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Granting that the formation of a bound state is a "sudden" process (as compared to the scattering which

may be regarded as a process taking place "adiabatically" ), a formulation of the scattering involving a bound
state is discussed, in which an independent set of creation-annihilation operators is introduced for a particle
in the bound state. There appears here a subsidiary condition which prevents the system from having an
unduly increased number of degrees of freedom. In the case of potential scattering, which is studied in
this paper, this subsidiary condition restricts the intermediate states in a multiple scattering process to
states which are orthogonal to the bound state. This orthogonality condition gives rise to a simple explan-
ation of the theorem concerning the scattering phase shift at zero energy, in which it is stated that when
there is one bound state, the scattering phase shift starts with 7T at zero energy, if it is to go down to zero
at extreme high energy.

1. INTRODUCTION

~ 'HE formal theory of scattering so far developed is
not completely legitimate when there appears a

bound state. The shortcomings of the existing theories
are rather pressing when we deal with a many-body
scattering in which a rearrangement of constituent
particles may take place in the exit channel. Although
some general ideas were laid down years ago, there are
still points to be worked out before they are proved
practical. The difficulties inherent in the I.ippmann-
Schwinger equation have been pointed out and studied
by Foldy and Tobocman, ' Epstein, 2 and Gerjuoy. 3 The
problem has been studied also by Ekstein, 4 Haag, ' and
recently by Feshbach' from diferent points of view.

On the other hand, the necessity of revising the
current theory has been felt much less urgent in poten-
tial scattering and the two-body scattering problem
than in the many-body scattering problem. Here it
seems that one can do with the same formulation if
there appears a bound state as when there is no bound
state. But even here several points remain to be studied
further. It is known' that the scattering phase shift
starts with mar at zero energy if it goes to zero at extreme
high energy, where e is the number of the bound states.
This theorem is relevant to the determination of the
sign of the scattering length. Speaking of the nucleon-
nucleon scattering, the singlet scattering length is
negative, while the triplet scattering length is positive,
The positive scattering length for the triplet state is
expected, because the binding energy of the deuteron is
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not large, so that the scattering length should behave
as if the S-wave phase shift starts with m at zero energy
and decreases with increasing energy, which gives rise
to the positive scattering length. Though the actual
argument should be more complicated because of the
tensor force, the gross characteristics of the argument
may not be invalidated. In general, we ought to expect
a negative scattering length when the potential is
attractive, while a positive scattering length is expected
when the potential is repulsive. %hen there is a bound
state this argument must be modified in the manner
mentioned above. The negative scattering length for an
attractive potential is restored when the binding
energy of the last bound state is so large that the next
bound state is expected if the depth of the attractive
potential is increased a little bit.

It is the purpose of this paper to study potential
scattering when there is a bound state, with use of a
formulation in which creation and annihilation opera-
tors for a particle in the bound state are introduced.
This formulation is adopted because it can be generalized
to apply to a many-body system, and it is then straight-
forward to discuss the asymptotic conditions in various
channels, even if there appear bound particles of diGer-
ent constitution in each one of them. The total Hamil-
tonian in this formulation is the sum of kinetic energies
of stable particles of all sorts and a remainder, which
can be termed the e&ective interaction among them.
In order to avoid an undue increase in the number of
degrees of freedom of the whole system, some sub-
sidiary condition must be imposed on the state vector
of the system. Thus this paper is devoted to the dis-
cussion of the simplest case in the theory of scattering
under such a subsidiary condition. In Sec. 2, the method
of introducing the creation and annihilation operators
for the bound state is exhibited.

In Sec. 3 it mill be shown that the theorem7 on the
zero-energy phase shift in potential scattering can be
derived rather simply when we take into account the
subsidiary condition mentioned above. The subsidiary
condition designates that only states orthogonal to the
bound state are available in the intermediate step of a
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scattering process. This orthogonality condition can be
represented by introducing some nonlocal force into
the Hamiltonian. This nonlocal force gives rise to an
"orthogonality phase shift" which starts with x at zero
energy and goes down to zero at high energies. The
total phase shift is the sum of the "orthogonality phase
shift" and the "potential scattering phase shift. " The
latter is obtained by computing the further distortion
of the eigenfunction of the kinetic energy which is
caused by the potential.

