x) —=P(x, x4 ——0)

H (u, v,s)
elk x ~.7r2

Jo "o "o (u+v+1)
r2

Xexp] i +ikr cose
4 4 s(u+v+1) u+v+1

o' s(u —v)' s(u+v)'
i ——+ik' i''z (—.

4 u+v+1 u+v+1

Recalling that

4(p) =G(P, q=k, E)
2v'ie'" ~"-( r r

P(x)-s""—
r & o E4ks 4ks

and making use of Eqs. (10) and (12), we obtain

~ co oo oo

P(x) =e'"*+ du dv ds s'H(u, v, s)

X d'p exptiipx istiu(p' —k'+ pE)—

+v (p' k' pE)+ (p k)'+—p,
'j}— —

where, to avoid confusion, we have written n and v

instead of x and y in Eq. (12), Upon carrying out the

Xexp I
—is[2k'(1 —cosg)+p, ']}, (r ~ ~). (20)

Defining a four-vector k' by k'= (k', 0), where k"=k'
and k'~~x, we have finally

P (x)~ haik
~ x

2m'i e'"" r"
ds H (u = oo, v = ~, s)

e r "o
Xexp I

—ist (k —k')'+t '] } (21)

~ M, M. Levy, Phys. Rev. 88, 725 (1952).
7 G. N. Watson, 2'heory of Bessel Fnectioms (Cambridge Uni-

versity Press, Cambridge, 1945), se&opd edition, pp. 225, 229.
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Xexp I
—is[(k —k')'+p'g I . (22)

Strictly speaking, Eq. (22) is true only for the
scattering of two nonidentical particles, since we have
not symmetrized the scattering amplitude with respect
to the replacement of k by —k. For the st.e of sim-

plicity, however, we will not indicate this symmetri-
zation explicitly.

Our expression for the cross section [Eq. (22)j must
agree with the result derived from the usual S-matrix
formalism. Apart from a multiplicative factor, the T
matrix is given by'

ia' i, , &(p')

(2~)' " (p p')'+1 '— (23)

where p= (p,0), k= (k,0), and p'= k', i.e., we are
concerned here only with that part of the T matrix
which is on the energy shell; the function it (p') in (23)
satisfies (5'). The T matrix given here is related to the
S matrix in the usual way, ~is. ,

S„,i.= —2vri o(E„—Ei,)Tr.i,.
On evaluating (23) with the aid of (10), (12), and the

relation g (p') =G(p', k,E), one finds

00 g'2 ~gg 00 ~00 ~00

T&,y=
~

ds — + i
dx dyJ dL

Js (2m)' 16m-' Je "p

H(x, y, t) (x+y)' e' (x—y)'
exp ik' (1—s) —i— (1—s)

x+y+1 x+y+1 4 x+y+1

lts—ip' (x+y+ 1)+t s~—
S

Xexp I
—is[(P—k)'+ 1i'j I .

In view of the integral equation (18), this can be
rewritten in the form

Tp y= ds II Q= ~ ) 5= tx)
~ s

0

Xexp {—is[(p —k)'+~'j I, (24)

so that we are once again led to the formula (22) with
the replacement of p by k'.

In both derivations, we have assumed the existence
of H(u= ~, m= ~, z); indeed, when this is the case,

' K. Nishilima, Progr. Theoret. Phys. (Kyoto) 10, 549 (1953);
l2, 279 (1954); 13, 305 (1955).

provided H(u= ~, v= ~, z) exists. The scattering cross
section from the initial relative momentum k to the
final relative momentum k' is therefore given by

do. 4x'
ds H(N= oo ) v= oo, s)

dQ

the two determinations of the cross section agree with
one another. But, if H(N= ro, n= ~, s) does not exist,
then we will see that the usual S-matrix formalism is
useless. On the other hand, our erst approach which
was based on the evaluation of the asymptotic form of
the wave function needs to be re-examined, since it
now appears that the wave function does not have the
usual asymptotic form, vis. , that of an incoming plane
wave plus an outgoing spherical wave, but, in fact,
these waves are distorted, and indeed, at the same
time, the normalization of the incident wave is altered.
This has the consequence that the derivations of the
cross section based on the analysis of the coordinate-
space wave function and on the S-matrix formalism
will not agree. This peculiar result is obtained when
p, =0 and is essentially due to the infrared divergences
which are present in the theory.

In this paper, we will treat, in detail, only the case
@=0, the more general situation which obtains when
p/0 being too dificult to handle. When p=0, it follows
from (17) and (14) that H(N, v, t) is independent of 1,

H(u, v, 1) =—H(u, ti),

and satisfies the equation

H(u, v) =— g2 g2
dx I dyH(x, y

(2')4 16'' Jp "o

H(si, e) =—
(2')4 167rs s

H(x, y)X,(27)
-', e'(x—y)' —k'(x+y)' —i5

X—— (25)
—,'e'(x —y)' —k'(x+y) (x+y+1)

+q'( +x)y+qE( x y) ib— —
where —i6 is the vanishingly small negative imaginary
term which was implicitly included in the p' of all
denominators and exponential factors. Equation (12)
becomes correspondingly

F00 ~00

&(p,rI, E)=2i dx '

dy
0 0

. H(xy)
X (26)

k'+ p&)+y(p' k' p&)+ (p —V)'2— —
Evidently, the Gaussian representation (12) reduces to
the Stieltjes form (26) in the case 1i=0.

In point « fact, Eq. (25), which is valid when ii= 0,
may be obtained more easily by expressing F in the
form (26) and then following a procedure similar to
that used in Sec. III of I. An equation corresponding
to (25) has, in fact, been derived independently by
Nishgima' who used such a method.

