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Many-Body Problem in Quantum Statistical Mechanics. IV. Formulation in
Terms of Average Occupation Number in Momentum Space*

T. D. LEE, Columbia University, Ãm York, Ecto York

AND

C. N. YANG, Institute for Advanced Study, Princeton, %em Jersey
(Received June 26, 1959)

Starting from Rules A and 8 of a previous paper (I), it is shown that the grand partition function can
be evaluated in terms of the statistical averages of the occupation number in momentum space. The Anal
formulation is in terms of a simple variational principle. The procedure represents a concise and complete
separation of the effect of the Bose-Einstein or Fermi-Dirac statistical character of the particles from the
dynamical problem. In the case of Bose statistics, this formulation makes possible a systematic computation
of all thermodynamic functions near the Bose-Einstein transition point in the gaseous phase. Applications
to a system of hard spheres are discussed.

1. INTRODUCTION
' 'N paper I' of the present series it was shown that the
~ ~ thermodynamical functions for a quantum mechan-
ical system of particles obeying the symmetrical or anti-
symmetrical statistics can be computed from a knowl-
edge of certain U& functions for the same system obeying
Boltzmann statistics. The method of computation was
called Rule 3 and Rule 8 which embody the inhuence
of statistics on the thermodynamical functions. The
dynamical part of the problem is embodied, on the
other hand, in the functions U~.

The purpose of this paper' is to analyze further the
effects of statistics in a system of interacting particles.
It is found that the thermodynamical functions can be
expressed explicitly in terms of the statistical averages
(zzi, ) of the occupation numbers in momentum space.
Furthermore, the procedures of calculation are concisely
formulated without approximations as variational
principles.

In the case of Bose statistics, this new formulation is
also physically necessary to make possible a general
treatment of the Bose-Einstein transition problems
which will be discussed in detail in the subsequent paper
(paper V).

It is generally accepted that the ) -transition in liquid
He is due to the Bose statistical nature of the atoms.
In fact it is natural to conjecture that the transition is
caused by some peculiar properties of the average
occupation number (zz~) at k=0. However, attempts at
a systematic treatment of the problem have always

* Work supported in part by the U. S. Atomic Energy Com-
mission.

'T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959),
hereafter referred to as I. Throughout this paper we use the same
notations as I.' It may be remarked that the contents of this and the sub-
sequent papers (IV and V) depend only on the general methods
discussed in I. The discussions in II and III LT. D. Lee and C. N.
Yang, Phys. Rev. 116, 25 (1959); 117, 12 (1960)j represent
some other parallel developments and applications which are not
necessary for an understanding of the present paper. The reader
is also referred to M. S. Green, Phys. Rev. Letters 1, 409 (1958)
for a parallel discussion of the problems treated in the present
paper.
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been obstructed by the complicated dynamical problem
involved. The present formalism, in separating out the
statistics property from the dynamical property of a
system and in using the average occupation numbers
(zzi, ) as a primary concept in the analysis, offers new
possibilities for a more complete understanding of
transitions that are of purely statistical origin.

In Secs. 2 to 8 we give the general developments for
the case of Bose statistics. Applications to a Bose
system of hard spheres are discussed in Secs. 9 and 10.
The corresponding developments for Fermi statistics
are given in Sec. 11.

2. GRAND PARTITION FUNCTION
(BOSE STATISTICS)

Ke consider a system of interacting Bose particles
zzz tz fizzite ziolzzme Q. The grand partition function go
is related to the functions U&s by Lsee Eq. (I.13) of
paper I]

in&„s P(1t)—is& g (k»' ' 'kil U, sl kt, ki).
Z=1 kI .k)

(IV.1)

These U~ can be computed in terms of U& through
Rule A of paper I. As mentioned in I, in this compu-
tation instead of U& only the symmetric combination
T&s occurs, where T&s is defined by Lsee Eq. (1.30)$

(k, ,k, , ki
l
Ti

l
k, ,k, , ki)

=QQ~ P'(kr', ks ' ' k$
l

U$
l
kl)ks) ' ' ki) ~ (IV.2)

In (IV.2) the sum extends over all /, ! permutations of
ki', ks' ki'. Thus we may state Rule A in a slightly
altered form as follows:

RgleA' Talc l utea(
'
k.
—r'k.ski'l Ui

l
kr, kz ' ' 'ki)

we first consider a grouping of the l integers 1,

l (o) (&) ){(~d) (ef) }((g») ) (IV 3)

where ub cdef ghz is a permutation of these t
integers. In the first curly bracket there are m2 round
brackets with one integer in each (zzzr ——0, 1, 2, .) and
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in the second curly bracket there are w2 round brackets
with two integers in each (m2=0, 1, 2, ), etc.