In Sec. 4 the unitarity of the transformation function
and the convergence of the Born series are discussed.
The eigenfunctions of the scattering states, together
with the bound-state wave function, form a complete
set which must be equivalent to the complete set of
plane waves. On the basis of this fact, one is led to
conjecture that there should be some unitary trans-
formation which transforms one set into the other.
However, we have not yet succeeded in establishing
this point. On the other hand, we can pin down the
source of the difficulty. It is correlated with the nominal
origin of the bound state which is to be discovered
among the unperturbed waves. The eigenstate of the
kinetic energy under the subsidiary condition must be
defined by taking the limit of the matrix element of
some unitary transformation function in a certain way,
and the convergence to the limit is not uniform at zero
energy. The zero energy is the nominal origin of the
bound state, and it must be treated very carefully. The
clarification of this point is left for future work.

In order to supplement the discussions in the text,
the orthogonality of the bound state to the scattering
state is considered in Appendix I in the ordinary formu-
lation of the scattering theory.

2. INTRODUCTION OF CREATION-ANNIHILATION
OPERATORS FOR A BOUND STATE

We shall exhibit here a method which is useful in
dealing with a particle in a bound state. The exposition
is given fully in order to provide for treatment of a
many-body system in further publications, although it
is possible to shorten it substantially so long as we
restrict ourselves to the potential scattering. The
legitimacy of the following method as used in potential
scattering is established through the two facts which
are to be proved in Secs. 3 and 4. The first is that the
formation of a bound state, which takes place as the
attractive potential becomes deep enough, is a sudden
change so that the notion of an adiabatic change of the
system is inapplicable to the bound state; consequently,
it makes sense to regard the particle in the bound state
as an independent entity, when we start discussing the
scattering process, to which the notion of an adiabatic
change is applicable in some way or other. The second
is that in our formulation there appears a subsidiary
condition besides the Hamiltonian, which causes some
complication as compared to the current theory;

f

II= dk Wkaktas+ dkdk'(k
~
V

~

k')asta/;, (2.2)

where lV& is the kinetic energy of a boson with the wave
number k. We introduce the matrix notation for the
kinetic energy and rewrite the Hanultonian (2.2) in the
for ITl

II= dkdk'(k
i
W+ V

i
k') aortas . (2.2')

Hereafter we assume that there is only one bound
state. Our method of treating a bound state, generally
speaking, consists of the following two steps:

(i) Introduction of redundant sariabtes. We introduc—e
a set of creation and annihilation operators, which
satisfy the commutation relation

Lb,btj= i. (2.3)

b and bt are redundant variables at the outset, although
the operator b~b will describe the number of particle in
the bound state later on. We are going to extend the
Hilbert space so as to include state vectors of the b

operators as well as those of the u operators. To keep
the modi6ed Hilbert space as a whole equivalent to the
original one, we impose the subsidiary condition

(2 4)

on the extended state vector, which we denote by N.
It is evident at this stage that the whole problem remains
equivalent to the original one.

(ii) Interchange of the redundant mode with a physically
meaningfut warn packet. —Let us call a particle described
in terms of the a operators an a particle. Also a particle
in the bound state is called a 6 particle. We perform

We avoid a potential of long range like the Coulomb force;
in such a case of infinitely many bound states will be formed once
the potential is switched on.

9 If we take the model more seriously, there should be a pair
creation and annihilation term to be added to (2.2l; these are
obtained by replacing uh'taI, in the potential by —,'(a&~uj, t+az c&).
Since this does not aGect the essential points of the following
argument, we can start from the Hamiltonian (2.2). We can
suppose that the pairs are already eliminated by means of a
canonical transformation.

however, it is rewarding to work with this slightly more
complicated formulation, because the subsidiary con-
dition actually helps us to understand a feature of the
system, namely, the scattering phase shift at zero
energy.

We consider bosons of S-wave state in an external
potential, ' as the 6rst step of treating bound states in
a more general case. The commutation relation for the
creation and annihilation operators for bosons in the
spherical S-wave state is the usual one,

(2.1)

The Hamiltonian to be dealt with can be written in
the form, '
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N/f]= dk apt f(k) )~dk' ag f*(k'). (2.5)

Let us then consider the operator

then a canonical transformation by which the re-
dundant particle is replaced by some wave packet for
an a particle. The subsidiary condition must be trans-
formed at the same time. The tralsformatiol is urtiquely
defieed whee we require that the subsidiary condition does
rot involve a b operator after the tralsformatioe awd repre
sents a reductiol ie the degree offreedom of the a particles.
The transformed subsidiary condition actually desig-
nates that only states of a particles orthogonal to the
wave packet are permissible after the transformation.