When we deal with the real scattering problem, we
have only to set g= k in Eq. (25); in view of (4b), we
obtain



COVARIANT TWO —BODY PROBLEM. I I 297

which, in turn, is equivalent to the differential equation

H(zz, v)82 g2
H (zz,v) = (28)

r)Nr)v 16zrs 4e'(I v—)' k—2(24+v)2 z—8

and then talung the limit s —v+0 at the end of the
calculation. Under these circumstances, Eq. (28) still
holds good, but the boundary conditions now read

H(l=s, v) =H(z4, v=s) = —g2/(2zr)4. (31)

For later use, we write down, at this point, the
differential-equation formulation of (25), vzs

Cl2 g2

H(N») =
BQB8 16m'2

H(l, v)
X (32)

4es(g —v)2 —k2(Q+v) (I+vt'1)+g (zz+v)

with the boundary conditions

H(24=0, V) =H(N, V =0)= —g2/(2zr)4. (33)

In the derivation of (32), we have restricted ourselves
to those q that satisfy the relation qE=O, i.e., q has a
form similar to (8), but we do not assume that q2= k'.
This restriction is adequate for our needs, since, at the
end, we will take the limit q

—+ k.

subject to the boundary conditions

H(24=0, v) =H(zz, v=0) = —g2/(2zr)4. (29)

Nishijimas inferred from Eqs. (28) and (29) that the
solution must be of the form

H(N») = f((N —v)/(24+v)) f(~ 1)= —g'/(2~)'.

But then H(l, v) is a function of I/v only, whence it
follows from (27) that the integral on the right-hand
side is divergent for @=0 or y=0. This means that
(27) has, in fact, no solution at all.

One way out of this difhculty is to try to solve, not
(27), but rather the more general equation (25) for the
Green's function, and then let q

—& k at the very end.
In this method, the infrared divergence appears only at
the final stage of the calculation, i.e., when the limiting
process q

—+ k is performed, but not in the solution of
(25) itself. Physically, this procedure corresponds to
calculating the T matrix, first, off the energy shell and.

then going, in the limit, on to the energy shell.
Another way to proceed is to modify Eq. (27) by

introducing a small cutoff near @=0and y=0, so that

g2 g2 vv (vv

H(zz, v) = — +
(2zr)4 16zr2 ~,

H(x,y)
X (3o)

—,'e'(x —y)' —k'(x+y)' —z8

(72+k' —zrz Vp/r) P (x) =0; (34)

in momentum space, this equation assumes the form

zzzVp z P(y')
(y' —k')4 (y) = —

~ d'p'
(y' —y)'

(34')

The usual discussiono of the scattering solution of (34')
leads to the integral equation

rrzvo 1 t. P(p')
4(y) =&(p—&)— ~ d'p' . (35)

2zr2 y' k' —zb "— (p—p')'

On the other hand, the complete nonrelativistic
reductions of the B-S equation (5) yields an equation
similar to (35) with

g2= —16~m2VO. (36)

The customary method of handling the Coulornb-
scattering problem is to solve Eq. (34) directly in
coordinate space. However, it is well known that, while
Eq. (35) gives the exact Rutherford formula for the
scattering cross section in first Born approximation, it
leads to a divergent result in the second Born approxi-
mation. Actually, this divergence has the character of
an infrared catastrophe, as was already evident in our
discussion of the B-S equation.

Basically, Eq. (35) has no solution, because of the
fact that the first term on the right-hand side represents
a pure incoming plane wave and the second term an
outgoing spherical wave; but we know from the solution
in coordinate space that, because of the long range of
the Coulomb potential, both the incoming plane wave
and the outgoing spherical wave are distorted. We must
therefore be careful in applying the usual 5-matrix
formalism in this case.

We proceed to modify (35) in the manner described
in the preceding section, and calculate the scattering
cross section according to both the Green's-function
method and the cutoff procedure.

Instead of the wave function iP(y), we introduce the
Green's function G(p, q) which satisfies the equation

zzzVo 1
I

G(y' q)
G(y, q) =~(p—«)— d'P', (37)

2zr2 y' —k' —z8 ~ (y—y')'

where q is an arbitrary vector which does not necessarily
' H. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).

IV. INVESTIGATION OF THE COULOMB-SCATTERING
PROBLEM IN MOMENTUM SPACE

Before we proceed to solve (30) or (32), we will
study the Coulomb-scattering problem in momentum
space. As we will see later, this will help in our under-
standing of the various difficulties involved in the
solution of the B-S equation.

The equation for the relative motion of two particles
which interact via the Coulomb potential V= Vp/r is
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Next, we calculate the T matrix, using the result 3ust
obtained for the Green's function. According to the
usual S-matrix formalism, ' the T matrix is given by

satisfy q'= k'. Unlike (35), Eq. (37) has a finite solution.
Evidently, Eq. (37) is the analog of (6), and, indeed,
may be obtained from (6) on carrying out the complete
nonrelativistic reduction. ' To solve (37), we set t, , ~(p', q)

&i,e=, I
dp

2~2 g —p')'
(44)G(p, q) =~(p—q)

H(~)
Using Eqs. (38) and (39), we have

which is essentially the nonrelativistic analog of (10) I' ~=
~

+zzr& ~ d(
U, l

1 ~" H(p)

and (26), and use the int. egral identity 2~'&(p —q)' 0 k(p' —k')+(p —q)'

7r2i

(p—p~)2 (p~z —g~ —zg)2 y p2 y2 zg

1
(44')

L~(~+1)k' —«']-:&

(Re/)0), (39) For the real scattering problem, we have, of course,

dop /

(p —p')' —i8 (plz+A —ib)' 2 A pz+A

We can then deduce the integral equation

H(s)mVO imt/p p(
ds (4o)

2zr' 2 "o I s(s+1)k' —sq' —i&]'

which, in turn, corresponds to the relativistic formula

i7r2 1

y2 ~ P2 g2 ~ P2

whence we see that divergences occur in the P integra-
tion at )=0 and $= ~; we therefore continue to defer
the taking of this limit.

