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A method is introduced for locating and interpreting the singularities in fInite-order perturbation expan-
sions of Green's functions, in cases where the external momenta are complex vectors with real scalar products.
In particular, when the external momenta form a real Euclidean set, there is a simple graphical construction,
applicable to all 6nite orders. As an example of a case in which the external momenta form a real set in a
space of signature (+, +; —,—), a feature of Mandelstam's representation for scattering amplitudes is
interpreted in perturbation theory. Finally, the ranges of values of momentum-transfer for which (in
perturbation theory) dispersion relations certainly hold are enlarged, in particular by using the fact that
the pion is pseudoscalar.

1. INTRODUCTION

""UTIL there are more powerful techniques for
determining the analyticity of exact Green's

functions, a study of 6nite-order perturbation expan-
sions will remain a valuable guide to what dispersion
relations can be expected to be true. To this end it is
important, not only to locate the singularities of pertur-
bation theory, but also to have whatever "physical"
interpretation of them may be possible. The emphasis
in this paper therefore is on understanding old results
rather than deriving new ones. However, the new
method turns out to be more powerful than existing
methods in several respects.
&: Let the external momenta for a given Green's
function be p; and their scalar products p,"p;. The
analyticity of 5-matrix elements, where the p, are real,
is completely understood from the work of Dyson and
Eden. ' The singularities are determined by the unitarity
of S, and they correspond to physical thresholds.
Mathematically, these singularities come from displaced
poles; and the simplicity of their structure is, as we
shall see, connected with the signature of the Lorentz
metric.

Dispersion relation theory, however, requires Green's
functions for which the p; are not real. Like previous
workers, we restrict ourselves to the greatly simplified
case in which the p,"p, are real. It is then always
possible to choose a set of real vectors, p, in a 4-
dimensional space, L', of some signature, such that
p,

'
p, '=p; p;. The basic method of this paper is to

consider integrals with exactly the same form as
ordinary Feynman perturbation theory integrals, but
with all the vectors belonging to I'; and then to
investigate the analyticity of these integrals by a
generalization of the idea of displaced poles. (There is

no unitary condition in L' so these displaced poles do
not correspond in any obvious way to physical thresh-
olds. )

The integrals in L' are relevant for the following
reason. If, as a result of the standard Feynman pro-

' F. J. Dyson, Phys. Rev. 75, 1736 (1949); R. J. Eden, Proc.
Roy. Soc. (London) A210, 388 (1952).

cedure, a perturbation theory integral takes the form

t d'k[k' F(p"p—; tc)+ie7 "

1 1
i7r'(F is)' —" (1)

2 r(r —1)

then the corresponding integral in L' would be

i d'k'fk" F(p' p,'—, I)+se7—"

1
i~7@(F—ie)s ". (2)

2 r(r —1)

Here the I's are a set of Feynman parameters (later to
be in.tegrated over), k' is a vector in L', and m is the
number of + signs occurring in the signature of L'.
Thus the analytic properties, which are determined by
the zeros of F, are the same in the two cases, apart from
the extra factor i™1.Further, it is the right-hand side
of (1) which defines the Green's function when the p;
are not real. The "Feynman" integral of which (2) is a
reduction, therefore, aGords a representation of essenti-
ally the same Green's function; but it is a representation
in which the structure of the "Feynman" denominators
is not obscured by complex vectors.

In Sec. 2, the method just sketched is employed to
interpret the singularities found by Karplus, Sommer-
field, and Wichmann. This class of singularities is
probably already pretty well understood Lsee reference
2 around Eq. (17)7 but we re-examine it in detail,
partly to show the similarity to the less well known
class introduced in Sec. 4.

In Sec. 3, the method of Sec. 1 is generalized so as to
provide a simple geometrical construction for locating
singularities, to any finite order, in cases where L' is
Euclidian. This construction is a generalization of one
already given, without explanation, by Karplus,
Sommerfield, and Wichmann' in an Appendix.