Novr let us study the transformation stated above in
detail and apply it specifically to the Hamiltonian (2.2).
We denote the normalized weight function for the wave
packet by f(k). First it is in order to define the operator
for the number of particles with this wave packet. This
is de6ned as

By setting

(2.9)

we obtain the new subsidiary condition of the desired
form:

U 'btbU +'=NEf] +'=0.

The transformed a operators are given, then, by

(2.10)

U 'ayU= ay f(k)— dk' f*(k')ay' —ib, (2.11)

H, = dkdk—'a t(kj W+V jk')a~. +EN/f]

and its Hermitian conjugate. By substitution of (2.11)
and its Hermitian conjugate into the original Hamil-
tonian (2.2'), the new Hamiltonian is given as

(2.12)

R=Xbt dk a~f*(k), (2.6)

which is to be used in the discussion of a scattering
process. By virtue of the form of the new subsidiary
condition, we can speak of a b particle quite freely in the
nevr representation, as an entity independent of a
particles. After some manipulations, vre have

U 'bU= (cosh)b+i sinX dk f*(k)a~. (2.8)

where ) is an arbitrary constant. In the state M which
is the transform of 0' by means of R, the number of a
particles with wave function f(k) is decreased by one,
vrhile the number of b particles is increased by one as
compared to the situation represented by +. Thus R
is the operator which replaces a wave packet f(k) by a
corresponding b particle. If we multiply 4 by a suitable
function of the operator R, a particles with wave
function f(k) originally existing in 4' will be replaced by
b particles. In making a choice of such a function vre

remind ourselves that we are going to achieve the
desired result by means of a unitary transformation in
order to leave the relationship of Hermitian conjugates
invariant among operators and to avoid unnecessary
complication in the results. Accordingly we are led to
try a unitary transformation generated by the Her-
mitian operator, R+Rt; the transformation function
vrhich vre consider is

U= expLi(R+Rt)]. (2 &)

The condition that the transformed subsidiary con-
dition does not involve b operators determines the
parameter ), and we obtain the desired new state vector

O'=U —%

X ~aq-f*(k")dk"+Herm. conj j (2.12')

Hg—=Eb~b,

e, &=— j dkdk'a&&(kjwyV —Ejk')f(k') h

(2.12")

H and H& involve, respectively, only a operators and
b operators, while H q represents the interaction
between an a particle and a b particle. By inspection
of (2.12"') we recognize that II, q vanishes when f(k)
is an eigeniunction of the total Hamiltonian. Since f(k)
must be normalizable, it must be a bound-state eigen-
function. When f(k) is the bound-state eigeniunction,
E is equal to the exact eigenvalue 8 of the bound state,
and the Hamiltonian reduces to the form

H =B,o+JJ.y, (2.14)
f

H,'= j' j dkdk' apt(kj W+V—jk')ag EN)f]. (2.14—')

Our next task is to compute a complete set of eigen-
functions oi H, under the subsidiary condition (2.10),
and then to derive the scattering cross section. These
problems will be discussed in the following sections. A
brief comment on the nature of that problem is proper
here. We introduce projection operators Al& and A.&

+Herm. conj. , (2.12"')

where E is the energy averaged over the. wave packet
f(k)

' *()( j + j
')f(')' ( )
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de6ned as matrices with matrix elements, respectively,
given by

(k'lh. Ik)= f(k')f (k), (2.15)

(k'l~~lk) = (k'I1—~~~ Ik) =b(k —k') —f(k')f*(k). (2 15')

B 0 can be written then in the form

The effect of the potential in our Hamiltonian (2.16)
will be considered in the next section. The corresponding
Schrodinger equation in momentum space is given by

' ( ')+ "('l(W— )

Ho=
~j

dkdk'aj, t(klan, (W+V)A, lk')a . (2.16) +A.iiWg"
I
k")k(k"k) = Wgk(k', k), (3.2)

where we have put

ay=cd if(k)b,— (2.17)

and its Hermitian conjugate, where c& and czt are con-
cerned with waves orthogonal to f(k) only:

It is clear now that the problem to be solved is almost
the same as the original one in which the Hamiltonian
is given by (2.2), but there is a difference in that it
must be solved under the constraint (2.10). It is clear
that the subsidiary condition is compatible with the
Hamiltonian (2.16), as it should be.