Using Eqs. (41a, b) and carrying out an integration
by parts, we find

(p' —k')
T, ,= ——i d$ H(g. (46)

Lk(p' —k')+ (p —«)']'

the method of derivation of Eq. (40) is very similar
to that used in Sec. III of I.

Equation (40) is, in turn, equivalent to the differ-
ential equation

Now, assuming for the sake of definiteness, that

y'2Q P2P q2

and carrying out the change of variable

(47)

—H(~) =-
d$

H(~)

2 [~(&+1)k'-~q']-: we obtain
(p —q)'(p' —k') 4

with
H (0) = —mUp/2~',

which has the solution

(41b)

where

)(a+A)-:+&~-
2 ' (p- q)' " (P+1)' E(PyP'~)' —P)

~UO l Lk(E+ 1)k' $q']'*+kE~—'
H(S) = — I, I (42)

2~' ( t P(g+1)k' —$q']-'* —k$J

p2 P2

(p —q)'
(48a)

where
n= —zzzVp/2k. (43)

Fquation (42) is similar to (I, 27b); accordingly, the
Green's function, regarded as an analytic function of o, ,
has simple poles at in= zz (0=1, 2, 3, ). This implies
the existence of bound states for the Coulomb inter-
action, provided Vo(0. With k=i( —mE)*, we are led
once again to the Bohr formula for hydrogen-like atoms.
Correspondingly, the residues of the Green's function
will yield the bound-state eigenfunctions (see the
Appendix of I).

Now, in the real scattering problem, we should set
q=k. Under these circumstances, however, it is evident
that (42) will diverge, and hence Eq. (35) has no
solution. We will therefore refrain from taking this
limit until the very end of the calculation.

from (47), we have
P = 1—(q'/k');

Pl ~0

(48b)

In view of (45), we must now take the limit

Our expression for T~, ~ then becomes

ooo 1 oo goo

(~'~+0),
2~' EP') (p —q)»o (P+ 1)'

or 6nally

U ~4y' ore 1
(P' +o) (49)

2zi' & P') sinhzrn (p—k)'
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We notice that all the divergences appear in the phase
factor

(4jP')' = expLio. 1n(4/P')$,

and so will lead to no difficulties in the calculation of
the cross section.

From (49), the differential cross section for scattering
through the angle 0 is given by

do nz0 ( mu )0(do)—=(2~)'—IT,~I'=I . I I

—I, (50)
dQ 4 &sinh0rn l &.dQ) ~

where

fact, on the nature of the limiting process that is used.
We proceed, in the following, to explain this peculiar
result, and, in so doing, we will see how to interpret
the cross section properly. The essential point is that
one has to take note of the change of amplitude of the
incoming wave in the case of scattering by a Coulomb
field.

To see how this comes about, we calculate the wave
function in coordinate space; this is given by

&(x)= d'P e"*G(p,q), (q ~).

(do) n' 1

EdQ) ~ 4k' sin'(-', 0)
(51) From (38), we find

Tp q

1 I" 1
d«

2m' (p —q)' ~0 («—1+ih)'

Vp

-(«'+ l~'I «):+«-'-

-(«'+ l~'I «)-:—«

On taking the limit IP'I ~0, and rotating the «axis
through 180' in a positive direction, we obtain

is the classical Rutherford formula for the Coulomb-
scattering cross section. We see, therefore, that we have
obtained a result which differs from the usual Ruther-
ford formula. Since the latter should be correct, this
result is quite peculiar.

In deriving Eqs. (49) and (50), we assumed the
inequality (47). Since this assumption has little mean-
ing, we carry out the limiting process (45) in a somewhat
different way, Thus, suppose

k2) q2, k2) y2. (47')

Then, proceeding as before, but now carrying out the
change of variable

« ~ —(1 —q)'(1' —k') '«,

we find that. (46) goes over into

&(«)
»t (x) =e'&'+i~' ~~ d«

(«+1)I «(«+1)k' —«q'j»

i
«xpl (q x+rL«(«+1)k' —«q'3») I, (q~ k)

where r=
I x I . In what follows, we assume, for the sake

of simplicity, that

P2) q2

q= (0,0,q).

Making use once again of Eqs. (41a, b), we obtain,
after a partial integration,

2x'
»t(x)= ' d«&(«)—

m~o &o d«

1 (
exp

l
[qs+kr(«0+P«)») I, (q ~ k)

«+1 &«+1 )
where P is defined by (48b) and satisfies

P)0.

V0( 4 y' mnr =
I I

e--
2~' & IP'I ) sinhvrn

—,, (l~'I-0)
(Ii—q)'

(49')

We are now in a position to carry out the limiting
process g

—+ k, i.e. , P —+ 0. We then have

~4~ ia ao

lim I d««'—
(P) H~fia+0 Jdo ( mn q'f'do~

g
—7l A

dn Esinh~u ) Ldn),
(50')

It is evident, on comparison with Eq. (49), that we»t'(x) =
I I

' d««' expl (k&+kr«)
have here an extra factor of e ™.The cross section ~ ' d«-«+1 ~«+1
will therefore be given by

Of course, both (50) and (50') lead to the Rutherford
formula in first Born approximation.