2 3 I 2

Within each round bracket the integers are arranged in
ascending order and within each curly bracket the
round brackets are so arranged such that their first
integers follow an ascending sequence. We then form
the sum

&(&k~'I Y~'Ik &&k~'I ~~'Ik~) ")
X(&ka', kD'

I

I'2s
I
k, ) k,) ), (IV.4)

( A i)

2 3
(Aii) (Ai)

(Al

(SA' 5 )

( SB'3 I)

where AB CD . is a permutation of i, 2
Because we use Tts in (IV.3), among all the permuta-
tions AB .CD which differ from each other only
in the relative positions of numbers withisz the same bra
(e.g. , &ka', ko'

I
and &ko', ka'

I ) only one such permutation
will be included in the sum (IV.4). The sum (IV.4)
then extends over all permutations provided further
that upon setting k,'=k; (for all i) the summand in
(IV.4) cannot be written as a product of two factors,
one of which depends only on some, but not all, of the
coordinates k~, k~, kt while the other depends only
on the rest of these coordinates. The sum of all ex-
pressions (IV.4) over the different groupings (IV.3)
then gives &k~' . k~'I U~ lk~ k~).

We give a few examples' of Rule A'.

Example (1):
U slk& &k IY slk

= (k'I Uil k) =~~~ exp( —Pk'). (IV5)
Example (2):
&1'»'I U~'ll»& = &2'

I
U~ I1&&1'I U

I 2&

+&1',O'
I
T~s

I
1,2). (IV.6)

Example (3):
&1',2',3'I U, s I1,2,3)

+&1'
I

U~
I 2)&2'

I
U~

I
3&&3'I U~ I1&

+&2'I Uil 3&&1',3'
I
&~'I 1,2)

+&3'I U~
I
2&&1'»'

I
Y2'll 3&

+(1'I Ull3)&2', 3'I I'O'I1, 2)
+(3'I Uil 1)(1',2'I Y2 I2 3)
+&1'

I
Uz

I
2)(2',3'

I
Y2

I 1,3)
+(2'IU 1»&1'3'IY 'I23&

+(1',2', 3'
I

Ygs
I
1,2,3). (IV.7)

3. PRIMARY GRAPHS (BOSE STATISTICS)

By using (IV.1) and Rule A', the logarithm of the
grand partition function can be expressed as a sum over
expressions (IV.4). It is useful to represent each of
these terms in (IV.4) graphically. Indeed, a major part
of the discussions in this paper is just to find a con-

' For simplicity, we use I 2 3 and 1' 2' 3' to represent
k1k2ka . ~ and kI'k&'kg', respectively.

venient way of representing these sums by appropriate
graphs. For clarity, we shall present the gradual evo-
lutions and successive simplifications of these graphical
methods instead of immediately presenting the final
rules.

As an example, let us first consider two specific terms
(Ai) and (Aii) in (IV.4),

(A~) = &2I U~l 1&(3I U~l 2&&1I U~
I 3» (Iv.s)

(Aii)=(3I Ugl 1)&ll Ugl2)&2I Ugl3). (IV.9)

In Fig. 1 we represent (Ai) by a diagram in which the
three incoming (i.e., with their directions pointing
towards the vertex points) lines 1, 2, 3 represent,
respectively, the three kets