As remarked earlier, the desired result can be achieved
much more easily in the case of potential scattering
than by the method above. One can make the following
canonical transformation

W= dkl f(k) I'Wp.

Since the orthogonality of k(k'k) to f(k') is easily
established when Wq does not vanish, (3.2) reduces into

(Wp Wp)k(k—'k) =f(k') dk" f*(k")Wp-k(k"k). (3.3)

We can show it is sufhcient to consider the solution of
Eq. (3.3) under the standing wave boundary condition.
Then, disregarding@the normalization, we can put
k(k'k) into the form

c~f*(k)dk =0, (2.18) k(k'k) =8(k' —k)+P f(k')X(k). (3.4)
~'a —~'a

and satisfy instead of (2.1) the commutation relation

Lcg, ,cgt]= (k IAilk). (2.19)

By making use of the orthogonality of k(k'k) to f(k')
again, the indeterminate X(k) in (3.4) is given by

If one substitutes (2.17) into the original Hamiltonian
(2.2) one obtains an operator corresponding to (2.16),

X(k) =f*(k)/J(k),

where we have put

(3.5)

H.P= ~dkdk'cgt(kl W+Vlk')cg. ,J
(2.20) dk' J

8"g —8'g

which, however, is not accompanied by any subsidiary
condition. It is readily seen that the solution of the
problem under the subsidiary condition (2.10) is
equivalent to the determination of the eigenfunctions
of the Hamiltonian (2.20) in which the modified com-
mutation relation (2.19) must be used. In a more
general case of a many-body problem, the required
transformation is not a linear relation as given by
(2.17), and it is more diflicult to find than in the case of
potential scattering. In such a case it is really helpful to
proceed along the line described in this section.

Wp
I
f(k')I' —1 I. (3.6)dk' P

w, ,-w,

With use of the last statement in (3.6) for J(k), it is
straightforward to verify that the solution given by
(3.4)—(3.6) actually satisfies Eq. (3.3), hence Eq. (3.2).

h(k'k) does not represent a free 8 wave any more,
but a distorted wave. Let us then calculate the phase
shift due to the orthogonality, which we denote by
bp(k), as a function of the wave number k associated
with the energy 8'& of the system. It is determined by
the equation3. ORTHONORMAL EIGENFUNCTIONS OF

THE KINETIC ENERGY UNDER THE
ORTHOGONALITY CONDITION /BW $

tanbp(k) = %.f(k)X(k)I—
E Bk )I et us study the orthonormal set of eigenfunctions

of the kinetic energy, under the orthogonality condition
which we denote by E~, OWE= —

(m I f(k) I')
I J(k) I, (3.7)ak)'

t

Z, —=
) ) dkdk'a, t(klan, WS, Ik')a;. (3.1)

since we are dealing with a solution under the standing
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wave boundary condition. " We note there that we
have at k=0

BWp
I If(k) I'

I =O

since f(k) is k times the Fourier transform of a function
in configuration space which is normalizable, " and
(BWp/Bk) is a function which is linear in k in the non-
relativistic mechanics. We also have

tanbp(~) =0, (3.10')

as a result of (3.9).
As is seen by the inspection of the integrand in (3.6),

the sign of the real function J(k) of k is positive for
very small k, while it is negative for a very large k.
J(k) must be a continuous function of k, consequently
the total number of its zeros is an odd number. We
label these zeros by an index and arrange them in the
order of their magnitudes,

Then the sign of J(k) in each interval is determined as

J(k) &0, when ks~i &k,
ks~g&k&ks +s (m=O, 1, , ts —1),

J(k))0, when k&k„
ks~&k&ks~+t (m=1) 2, , n) (3.11).

Noting that
l f(k) l' is non-negative, and excluding the

accidental degeneracy such as has been pointed out by
Martin, "we can then conclude from (3.7), (3.10), and
(3.11), that 5p(k) in each interval must be restricted

' The treatment of S wave is made here in almost the same
way as has been done by Kohn. See, W. Kohn, Phys. Rev. 84,
495 (1951); especially, see Sec. II of his paper for the detail of
the derivation of Eq. (3.7)."Explicitly, f(k) is given by

f(k) = (2/x) &J sinkr u(r) rd, ,

where q (r) =N, (r)/r is the wave function of the bound state in
configuration space in ordinary sense. In our treatment of mo-
mentum space, the degree of freedom r (and hence k) is treated
in a one-dimensional space Lor, the volume element is dr (dk),
instead of r'dr (k'dk)], and the Fourier transform is made only
into sine functions because of the boundary condition at r=0.