It is now clear that, not only does the Green's-
function method lead to an incorrect formula for the
scattering cross section, but the formula depends, in

expl —(ks+kr«) I

«+1 ( «+1 )
(4~' r

~" «'—'
p i

lim e
) d«expl (ks+kr«)—)(P) 0~fia+0 J «+ 1
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If we set u= f//+1), we find"

~i
ip(x)=inl —

I
lim e'oz)' dul' '(1—e) 'e' "(" *)

(p/I 8~in+0

n -(4) '

I

—
I

e'"',F,(i n, 1; ik(r —s)),
sinh~n &p//

(52)

Thus we see that the amplitude of the incoming wave

is now given b

where &F& is the conQuent hypergeometric function, and
all divergences again appear in the phase factor.

Equation (52) agrees, except for a multiplicative
factor, with the usual scattering solution. As we will see

shortly, the essential point here consists in the appear-
ance of this additional constant factor.

The form of the wave function ttr(x) at infinity may
be determined from the asymptotic expansion of the
confluent hypergeometric function; this gives

(4 y
z(K e zA/2 (

p(x) l I l

e)'r ' i (o —i)
sinh~n EP) I'(1—in) E

p (1 in) ei/zr+ia )n(/zr —kz)
q

+n I. (53)
r (1+in) k(r —s) )

In the same way, when we consider (50'), we must use
(55) for both Zo(q) and Zo(p) in view of Eq. (47'); in
consequence, we obtain (57) once again. Evidently,
after we have carried out an amplitude renormalization,
we can indeed obtain the correct cross section, no
matter which form of limiting process is used.

It is interesting. to notice that, of the two possible
expressions for IZol I Eqs. (55) and (56)], one will

always be greater than unity, the other will be less
than unity, depending on the sign of n. This is unlike
the case of field theory" for which, formally at least,
one has IZol &1.

Next, we investigate the cutoff procedure proposed
in the previous section; this will turn out to be much
more suitable than the Green's-function method for
the discussion of the scattering problem within the 8-S
formalism. When we apply a cutoff, we take q= k from
the very beginning; then, Eq. (40) becomes

nzVo imVo I' H(s)
ds

2& ~o s

But, as we have already noted earlier, this equation
has no solution Lsee Eq. (42)]. We therefore introduce
a small cutoG s and consider the following integral
equation:

(4 ~
irz e rrzt/o—

sinhmn (P/ F(1—in)
(54)

mUo / & H(s)
+on) ds

27'' ~ s

even though it was originally normalized to unity
[see Eq. (35)].

The physical meaning of Z2& is essentially the same

as in the case of quantum field theory; it plays the role

of the renormalization constant of the amplitude of an
external line. " This factor has its origin in the long-

range character of the Coulomb potential. As in quan-

tum 6eld theory, we must therefore divide the cross
section by I

Zo
I I

Z&'I, where Zo and Zo' are the constants

appropriate to the initial and final states, respectively.
For p)0, it follows from (54) that

where n is defined by (43), and, at the conclusion of our
calculation, we must take the limit s ~ +0.

The solution of (58) is given by

(59)&(~)=-( V./2 ')h/)-
From (44'), we find that the T matrix is equal to

Vo (
27/& ( (p—k) o

27l &(k) i+ k, g(p' —k')+ (y —k)' g )(55)lzol = ( /slilh n)e, (P)0).
On the other hand, when p&0, we have

IZ, I

= (~n/sinhmn)e, (P&0),
It is consistent to set p'= k' here, too, whence we have

(56)
since

(4/p)'. = (4/I pl)"-
1 (" 1(P) *

~p, k
2m' (y —k)' ~, ( &s)

There is still a divergence at (= oo; we therefore
introduce an upper bound I. for the ( variable, so that

Vo 1 ('
/

i 1(() 'a-

Tp 1+in, ~ d( -
ll

—
I

2~' (y —k)'- ~. p & s)

In applying these results to Eq. (50), we notice that,
since it is based on the inequality (47), we must use

Eqs. (55) and (56) for Z, (q) and Z&(p), respectively.
The result is to give

/'do ) 1 /do ) /do).
I
—I=I —

I
. (57)

«f1~- - .i-d IZo(p)IIZo(q)l &do,) &dn) ~

'0 A. Erdelyi et uL. , Ifigher TranscendeetaL Factions (McGraw-
Hill Book. Company, Inc. , New York, 1953), Vol. I, p. 255.

"F.J. Dyson, Phys. Rev. 75, 1736 (1949).

"G. Kallen, Helv. Phys. Acta 25, 417 (1952); H. Lehmann,
Nuovo cimento 11,342 (1954);but see also T. D. I,ee, Phys. Rev.
95, 1329 (1954).
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On carrying out the integration, we have

Vo 1 (Li'
Tp, k

2~2(12—1,)2& s j (60)

the cross section will then be given by

do kr6 4vr6 1
I IH(I=L, &=L) I'.

dQ e' e' (p —k)'p

where s —+ +0 and L~ + eo.
Once again, it is evident that all divergences appear

in a phase factor, so that the scattering cross section is
given by

Since k and p both have the form (8), we find

do- x'
~H(22=L, n=L) ~2

dQ 4e'k' sin4( —', 8)
(62)

(d~l
dQ &dQ) 22

We have, by use of the cutoG procedure, obtained the
Rutherford scattering formula, without encountering
extraneous multiplicative factors. If we calculate the
wave function in coordinate space, we find that, in this
case, the wave function no longer contains distorted
waves, but consists, asymptotically, of the usual plane
plus outgoing spherical waves. With the cutoff, the
second term on the right-hand side of (35) represents
only an outgoing wave, and so, now, Z2=1.