2 Karplus, Sommerfield, and Wichmann, Phys. Rev. 111, 1187
(1958).

'Karplus, Sommer6eld, and Wichmann, Phys. Rev. 114, 376
(1959).



J. C. TA VLOR

Frc. 1. Feynman graph for a
vertex-part Green function.

Section 4 gives an example where an I.' with signature
(+, +; —,—) is appropriate. This is two-particle
scattering with nonzero momentum-transfer in fourth
order perturbation theory. Here, our analysis points to
the existence of singularities on a certain curve in the
energy-momentum-transfer plane. This curve proves
to be the boundary of the region in which the spectral
function of Mandelstam's4 representation does not
vanish. The present method, therefore, adds a little to
our understanding of this curve.

Finally, the methods developed are applied to deter-
mine the maximum momentum transfer below which
dispersion relations can be proved to hold for 6nite-
order perturbation expansions. The work of Nambu'
and Symanzik' is simply rederived, and their limits are
improved upon. In particular, it is possible to take
account of the pseudoscalar nature of the pion.

2. ABNORMAL SINGULARITIES IN VERTEX PARTS

Consider a vertex part Green's function in third
order perturbation theory, with the Feynman graph
shown in Fig. 1. For simplicity, suppose the masses on
the internal lines to be each m, and put pis= pss=M',
p'=We For W&2M, pi, ps, and p cannot each be
taken real; but a Euclidean set, p, does exist. As a
matter of convenience, we shall take I.' to have signa-
ture (+, +; —,—) and each of the p,

' to have their
space components zero. Thus put

pi'= (-', W,g; 0,0), p= (W,O; 0,0),
ps'= (-,'W, —q; 0, 0), k= (x,y; kr, ks),

where q'=3P —48".
The "Feynman" denominators of the L'-space inte-

gral have zeros on three circles, C~, C2, and C3, in the
x-y plane, with centers at (0,0), (-,'W, g), and (—-', W, g),
each of radius R=(kis+kss+m')*')m. The analytic
properties of the function are entirely determined by
the relative positions of these three circles. Because of
the (assumed) stability condition M&2m, Ci and C&

always overlap, and so do C& and Cs. Otherwise, the
possible conhgurations are easily enumerated as follows.

(a) 3P&2m'. (i) W'&4m" Ci, Cs, and Cs contain
a common point for all E..

(ii) W')4m'. either R&-,'W and Cs and Cs do not
overlap, or R& 28' and C~, C2, and C3 contain a common
point.

4 S. Mandelstum, Phys. Rev. 112, 1344 (1958).
~ Y. Nambu, Nuovo cimento 9, 610 (1958).
s K. Symanzilt, Progr. Theoret. Phys. 20, 690 (1958).

(b) M')2m'. (i) W'&4M' —(M'/m'): Ci C, and Cs
contain a common point for all R.

(ii) 43P—(M /m') &W &4m' ' Cs and Cs overlap for
all R, but C&, C2, and C3 only contain a common point
for R') M4/(4M' —W').

(iii) 4ms&Ws&2M' Cs and Cs overlap for R)srW
but C&, C&, C3 only contain a common point for R')M4/(43P W')—.

(iv) W') 23P: either R&-,'W and Cs and Cs do not
overlap, or E)—,'W and C~, C2, and C3 contain a common
point.

When C~, C2, and C3 contain a common point, it is
possible to shift the origin to that point. The contours
in the complex x and y planes can then be rotated to
the imaginary axes, with no contributions from the
poles. When C2 and C3 do not overlap, on the other
hand, the situation is analogous to that of displaced
poles, ' and there is a contribution to the integral
corresponding to the coincidence of the poles on these
two circles. It is when C2 and C3 overlap but C~, C2,
and C3 do not contain a common point that a new
("abnormal" ) situation arises. This can occur only
for 3P&2m' and along a finite segment of the H/' axis:

4M' —M4/m'& W'&2M'.

These abnormal singularities were discovered by
Karplus, Sommerheld, and Wichmann.

When B'=2M the centers of the three circles become
collinear, and the function joins on smoothly to its
value when the p, are real Lorentz vectors.