"Since only expL2Q(k)g is meaningful as the ratio of the
outgoing amplitude to the ingoing amplitude, there is an arbi-
trariness in the dennition of the phase shift by a multiple of m-.

This arbitrariness is settled by (3.10), the digererIce between
phase shifts at difterent energies being a well-de6ned quantity.
The last point is proved by Levinson and Swan, reference 7.
The continuity of the phase shift as a function of k is made use
of in the arguments which lead into Eq. (3.13}.

'3 See reference 7. In such a case of accidental degeneracy, there
appears a state with positive energy which looks like a bound
state, and we must have one more orthogonality condition which
gives rise to S(0)—B(~)=2s..

I/( )1=0, (3.9)

since
l f(k) l' must be integrable. We define 8p(po) by

Bp(~) =0, (3.10)
since we have"

Finally, remembering (3.8), we conclude that

bp(0) =m. (3.13)

This establishes that the orthogonality phase shift 8p(k)
takes care of the discontinuity of the phase shift at zero
energy which takes place when there appears a new
bound state.

The normalization of k(k', k) is given by multiplying
the solution in (3.4) by costs(k). Letting the same
notation denote the normalized solution in this case,
we have

f(k')f*(k)
, (3 14)

Wp —Ws lC(k) l

Re C (k)
k(k'k) =S(k—k') P—

lc (k)l

where we have put

4 (k) = J(k)+—imlf (k) l

.'(cIW&/8&) '

1
dk'l/(k')

l
P ys~a(W, —W, ') l.

(3.15)

We can readily establish the orthogonality among
k(k'k)'s with diferent k,

kt(k'k")k(k"k)dk"=5(k' —k), (WiWg, AO) (3.16)

in which use has been made of the rule for dealing with
singular functions,

I' I'
8'—W' t/t/'" —W

1 1 1

W—W' k W—W" W"—W') (3.17)

—s'5(W —W")5 (W' —W"),

P 5(W" W') =P 5(—W"—W').
8'—8"' 8'—8"

As for the completeness proof, we must be more
careful. Here we have to notice that the wave function
of the bound state f(k) is itself an eigenfunction of the
Schrodinger Eq. (3.2) for the eigenvalue Ws ——0. We
should have

dk" k(k'k")ktfk"k) = (k'lh, lk). (3.18)

within the limit given by

a/2)8p(k) &0 when J(k) &0,
pr &bp(k)) rr/2 when J(k))0,

in particular k&ki. (3.12)
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However, we have not yet succeeded in establishing
(3.18) directly with use of k(kk') given in (3.14). The
lower limit of integration in (3.18) is denoted by +0
in order to emphasize that the point k"=0 is excluded.
If the point k"=0 were a regular point of the integrand
it would not make any diGerence whether it is explicitly
included or excluded in the domain of integration.
Actually the point k"=0 must be some kind of singu-
larity of k(k'k"). In this connection it is to be noted
that h(k'k) is given by taking the limit X~ 1 of the
matrix element of a certain unitary transformation
function, which transforms eigenfunctions of the unper-
turbed Hamiltonian into eigenfunctions of the Hamil-
tonian

This means that the subsidiary condition is now of
negligible importance since a single point at the end
of the continuous spectrum may be either included or
omitted in the domain of integration, if the integrand
is regular at zero energy (as is usually the case if there
is no second bound state). The Hamiltonian thus takes
the form

Tot ) dkdk' apt(k
I
A&(W+ V)A~I k')at„. +Ebtb

I

Tp

Wpaotaodk+Ebtb

E'~'& = tdkdk' a,t

X (k I (1—XA )W(1—XA, ) I
k') ao . (3.19) where we have put

+ dkdk'(kIVIk')aotao, (4.3)

Apparently, in the case ) =0 the eigenfunctions of the
corresponding Schrodinger equation are unperturbed
spherical waves, while in the case ) = 1 they are expected
to coincide with what we have obtained in (3.14).
Further detail of the discussion of the eigenfunction of
the Hamiltonian (3.19), as a function of k as well as
of the wave number, is given in Appendix II. The con-
clusion there obtained is that we can de6ne the energy
Wo(X) such as, when the energy of the system is larger
than Wo(X), the eigenfunction k'"&(k'k) associated with
the Hamiltonian (3.19) converges uniformly to its limit
k(k'k) as we let 'A approach unity. Wo(X) itself, however,
approaches zero as we take the limit X —+ 1.