These results are connected with the existence of
H(f= ~). In our discussion of the formalism of the
nucleon-nucleon scattering problem in Sec. III, we saw
that, if H(x= eo, y= eo, z) exists, then there are essenti-
ally no difhculties. Our cutoG procedure evidently
assures the existence of this quantity, i.e., it corresponds
to a cutofF of the long-range Coulomb potential at large
distances.

It is also interesting to note that, if we take, first,
the limit L~ ~, we obtain the usual wave function
(52) with distorted waves; then, we must take into
account the amplitude renormalization factor Z2' just
as we did in the Green's-function case. On the other
hand, if we let r ~ ~ with L Axed, the wave function
at infinity is nondistorted, and we get the Rutherford
formula. Thus, the two limiting processes L —+ ~ and
r —+ Oo do not commute. In both cases, nonzero s
simply serves to assure the nondivergence of our
integrals at /=0.

We have had to introduce two cutoG parameters L
and s so as to obtain convergence at $= ~ and )=0.
In the anal result, both parameters always appear in
the combination L/s /see Eq. (60) and Sec. V).

V. SOLUTION OF THE B-S EQUATION

I+a= P, I—v=2). (63)

Equations (28) and (31) then become

( el2 e)2 ) g2

G(&,~), (64)
( el/2 e)212) 162r2 2 e2212 k2(2 25

with

G(k, lnl = t—2s) = —g'/(2 )',

where we have written

H(m, e) —=G(&,2));

we have also the inequalities

t&2s,

(65)

(66)

Because of the boundary condition (65), Eq. (64) no
longer has a solution which is a function only of 21/$,
unlike the case of no cutoff Lsee the argument following
Eq (29)3.

Now, it is quite dificult to solve Eqs. (64, 65)
exactly. Hence, we will use an approximation similar to
that employed in I, i.e., we will assume that e/k))1
which, again, amounts to a form of nonrelativistic
approximation.

In the lowest-order approximation, we can make use
of the relation"

3-i 2
-~(.), (ik--)

1 e2k22s&2 i8 ke—p
(67)

where 0 is the scattering angle. The angular dependence
is evidently the same as given by the Rutherford
formula, and does not depend on a perturbation calcu-
lation.

Our remaining problem is to obtain II. Instead of
using the variables I and v in Eqs. (28) and (31), it is
convenient to introduce $ and 21 which are defined by

We will first apply the cutoG procedure, i.e., we Inust
solve Eq. (30) or, equivalently, Eqs. (28) and (31).
Having done so, we will have, from (24) and the identity

The solution of Eqs. (64, 65) is then given by

G(Z,~) =
g' (~—l~li'

(22r)4 & 2s ) (68)

H(u, e,z) —=H(u, v),

which obtains when @=0, the relation

Tu, &= L
—i/(p —k)'jH(N= L, e= L); (61)

we have here also introduced a cutoG at I=I., ~=L
according to our prescription. In view of Eq. (22),

where
n= g2/162rke. (69)

Using (36) and the relation e=2222, we find that u as
given by '(69) is exactly the same as that given by (43)
for the Coulomb-scattering problem.

"G. C. Wick, Phys. Rev. 96, 1124 (1954); see also (I,26).
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Putting together Eqs. (63), (66), (68), and (61), we
obtain

ig' 1 (Lq '"
(
—I, (70)

(2m)4 (p —k)' & s )
which, in turn, corresponds to Eq. (60); the difference
in the multiplicative factors in the two cases arises
simply from the difference in the def nition of 14 for the
nonrelativistic and covariant situations. In view of
Eqs. (62) and (69), we have finally

da/dD= (do/dQ) ~.

The approximation (67) thus yields nothing other than
the results already obtained in Sec. IV.

Wee proceed to calculate the corrections of next
higher order to the Rutherford scattering. Toward
this end, we note the formula

1 E2~2 k2(2 i8 224 Eogo kop

~i1 ( 2k' ( 2k'-
+——

&I n+ Z I+~—
l

2t —8 I

—. (71)
Ekg ( E

Since it is still dificult to solve these equations exactly,
we proceed by expanding F& and P& in the form of a
power series in k/e and consistently neglect terms of
order (k/e)2 with respect to the lowest-order approxi-
mation. The final result for the solution of (73), subject
to the boundary condition (65) and correct to first
order in k/e, is as follows:

2k
Go(~,.) =~a- l.l»+= 1

2s

2k
(»a)

E e )
2k 2k ((+~q

Go(r,~)= ,'&(r+~-) 1-~ +»n(
e e E2s)

2k 2k
+2&((—g) 1— iu+—u'—ln(

2$

( 2k
(»b)

e )

g (S)
(22r)4 (2s] (76)

It is to be emphasized that these formulas are not the
results of a weak-coupling perturbation theory. The
parameter of smallness in the calculation is k/e, and we
need not assume that n is either small or large.