I 1), I2), and I3) in (IV.S);
the three outgoing (i.e. , with their directions pointing
away from the vertex points) lines 1, 2, 3 represent the
corresponding t.hree bras (ll, &2I, and (3I. These lines
are connected at various vertex points that correspond
to the U& factors in (IV.S). In a similar way, we repre-
sent the term (Aif) by a diagram in Fig. 1. Next, to
show the connectivity of these diagrams, we connect,
respectively, the incoming lines i, 2, 3 with the outgoing
lines 1, 2, 3. The resulting diagrams are shown as (Af)'
and (Aii) in Fig. 1. Since in (IV.1) k~, k2, k~ are to be
summed over, both (A~) and (Aii) give identical con-
tributions to the sum (IV.1) for in/os. It is therefore
convenient to omit the numbers 1, 2, 3 from these
diagrams and represent both terms by a single graphical
structure, called a prirrlary graph (or, primary O-graph),
which is shown as A in Fig. i,

Next, as another example, we consider some other
terms in (IV.4), e.g. ,

&1,2, 3I Yg'I 1,2,3). (IV.10)

Again we erst represent the ket
I 1,2,3) by three

incoming lines 1, 2, 3 and the bra &1,2,3I by three
outgoing lines 1, 2, 3. These lines are connected at a
vertex point which corresponds to Y~~. We then connect
the incoming lines i, 2, 3, respectively with their corre-
sponding outgoing lines. Finally, we omit these numbers

2 3 (Bl' (8)

FIG, j.. Evolutions from diagrams to primary graphs. (2) and (8)
are primary O-graphs.
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i, 2, 3 and obtain a primary graph 8 which is also shown
in Fig. 1. Unlike the previous example where the
primary graph A represents the sum of the contributiops
of two terms (Ai) and (Aii) to (IV.1), the primary
graph 8 represents only the contribution of a single
term (IV.10).

In an entirely similar way we may represent 1ngzs
as a sum over various primary graphs.

We define a primary graph to be a single (i.e. , all
parts being connected) graphical structure which must
contain at least one line and at least one vertex. These
lines are connected with each other at various vertices.
Each line has a direction indicated by an arrow. Each
vertex, called n-vertex, connects n incoming (i.e., with
their directions towards the vertex) lines and n outgoing
(i.e. , with their directions away from the vertex) lines.
A line which has vertices at both ends is called an
internal line; otherwise, it is called an external line. All
external lines are considered distinguishable and difer-
ent. Two primary graphs are diRerent if their topo-
logical structures are different. For example, the length
and curvature of each line are completely unspecified
and immaterial.

A Primary f gruPh -(f'=0, 1, 2, ) is a primary
graph which has l external incoming lines and l external
outgoing lines. It is clear that to express 1ngas we need
only the special case /=0 Highe. r f' values will be
important for computing other physical quantities.

To each primary f'-graphs we assign a term which is
determined by the following procedures:

The term that corresponds to each graph is given by

Lproduct of all factors in (iii)- (v)]. (IV.12)
k1 .kl

In terms of these primary graphs we can write the sum
(IV.1) as (proved in Appendix A)

ingle ——P (all different primary 0-graphs) (IV.13)

in which each graph contributes a term given by (IV.12).
The sum (IV.13) is illustrated in Fig. 3. More ex-

plicitly, one can write (IV.13) as

in&os ——PLs exp( —Pk')

+-',s' exp( —2Pk')+-', s' exp( —2Pk')+

+ P (kik,
~
T,s~ k,k2)(-', s'+s' exp( —Pki')

kIk2

+-',s' exp) —p(ki2+k22)]+

+ p (k,k, k3~ Yps~ k&k2k3)
kIkok3

&& L
—', s'+-,'s' exp( —Pki')+ ]+ .

, (IV.14)

in which each term in the sum corresponds to the
primary 0-graph at the corresponding position in the

S, n

I 2

(i) Associate with each internal line a different integer
i (i=1, 2, l) and a corresponding momentum k;.

(ii) If f/0, then associate the external lines with
certain pre-given momenta.

(iii) To each n-vertex, assign a factor

(kai ka.
~
T.

~

k~, k~.),
where k~i k~ are the momenta associated with its
incoming (internal or external) lines and kai ks
are the momenta associated wit:h its outgoing (internal
or external) lines.

(iv) Assign. a factor s to each internal line.