4. CONSTRUCTION OF THE 8 MATRIX.
CONCLUDING REMARKS

We have not been able to show explicitly how the
bound-state wave function f(k) is peeled off from the
lower end of the spectrum Wo(X))Wo) 0 of the unper-
turbed waves (along the line remarked at the end of the
last section), when we take the limit X —+ 1. However,
it may be reasonable to make a conjecture that there
exists a unitary transformation T& which transforms the
creation-annihilation operators according to

7'otaoTo= t k(kk')ao dk'+f(k)ap,

(kI VIk')

dk"dk'" ht(kk")(k"
I
VIk"')k(k"'k'). (4.4)

The eGective potential V will be discussed below. In
(4.3), the creation-annihilation operators, an't and ao,
refer to the particle in an eigenstate of Ei, (3.1),
described in terms of the wave function h(k'k).

Now, the last step in our discussion of the scattering
is to diagonalize the Hamiltonian (4.3), which may be
achieved by applying the current theory of scattering
to the following Hamiltonian:

IIpoo oooo. —— '

ao aoW.odk+ dkdk'(k
I
V

I
k')ao ao. ;

(4.3')

the remainder of the Hamiltonian (4.3), per«i»ng to
the b particle, is irrelevant to the following discussion.

The deviation of the effective potential V from the
original potential V is caused by the orthogonality of
the relevant states to the bound state, and is expected
to become negligible when the energy of the incoming

particle becomes much larger than the binding energy
of the bound state; or, in equation, we expect to have

and its Hermitian conjugate. Here @0~ and ao mean the
creation and annihilation operator, respectively, of a
normalizable wave packet concentrated at zero energy.

Reminding ourselves of the situation at the end of
Sec. 2, we summarize the subsidiary condition and the
Hamiltonian at this stage. The subsidiary condition
takes the form

(kI VIk') =(kI VIk'), when Wk, W'»E. (4 3)

This point has been con6rmed by calculating (k I
V

I
k')

in a number of examples. One example is the square well

(local) potential, and another example is the nonlocal

potential of the simple form defined by

aotag"=0, (4"=Tote' ). (4.2)
k V k')= b'—

~2+k2 ~2+k~2
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where b and 3f are parameters which determine the
strength and the range of the potential, respectively.

In order to go farther with mathematical rigor, we
need to know a condition on the form of potentials
under which the Horn series for the phase shift con-
verges. Then we must show that (kl V

l
k') satisfies the

required condition. Since that condition is not known
in its most general form, we have to be satisfied only
with making a conjecture which is based on facts
verified in examples. Our conjecture is that we can
apply Born approximations in the discussion of the
effect of the effective potential V, when the binding

energy of the bound state is rather small so that the
second bound state is far from being expected. In
other words, it is conjectured that we can apply the
formal theory of scattering without any modification
to the Hamiltonian II„i„„,(4.3, '). The corresponding

phase shift hi (k) starts with zero at zero energy, if it
goes down to zero at high energies. The total phase
shift is given by the sum of the "orthogonality phase
shift" and the "potential scattering phase shift. "

As for the formal proof of the statement made above
for the construction of the total phase shift, there
exists a unitary transformation function Tp, which

diagonalizes the Hamiltonian (4.3'):

6I, when we define the S matrix according to"

lim exp itg, dk aA~aI, S'I,

00

Xe p '(t —t) ~dkdk' ta (klan (W+V)A, )k'

)&exp —iti dk aj,~ad% A,

lim exp it2 dk aI,~ay%I, TpTp
]2~+ ao

g1 ~ —oO

Xexp i(t, —ts) dk astasWs &r '1'o '

)&exp —it~ dk a~~a~S'I,

= exp i hs(k)ar. tai, dk exp i hr (k)as'asdk
J

r
Xexp i hr (k)aitaidk exp i hs(k)aitasdk

as'a. WAk+ dkdk (klVlk)usta' &~l c
lJ

= )I agtaiWsdk, (4.6)

and which keeps the subsidiary condition (4.2) in-

variant, since the operators ap and ap~ do not appear in

(4.3'). The structure of the transformation function is

such that

Tp exp, dkdk——' a 'a P (kl&lk'), (4.7)f
f'f

Sg—Rg

and the phase shift hi (k) is given in terms of the diagonal
element of the operator Ii,"