Now that we have solved Eq. (73), we consider Eq.
(74). Since we are interested only in corrections of
orders k/e with respect to the limiting case k/e ~ 0,
we can simplify (74) as follows:

P2)G= Go+Gi+

and retaining only the f rst two terms, we have

(82 82) iu ( 2k ) ( 2k )
l~+—~I+I~——eI, . ( )

& 8p Brp) p E e ) 0 e )
(a2 EI21 Eu (2-k ~ ( 2k l-

I

— IGi=—
~l n+ ( I+&I —

n a I
Gi- —

(an ag2) ( ( e ) 4 e ) ( E12

4 Elg

82 2I 2j~
IG ((,~)= &(it)G (P,~)

ag2)

+ Go, (74)
C

16vr2 -', E2vP —koj2 + . (74')
g' ~(E—

I n I )

k2Pwhere we have used (69).
To solve (73), we notice that this equation, together

with the boundary condition (65), implies that

Go(8,21) =Ili(8 lnl), L—lnl & (2k/E)6,

Go(gq) =&2((+ri)+~2(( 2t), Llnl & (—2k/e)H,

where the functions F~ and F2 are to be determined
from the requirements that Go(g,g) be continuous, and
also be a solution of (73), at g=&(2k/e)f We then.
find that

The general solution of (74') may be expressed in the
form

g2 p 4—frll

G (S,~) =H(a —
I ~ I )+

16m'
dx F(x)LI(x, (+ I~I)

whereIn the limit as k/e —4 0, the second term on the right-
hand side of (71) gives (67). Evidently, the first term,
which is to be interpreted as the Cauchy principal
value, is of higher order than the second with respect
to the parameter k/e. Expanding G in (64) in the form
of a power series

2k ( 2k q ( 2k )
p

( z——s =~.
l ~

——
~ I+~.

( z+—~ I,
E E E ) E E

d ( 2k q 2u ( 2k
~

d$ 0 e ) $ ( e

I(x,y) = dy
4 e'(*—y)' —k2 (x+y) ' (78)

and H(x) is a function to be determined.
The evaluation of H(x) may be performed by inte-

grating p4') with respect to g from g= —Q to il=+ig
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and then taking the limit 5 —+ +0. We then find that final result. One finds

AX g2 zn
H—(~) = H—(~)+ — d*F( )[I(*,8-I(,*)]

d$ $ 82r' $ ~2,

zn 1

y F(y)

1

dy F(y)

and integrate by parts with respect to y, we can write

g2 g2

H(~)= — d F( )II(,~)
—I(., )]+ F(~)

8z2 ~ 87'-2

F(x)
X dy dx, (79)

F(y) ~ 2, -', e'(x —y)' —k'(x+y)'

where we have made use of Eq. (78). This result,
together with (77), yields

g2 0—I nl

G, ($,21) = I dx F(x)[I(x, t+ lit l)
16+2 ~ 2,

With aid of the boundary condition

H($ —l pl =2s) =0,

which follows from (65), (72), and (75a), we may
integrate the previous equation to give

g2

H(P) = (io.)F(&) dy — dx F(x)
82r' &„F(y)y & „

X[I(x,y)
—I(x,x)].

If we now take note of the relation

g' ~L~' I
2k

l
—

l l1——(~)
(22r)4 ( s ) & e

2k 8nk
+—n2 ln(L/s)+ —(———', + (in) [%(1+ie2)—4'(1)

H(N=L, e=L)=

8n k—1—ln(e/4k)]} ln(I/s)+ —[4—'(1+in) —4(1)

—1—ln(e/4k)+(i42)%'(1+io. )] l, (81)

—4'(1—in)] —4'(1)—1—1n(e/4k) }, (82)

where%'(x) = (d/dx) lnI'(x) and 4'(x) is its derivative;
we have in (81) omitted terms of order higher than k/e
and also terms which go to zero for vanishing s/L.

It is interesting to notice that s and I appear together
in the combination L/s, so that, from a practical
standpoint, we have effectively introduced only one
parameter L/s, which tends to infinity. It will also be
observed that, this time, the infrared divergence does
not occur wholly in a phase factor.

With aid of the identity

%(1+in)—%(1—i42) = (1/i42) (1—m-n COth2rn),

we see finally from (62) and (81) that

do (dog 4k
1+—422(1 —2 COth2rn) ln(L/S)

dQ kdQJ ii e

16k
+—={ll~(1+ )+~(1—')]+! l~'(1+')

g2 5—lel
—I(x, ~-l.l)]+ F(~-l~l)

8x2 2s F(y)

pW F(x)
X~ d& (8o)

~J 2 &e2(X y)2 k2(X+y)2

Next, we calculate H(24=L, v=L) and the scattering
cross section. From Eqs. (66), (72), (75b), (76), and
(80), we find

H(24=L, v=L)

=Gp ($= 2L, g =0)+Gi ((= 2L, q =0)

pL~' g' 2k 2k
1——(in)+—422 ln(L/s)

E s ) (22r)4.. e e

g2 ~2L py g'bA

+ ~ dyy 4~
I dx

82r2 ~ 2, "2, —,'e'(x —y)' —k'(x+y)'

The evaluation of the integral in the preceding equation
is quite complicated. We shall here simply quote the

so that we have obtained corrections of order k/e with
respect to the Rutherford formula. However, unlike
the simple Coulomb-scattering problem, we still have
an infrared divergence (do/dQ ~ po as L/s ~ ~ ),
which should be canceled by taking into account the
cross section for the emission of soft photons. That one
encounters an infrared divergence in the first-order
corrections to the Rutherford formula, but not in the
Rutherford formula itself, is explained roughly by the
fact that higher-order corrections to the nonrelativistic
Coulomb potential contain terms such as r ' lnr; these
are of too long range to allow the existence of the usual
scattering solutions.

Next, we consider the Green's-function method. As
we saw in Sec. IV, it will be necessary in this case to
carry out an amplitude renormalization. It will turn
out that this is feasible in the lowest-order approxi-
mation in k/e, but difhculties appear when we calculate
higher-order corrections.