The transition between a normal situation and an
abnormal one evidently occurs when the circles are in
the configuration of Fig. 2(a). Since the lines joining
the centers of the circles represent the vectors p', pi',
and ps& r this situation can happen only if the diagram
in Fig. 2(b) can be drawn. Here, the sides of the triangle
represent the Euclidian vectors p,

' in length and
direction, and the lengths of the internal lines represent
the masses ns. In order to correspond to a configuration
like Fig. 2(a) the common point of the three broken
lines must lie inside the continuous line triangle. With
this condition, the construction in Fig. 2(b) determines
the critical value of W uniquely (provided the value of
M is such that the diagram can be drawn at all).

Fin. 2. (a) Critical configuration of circles on which the zeros
of the Feynman denominators lie. (b) Dual diagram expressing
the relationships between the moments for the situation in (a).
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The construction in Fig. 2(b) was given in the
Appendix of reference 3. Figure 2 (a) explains its
significance.

3. THE EUCLIDIAN CASE TO ALL ORDERS

Once its significance is understood, the construction
of the last section can be generalized to apply to a
graph of any order. The result of Nambu' and Sy-
manzik' —roughly that the region of analyticity is
determined by a few lowest order graphs —is then an
almost immediate consequence.

The singularity corresponding to Fig. 2(b) arises
when the momentum on each internal line is equal to
the mass on that line. In higher order graphs, there
@say be a singularity of this type whenever the momenta
on a certain subset of internal lines can be equal to the
corresponding masses. We therefore first draw a reduced
graph consisting only of this subset of internal lines,
the remainder being omitted and vertices being coa-
lesced where necessary. For vertex parts to which the
external momenta form a Euclidian set, it is sufficient
to take all the momenta to be two-dimensional Eu-

Fin. 3. (a) An example of a Feynman graph, and
(b) its dual diagram.

(c)

FIG. 4. Examples of Feynman graphs with no
admissible dual diagrams.

clearly fulfills all three conditions. Examples of graphs
breaking conditions I and II are shown in Figs. 4(a)
and (b), respectively.

If a dual diagram satisfies conditions II and III, and
if the lengths of, say, pi and ps are fixed, then the
length of P is just determined. Also, the lines of the
external triangle are "under tension" and the internal
lines are "under compression, " in the sense that if any
of the internal masses is decreased the critical value of

~ p~ decreases. Thus, if it is possible, without breaking
selection rules, to reduce the graph further by omitting
more internal lines, then the region of analyticity will
not be increased. This proves the assertion made at
the beginning of this section.

It has been implicitly assumed that all the external
and internal particles are stable (W&2M in Fig. 2,
ms&mt+ms in Fig. 3, etc.). If they are not, the above
considerations must be supplemented by including
"normal" threshold conditions. These can be included
by generalizing condition II to allow vertices at which
only two lines meet. Condition III then demands that
these two lines be parallel. A similar example occurs
in Fig. 5(e) and (f). Figure 4(c) appears to be an
example where the normal thresholds of the diamond-
shaped subgraph would be relevant, but the dual

clidian vectors. This is because the singularities deter-
mined by an integral of the form (2) have the same
posstt', ops whatever the dimensionality of the integration.
The conditions on the momenta for a singularity to
occur can then be represented by a plane Euclidian
diagram, which is in an obvious sense the dual of the
reduced graph. Thus Fig. 3(b) is the dual of the graph
in Fig. 3(a) and the external momenta and internal
masses in (a) determine the lengths of the lines in (b).

The conditions for a reduced graph to correspond to
a singularity of the type under consideration are then:
(I) that a dual diagram exists, (II) that just three lines
meet at each internal vertex of the dual figure, and
(III) that none of the angles at an internal vertex
exceeds m. The two last conditions allow that at each
internal vertex three' circles can intersect in the relative
configuration of Fig. 2(a). The graph in Fig. 3(a)

~If four circles intersected in a point and one of them was
slightly displaced outwards, then that circle and some pair of the
others would be in an abnormal configuration. In other words,
the remaining circle would be irrelevant. The expression of this is
that the dual diagram for such a configuration would be over-
determined.