8p(k) =m. (aW/ak) '(kl~lk) (48)

The transformation function Tp should have a similar

structure when we deal with the case A@1 before we

take the limit ) —+ 1, as is discussed at the end of the
last section and in Appendix II. Ke conjecture the
structure of the exponent is left essentially unchanged
while the limit X —& 1 is being taken, if we deal with the
matrix element pertaining to the states with energy
larger than Ws(X). This furnishes us with the formal

proof of the additivity of the two phase shifts, bp and

"S.Tani, Phys. Rev. 115, 711 (1959).

=exp 2i~ (hs(k)+hi (k))ustasdk . (4 9)

Here we have dropped the part of the Hamiltonian
pertaining to b particles, because it is irrelevant to the
present discussion.

In our formulation of scattering involving a bound
state, only states which are orthogonal to the bound
state are available for the intermediate states of a
multiple scattering process. The discussion on this
point is supplemented in Appendix I, where the ortho-
gonality condition is treated for the Lippmann-
Schwinger equation.

Summarizing, we have shown that the characteristic
jump of the phase shift by m at zero energy, which
takes place when there appears a bound state, can be
taken into account if we explicitly make use of the
condition that scattering states are orthogonal to the
bound state. There remain, however, some mathe-
matical points to be worked out, namely (i) the structure
of the transformation function Tp as the limit X ~ 1 is

taken, and (ii) the convergence proof, or the proof of
the possibility of analytical continuation as a function
of the potential depth for the Born series as used in the
construction of TI. Nonetheless, the physical situation
seems to have been clarified. I'he orthogonality condi-

tion is equivalent to the introduction of a nonlocal

potential which distorts the eigenfunction of the kinetic
energy and replacing the potential V by V. The eGect
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i

dk" (k'(A, WA, —W~, (k")~(k"k)

of the orthogonality condition becomes small when the component of x orthogonal to f(k) is
energy of the incident particle is very large as compared
to the binding energy. Thus the Born approximations
are relatively reliable at high energies. "

APPENDIX I. SCATTERING PROCESSES UNDER
THE ORTHOGONALITY CONDITION

Usually a discussion of a scattering process proceeds
without any projection operator such as the A& as
appearing in Eq. (2.16). Let us now consider how
essential it is to have the projection operator A& in
the Hamiltonian EI,O (2.16). In. addition, through the
discussion of multiple scattering, we shall obtain a
picture of the part assigned to the bound state in the
course of a scattering process.

Let us begin with examining the ordinary Schrodinger
equation in momentum space:

Wg y(k'k)+) dk" (k'i Vik") p(k"k) =Wkly (k'k), (A.1)

where there is no projection operator and 8q is non-
vanishing. As usual we try to 6nd a solution of (A.1)
by putting the wave function in the form

q (k'k) =b(k' —k)+y(k'k).

The function y(k'k) must satisfy the equation

(A.2)
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dk"(k'(A, VA, ~k")x(k"k)+(k'[A, V[k) =0. (A.7)

Here we need the eigenfunctions of the kinetic energy
under the condition of orthogonality to f(k):

Z.= ) dkdk'&~'&~ (kl&~w~~lk') (A.8)

As was shown in Sec. 3, for all nonvanishing 8'I„ there
is a "normalized" (in a sense similar to plane waves)
solution of the equation

dk" k' A~8'A~ k" h k"k =8 I,h k'k,

dk"ht (kk") (k"
i A,WA, i k) =Wight

(krak').

(A.9)

(k'iG(wg) ik") =
) d/ h(k'l)P ht(lk")

8'g —8'p

f(k')J*(k"), (A 1o)
S'y

In terms of h and ht, we can de6ne the Green function
associated with the Schrodinger Eq. (A.9). It has the
matrix element

in the spherical S-wave representation. With use of
G(wq), the solution of (A.7) is given by

+(k'(V~k)=0. (A.3)
x, (k'k) = (k'iG(w. )A,V i k)

+(k'~G(W, )A,VAG(w, )A,V~k)+ " (A.11)If we project Eq. (A.3) onto J'(k) to the left-hand side,
we have

Hence the solution of the original Schrodinger equation
(E W&) f*(k)+ dk'f*—(k')z(k"k) =0, (A.4) is given by

from which we must conclude that

~
f*(k')x(k'k)dk'= —P(k). (A.5)