We must solve Eq. (32) subject to the boundary
conditions (33). Introducing the variables e, 2j and the
function G, defined by Eqs. (63) and (66), respectively,
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we find that Eqs. (32) and (33) assume the following
form:

( g2 gz )
EBp

2 G(~,.)
(83)

16zr' -'o'vP —k'P —(k' —q') g
—zb

G($, g =&()= —g/(2 z)r'. (84)

Of course, if we set q'= k', Eq. (83) goes over into (64).
In the lowest-order approximation, i.e., for k/o —+ 0,

we can use the relation

1 vari 2

,~(~), (85)
xoz~z kzgz (kz qz) P zg ko (tz+P()

where P is defined by (48b); it is clear that Eq. (85) is
an extension of (67). The solution of Eqs. (84, 85) is
then given by

G(~,.)=F(~- I.I),
-(*+Px)-*'yx-'.

(86)

2k
+~ n (8+Pl)'* ——Go (87)

(8 8 ) zn 2k

, ~ ~+ (e+~~)-:—
( 8$ Bg ) (P+P$)' - o

2k
+5 q —(@+PC)'*—Gi

Go. (88)
16m' 'o'rP k'(P+P$)-—

()
(2~)4 (xzyPx)'* —x

where n is defined by (69). This result corresponds to
Eq. (42) of Sec. IV.

We can next calculate the cross section, and we obtain
Eqs. (50) or (50'). To determine the amplitude re-
normalization constants, we compute the wave function
in coordinate space in the manner discussed in Sec. III;
we 6nd that the wave function is once again given by
Eq. (52), and so the renormalization constants Zz are
the same as (55) and (56). Thus, in the lowest-order
approximation, everything is essentially the same as in
the nonrelativistic approximation treated in Sec. IV,
except for the fact that the formalism that we are
using here is covariant. Actually, it can be shown that
our Green's function goes over into the nonrelativistic
Green's function for the Coulomb-scattering problem
in the nonrelativistic limit.

We go on to consider corrections of order k/o with
respect to the nonrelativistic result. By using a de-
composition similar to (71) and (72), we obtain a set
of equations which are the analogs of (73) and (74), vis. ,
t' O' 8') in 2k

, ~.+—(v+~8:
k ap a~') (@+pe)-'*

The same method which was used in solving (73) and
(74) can be applied here; one finds that

P(P—I~I)-
G,(t,~)=F(g—I~I) 1——(zn) ln

P(0)—
2k

(e—+or) (89a)

2k 2k F($+g)
Go(&,n)= ', F($+-g) 1——(iu) ——(in) ln

P(0)—
2k 2k P(g —q)-

+-',P(( zl) 1—— (i—n) ——(in) ln
o o F(0)

2k
(e+—or) (89b)

where F(x) is defined by (86), and where we have
omitted terms of order (k/o)' and higher.

The solution of (88) parallels that of (74); we obtain

4
—

I rfl

G, ((py) = ]& dx P(x)P(x, P+ fqI)
$6~2 J

I
z—lol

—I(x, ~
—I~I)3+ F(~—I.I)

8zrz o P(y)

P(x)

-', o'(x—y)' —k'(x+y)' —2k'P (x+y)
where I(x,y) is now given by

p
'Il 1

I(x,y) = dy . (91)
J i &2(x y)2 k2(x+y)2 2kzP(x+y)

Unlike the cutoB procedure, we cannot now use the
formula (22) to calculate the cross section, because
H(N= ~, v= oo) does not exist. Instead, we calculate
the T matrix from (23), replacing P by G(p, q,E) which
is defined by (6) with p, =0; using Eqs. (10), (26), (63),
and (66), we find

ig' ( 1

(2zr)' E (p —q)' 2 "o

1Xtd,
&(p' k')+~pE+ (p —q)'—

G(r;)
X (92)

1 o2~2+~qg kz$2 (kz qz) g

Once again, we must let p', q' —+ k'. The T matrix will

depend on the nature of the limiting process, as was the
case in our discussion of Coulomb scattering. Assuming
the inequality (47), for definiteness Lnote that the
fourth components of p and q can be taken to be zero
in view of (8)g, we can evaluate (92) by using (89a, b)
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and (90). Neglecting terms of order (k/e)', we find, in tion constant Z2, we need to calculate the wave function
the limit P', q' ~ k', the following result: in coordinate space, ~is. ,

T„,,=-
~

—
~

$A+Bln(4/p') j, (93) &(*)=lim "d'Pe'" L~(P ~)+F(P,a&)j
ig' 1 m.o. ('4y '

(2m)4 (P—g)'sinh~4). & P')

where

g' (' mi
A =1+

i
——(1— cothirn)+2t%'(1+i )

—+(1)—1—ln (e/4k) +in%"(1+in)j

oo

=.'*+»m, ~t dr ~d, G(&,,)
q-+le

0

Assuming

espy

X I' d'p (96)
L~(P' k')+-~pF-+(P q)'3—'

——(1—mn cothir4I) (—1+2inf+(1+in)

8= ((m-n/2) —1+2int'+(1+io.)4x'e'

where p' and n are defined by (48) and (69), respectively.
We do not give the details of the complicated calcu-
lation leading to (93) and (94).

In the lowest order in k/e, Eqs. (93) and (94) are
essentially equivalent to (49} except for a nonessential
constant factor which has its origin in the difference in
normalization of the relativistic and nonrelativistic T
matrices.