(g)

K

Fin. 5. (a), (c), and (e) are examples of Feynman gr'aphs, and
(b), (d), and (f) are the corresponding dual diagrams. (d) is
inadmissible because of an internal reflex angle.

'These are in fact just a linear version of the stated two-
dimensional conditions.
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diagram violates condition III and it is correct not. to
include Fig. 4(c) as a reduced graph.

The only cases in which one must go beyond the
third order to Qnd the limit of analyticity of vertex
parts are when selection rules limit the reductions that
are permissible. Some examples are given in Fig. 5.
Diagrams (b), (d), and (f) are the duals of graphs (a),
(c), and (e), respectively. The particle symbols denote
that the lines in the dual diagrams have lengths deter-
mined by the appropriate masses. All external baryons
are supposed to be free particles, whereas the external
mesons have energy W, to be determined. (The dual
diagrams are not drawn to scale. )

In graph (a), the critical value of W comes out to be
about the h mass, and therefore this abnormal threshold
is well above the normal 3m threshold. In the dual
diagram (d), the condition III is not satisfied, and so
there is no corresponding abnormal threshold. Graph
(e) is an example where a normal singularity has to be
taken into account, in the way indicated in (f). The
critical value of 5' turns out to be about 2.98 m-masses,

that is just below the normal 3m threshoM.
The main idea of the above constructions may be

generalized to apply to Green functions with four
external Hnes. Then a three-dimensional Euclidian
space is required, and the circles become spherical
surfaces. The generalization of Fig. 2(b) for example,
is a tetrahedron with each of its vertices joined to an
internal point —a construction also given in an Appendix
to reference 3. Four of the sides of the tetrahedron
represent the external momenta, pi, qi, p2, q2,

. and the
other two sides represent two out of the three combi-
nations

Vnfortunately, however, the cases of physical interest
are scattering Green's functions, for which the momenta
can form a Euclidian set only if the momentum transfer,

6, is zero. But if this happens, the tetrahedron degener-
ates into a plane figure, and it is sufhcient to study the
two triangles (pi, qi, W) and (pi, q~,W) by the method
described for vertex parts. This fact will be exploited
in Sec. 5.

4. SCATTERING WITH NONZERO
MOMENTUM TRANSFER

In this section our method is applied to a fourth-order
perturbation theory amplitude for two-particle scat-
tering. For this case, I.' is not in general Euclidian,
and it is of interest to enquire what will be the result
corresponding to that of Sec. 2. It turns out that
singularities are to be expected on a certain curve, in a
manner which has already been incorporated in Mandel-
stam's4 double dispersion-relation. Thus, we have a new

way of looking at this particular feature of Mandel-
stam's representation.

Let all particles have equal mass, M, to simplify the

where
E= (~V'+k') '*)M.

The pairs of circles C~ and C2, C2 and C3, C3 and C4,
and C4 and Ci are each overlapping pairs for all 8 and
s. This corresponds to the fact that each of the external
particles is stable. The four centers are at the vertices
of a rhombus whose center is at the origin, and the
figure is symmetrical about either diagonal.

If C~ and C3 overlap for all s and E, which is so for
W(2M, then it can be verified that it is also the case
that C~, C2, and C3 contain a common point and C», C3,
and C4 have a point in common. ' This is therefore a
normal situation, with only, at worst, C2 and C4
mutually displaced. Similarly, for 8"&2M, C2 and C4
overlap for all s and E, and there is a normal situation.