Thus the component of x parallel to f(k) is given, once
and for all, by

x„(k'k) = —f(k') f*(k). . (A.6)

On the other hand, the equation to be satisfied by the

"See for instance, C. Zemach and A. Klein, Nuovo cimento 10,
1078 (1958).

q (k'k) =b(k' —k)+X, (k'k) —f(k')f*(k). (A.12)

From Eqs. (A.12) and (A.11), we are led to the fol-

lowing picture of the scattering processes. When the
initial spherical 5 wave strikes the potential, only that
part of the emerging wave which is orthogonal to the
bound state is transmitted to the wave zone, while the
remainder is trapped by the scattering center and forms
the bound state. The total wave undergoes the effect
of the potential repeatedly, and in each of the multiple
scattering processes only waves orthogonal to the
bound state are transmitted to the wave zone, while

leaving at each step some contribution to the amplitude
of the bound state. It is to be noted that G(wq) is
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APPENDIX II. THE LIMITING PROCESS X, —+ 1
INTRODUCED IN 3

I.et us study the eigenfunction of the Hamiltonian
Et"& introduced in (3.19) of the text,

E'"&= dkdk' apt(k
~
(1—Xh„)W(1—XA(,) ~

k')ug, ,

(B.1)

as a function of both ) and the wave number. The nor-
malized solution of the Schrodinger equation is given by

h&'&(k'k') = 8(k' —k) —8 Xf(k') f*(k)

Wg+ (1—X)Wg
X ~ cos8'"&(k), (B.2)—X(2—X)WaJ(k)+ (1—X)' I

where the relevant phase shift is given by

X(2-X) (y(k) ~'
tan8&~& (k) =

(cjW/Bk) —X (2—X)J(k)+ (1—X)'/Wp
(B.3)

From the inspection of (B.3) we see that, if we are going
to take the limit, ) —+ 1 and k —+ 0, the convergence to
the limit is not uniform. In general, as ) increases from
zero there appears a point where the maximum of the
phase shift reaches m/2. Let us denote that energy by

commutable with the projection operator h.&

A,G(Wg) =G(W()A.,=A.,G(Wg)A„(A. 13)

so that no projection operator A«can appear in the
middle of a sequence of operator G(Wq)A, VA~ in (A.11).
This means that the bound state, if once formed, does
not a6'ect the subsequent stages of a multiple scat-
tering. The total amplitude of the bound state generated
in the course of a multiple scattering is exactly what is
necessary to make the whole solution orthogonal to the
bound state. It is also to be noted this amplitude is
given by (A.6) without recourse to Born expausiort.

S', and the corresponding value of ) by ),. With X

larger than X„ there are two points on both sides of
W, where 8+& (k) takes the value m/2. The maximum of
the phase shift, which is reached somewhere between
these two points, does not exceed m, but approaches it
as X approaches unity. If the form off(k) is complicated
as a function of k, it might happen that J(k) is suf-
ficiently complicated that a few more pairs of points
appear at which 8&"& assumes the value n./2; however,
what is essential in the following is the fact that the
point appearing at the lowest energy, which we dnote
by lV„, approaches zero as ) approaches unity. When )
is almost equal to unity, 8'„ is given by

(1—X)'
8'„ when X

X(2—X) J(0)
(B.4)

On the other hand, the phase shift at zero energy,
8'"'(0), keeps the value zero if X is not equal to unity.

Now we define the limit by taking the limit 'A —+ 1
first and taking the limit k —& 0 afterward. In order to
get the same results as obtained earlier, (3.4—7), we
adopt the following prescription for taking the limit.
First, consider the phase shift at the energy Wq (the
suffix k here represents the "boundary" ),

h(k'k) =lim h~"&(k'k), when Wg) Wg(X). (B.6)

For energy smaller than 8'b, the corresponding limit
),~ 1 of h'~'(k'k) should give f(k') when it is integrated
over the small energy interval 8'»5"&&0; however,
a precise analysis of this point is left for future inves-
tigation.

Wp(X) =
X(2—X) J(0) 1—X

By substituting (8.5) into (8.3), we can see that the
phase shift at 8'b is almost m when ) is almost equal to
unity. One can readily see in (B.2) that for an energy
larger than 8"b the limit ) —+ 1 converges uniformly and
we have