In the lowest-order approximation, the cross section
is given by (50), and the amplitude renormalization
constant by (55). We can, of course, calculate the cross
section with relativistic corrections from (93) and (94);
the result is given by

d~ ( nnl'(d~l . - g' ('+ I sL~('+~)
dQ ~sinhirn) EdQ) II ir'e~ (

(4l
&& 1— + l i-(+ i d~

Ep) 8ir' Jo

t'bA P4l 1—
X— in( -~ I—

—,'e'(1 —t)' —k'(1+&)' ~ P )
t g2

2

(4) ' n'n

+ ]
—

f
e'"], (iir) cothmn IFI(ui, 1; ik(r —s))

I p) sinhm. n

IFI(~, 1; ik(r —s))
d(in) 8Ir' ~ o

and setting x4=0, we can calculate IP(x) up to and
including terms of order k/e. This task is quite compli-
cated, and, again, we do not reproduce the details here.
If we put, for simplicity,

k= (0,0,k),

and make use of (89) and (90), the result is to find, in
the limit as p ~ 0,

Ji4) '" ~n
P(x)=) —

(
e*'"' IFI(in, 1; ik(r s))—

& p J sinhira

+e(1—~)$—e(1)—1—ln(./4k)+ —[e'(1+i~)
2

1—0"(1—in) j+—(1—Irn COthiru) p, $O (1+4'o.)

X I+a(x), (»)
—,'e'(1 —t)' —k'(1+1)'J

where all the notations are the same as in Sec. IV, and
p(x) is a function which goes to zero quite rapidly at
infinity, and so does not have to be considered,

Unfortunately, Eq, (97) contains the term

g' t'sn 1 in
+ ) + LO(1+io.)

(4l—
(95)

J (p'),
Notice that the last term of (95) depends on ln(4/p'),
and so our expression for the cross section is divergent.

To obtain the correct cross section, we must carry out
an amplitude renormalization; to find the renormaliza-

IFI(iu, 1; ik(r —s)),
d(in)

which has the asymptotic form

( i ) ln(kr kS) )
eiizz irz In{br—kz)—~~ ~

I'(1—ie)

p (1 ~) eiLr+in In(izr —Irz)
q

CE

I'(1+in) k(r —s)
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In other words, the amplitudes of the incoming and
outgoing waves will now contain the factor ln(kr —ks)
which diverges at infinity. In this case, therefore, we
have difficulty in giving physical meaning to the wave
function P(x), and so we can calculate neither the cross
section nor the renormalization constant Z2.

The appearance of a logarithmically diverging ampli-
tude may be due to the failure of the expansion in k/e.
As we have noted earlier, a calculation of the potential
in terms of such an expansion leads, in the lowest-order
approximation, to the ordinary Coulomb potential; the
next-order approximation contains an r lnr term. This

r 'lnr potential has a much longer range than the
ordinary Coulomb potential 1jr and so would inevitably
lead to an additional distortion of the incoming and
outgoing waves. There remains the possibility that we
can circumvent these difficulties by avoiding a pertur-
bation-theoretical calculation in kje. Unfortunately,
this general case is extremely dificult to solve.
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Detection anti Generation of Gravitational Waves*
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Methods are proposed for measurement of the Riemann tensor and detection of gravitational waves.
These make use of the f'act that relative motion of mass points, or strains in a crystal, can be produced by
second derivatives of the gravitational fields. The strains in a crystal may result in electric polarization
in consequence of the piezoelectric effect. Measurement of voltages then enables certain components of the
Riemann tensor to be determined. Mathematical analysis of the limitations is given. Arrangements are
presented for search for gravitational radiation.

The generation of gravitational waves in the laboratory is discussed. New methods are proposed which
employ electrically induced stresses in crystals. These give approximately a seventeen-order increase in
radiation over a spinning rod of the same length as the crystal. At the same frequency the crystal gives
radiation which is about thirty-nine orders greater than that of a spinning rod.

INTRODUCTION

HE question of gravitational radiation has always
been a central issue in the General Theory of

Relativity. Long ago, Einstein' and Eddington' studied
the problem and predicted that very small amounts of
energy would be radiated by a spinning rod or a double
star. A great deal of theoretical work on the radiation
problem has appeared, during the past four decades.

Experimental work along these lines now appears
possible. Two avenues of approach will be considered. '
First we should like to detect the presence of gravita-
tional radiation incident on earth from either the sun
or outside the solar system. Secondly it would be highly
desirable to be able to generate and detect this radiation
in a small laboratory.

Devices for detection of the radiation operate essen-
tially by measuring the Fourier transform of the

* Supported by the National Science Foundation.
A. Einstein, Sitzber. deut. Akad. Wiss. Berlin, Kl. Math.

Physik u, Tech. (1916),p. 688; (1918),p. 154.' A. S. Eddington, Proc. Roy. Soc. (London) A102, 268 (1923).
'A number of the results discussed here were given without

proof in the author's Gravity Research Foundation Prize Essays,
April 1958 and April 1959, and at the Royaumont Conference on
the Relativistic Theories of Gravitation, Royaumont, France,
June, 1959 (unpublished).

DETECTION OF GRAVITATIONAL RADIATION

Suppose we have a system of masses which may
interact with each other. We start with the action
principle

5I=6 —cm ds+W =0.

In (1) sit is the rest mass and W is the part of the action
function associated with forces arising from the motion
of the mass relative to other masses with which it
interacts. The line element ds is given by

ds'= g vdx"dx"

For BV we assume a function given by

(2)

—c5W= )( F„5x&ds; (3)

(3) identifies F„as the four-force. The Euler-I. agrange

Riemann tensor. These will be discussed first. This will

then be followed by proposals for generation of gravita-
tional radiation which may give an increase of many
orders over the gravitational radiation from a spin-
ning rod.