6. A Feynman
graph for equal-mass
particle scattering.

9 That this must be so can be seen as follows. If one is concerned
with only three of the circles, one need consider a set of only
three of the external vectors, say P&, qI, and lV. These must form
either a real Lorentz or a real Euclidian set. In the former case
there are certainly no abnormal thresholds, and the result of
Sec. 2 shows that the same is also true in the latter case. This is
equivalent to the statement in the text.

formulas. Consider the "self-crossed" graph in Fig. 6~
with the notation dined at the end of Sec. 3. For
W')4(h2+M2), the four momenta are real Lorentz
vectors, and the Dyson-Eden theory applies. For
W'(4(h'+M'), one requires an I' with signature
(+, +; —,—). Then, in a Breit frame, write

p '= (X,O; 6,0),
p2'= (X, O; —6, 0),

where
X= (M'+LB) &= ((o'+g') '*,

W2= 2X(X+cu), W'= 2K(A —co).

With a convenient choice of the integration rnomen-
tum (x,y; s,k), the zeros of the "Feynman" denomi-
nators lie on the following four circles in the x-y plane.
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If A&3f, neither of the above conditions can be fulfilled
for

~

oi
~

& (d,'—M')/X. However, there is still not
mecessgrily an abnormal situation.

There is an abnormal situation only if there is some
ore value of s and R for which weigher C~ and C3 d'or C2
and C4 are overlapping pairs. The condition for this is

()toi)' &6'(LP—2M') .

This is just the region in which the spectral function
of Mandelstam's4 representation does not vanish. The
argument of this section, therefore, affords a new
interpretation of this region. (c)

5. DISPERSION RELATIONS

Since .it is not clear at present how to generalize the
preceding section to higher orders, we follow Symanzik'
and replace the external momenta by a Euclidian set
which, he proves, does not remove any singularities;
thus placing rather crude bounds on the positions of
the singularities. Having taken this initial step, how-
ever, we are able to take advantage of the remark at
the end of Sec. 3. The rest of Symanzik's results then
follow very quickly, and can be improved upon.

Consider 6rst nucleon-nucleon scattering. Using
Symanzik's Euclidian momenta (reference 6, Eq. (7b)j,
for which the momentum transfer is zero, we can, by
the remark at the end of Sec. 3, reduce the problem
to the consideration of two-dimensional Euclidian sets,
in the manner of Sec. 3. The argument that the internal
lines in the dual diagrams are under pressure and can
be removed (if selection rules allow) immediately shows
that we need only consider Symanzik's graphs in Fig. 6
of reference 6. But it is not possible to draw any dual
diagram for the graphs (b), (c), and (d) of that Fig. 6;
and so one is left with Fig. 6(a), and not with Fig. 7.
The limit on momentum transfer then comes out to be
6'=p'.

Consider next pion-nucleon scattering, 6rst of all
allowing 3z vertices to exist. Then Symanzik's choice
of external momenta and our constructional technique
lead us to study only fourth-order graphs, like that in
Fig. 7(a)& where q'=p, ' and P'=M'+28, For As

&-s'(Mti+p, ') there are only normal singularities, with
cuts only for

~

oi
~
) (Mp, —p, ')/2)~ and a gap in between.

At 6'=-,'(Mti+ti') abnormal singularities begin, corre-
sponding to the dual diagram in Fig. 7(b), but a finite

gap may still remain. The gap disappears, and our
Inethod consequently fails, when there is an abnormal
singularity at oi=O (W=W'). Then the dual diagram

FIG. 7. (a) A reduced graph for pion-nucleon scattering,
neglecting the fact that the pion is pseudoscalar. (b) A dual
diagram connected with (a). (c) A critical configuration of two
dual diagrams connected with (a). (d) A typical reduced graph
for pion-nucleon scattering, observing the fact that the pion is
pseudoscalar.

can be drawn in the rectangular form of Fig. 7 (c), and
trigonometry shows that

v3 ( [+-,;.
2 E 4M')

Now one can see what happens if the condition that
the pion is pseudoscalar be imposed. Then graphs like
Fig. 7(d) must be considered. For this graph, no dual
diagram, corresponding to Fig. 7(b), can be drawn; for
the 4n. vertex would appear as a rhombus, which cannot
fit into a triangle with which it shares an edge. Thus
the method will not fail until the eormal singularities
meet at co=0, which occurs when lV=3fp. This is,
therefore, a new lower bound on the maximum per-
missible value of 6';
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