(v) Assign a factor S ' to the entire graph where

9 2 4

2 2

2 2

S=symmetry number

and is defined as follows:

(IV.11)

Consider all 1.' permutations of the positions of the l
integers associated with the internal lines. The total
number of permutations that leave the graph topo-
logically (including the relative positions of these
numbers 1, 2, . l) unchanged is called the symmetry
number of the graph. ' (Some examples of symmetry
numbers are given in Fig. 2.)

4Let us consider the two primary graphs (A) and (8) in Fig. 1
and denote their symmetry numbers by Sz and Sz, respectively.
We follow step (i). These two primary graphs become, say, (Ai)'
and (8)', respectively. For (8)', all the 3!permutations of (1 2 3)

Fn. 2. Relationship between irreducible 0-graphs and irre-
ducible 1-graphs. The derivative with respect to M(k) of an
irreducible 0-graph listed in column A is the sum of the corre-
sponding irreducible 1-graphs listed in column 8. The number n
is the number of lines in the O-graph, which, when cut, gives rise
to the 1-graph. Notice that Eq. (IV.103) is satis6ed in every case.

leave its topological structure (including the relative positions of
1, 2 and 3) unchanged. Thus S&=31. For (Ai)' only the cyclic

123 123 123permutations,
2 1, and

3 2
leave the

topological positions of these numbers unchanged. Thus, Sg=3.
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sum in I'"ig. 3. In (IV.14) we have used the explicit
form of Ui given by (IV.S).

in' s=g ines-'m(k)]

+s p (klks~T2 ~klks)m(ki)m(ks)
kik2

+s P (kiksks~Ts'~kiksks)

Xg m(k, )+", (IV.IS)

where
m(k) =z/1 —s exp( —Pks)] '. (IV.16)

It is therefore convenient to represent the primary
graphs in the same row in Fig. 3 by a single structure
which is obtained from any one of these primary graphs
by simply deleting all 1-vertices.

We now introduce the definition of a contracted
graph. A corstracted graPh (or, contracted f'-graph) has

+ t ~ ~

(2)

(2) (2)

+0 ~ ~

+ ~ 4 ~

(2)

4. CONTRACTED GRAPHS (BOSE STATISTICS)

In Fig. 3 we have arranged the sum so that the dif-
ferent primary graphs in the same row have the same
number of n-vertices for n&2 but diGer oddly in the
total number and relative positions of 1-vertices.
Because of (IV.5), we see that all the terms in the same
row in (IV.14) can be easily summed over. Thus (IV.14)
becomes

the same topological structure as a primary graph (or,
primary l-graph) except that a contracted graph does
not have any 1-vertices. To each contracted graph we
assign a term which is determined by the same pro-
cedures (i)—(v) used to obtain (IV.12), except that (iv)
is replaced by

(iv) Assign a, factor m(k~) to the sth inIerssa/ line
(s=1, 2, 1).

The term that corresponds to a contracted graph is
then given by

[product of all factors in (iii), (iv), and (v)].
ki

(IV.17)

In terms of these contracted graphs (IV.13) becomes'

in/as=g& lnLs 'm(k)]
+P (all different contra, cted 0-graphs). (IV.18)

This sum is also illustrated in Fig. 3 in which, for the
sake of clarity, solid lines are used for the primary
graphs and dotted lines are used for the contracted
graphs. It is important to notice that the role of sym-
metry numbers is preserved under this process of con-
traction.

The first few terms in the sum (IV.18) have also
been derived in paper II.'

At s= 1., m(k) has a singularity at k=0. The sum-
mation (IV.18) therefore is useful only for s(1. As
was pointed out in a previous paper, ~ for a system of
dilute Bose hard spheres the therrnodynamical func-
tions do r)ot have a singularity at s= 1. In fact, through
a rearrangement of the virial expansions the actual
phase transition was found to occur at s) 1.

It will be shown in Sec. 6 that mathematically such
rearrangement processes are identical with the study
of the reducibility of the graphs. To see this and to
extend these results to a general system of interacting
bosons, it is useful to discuss first some properties
between graphs and the average occupation numbers in
momentum space.

+ ~ ~ ~ ~ ~

+ ~ ~ o

S. AVERAGE OCCUPATION NUMBER IN
MOMENTUM SPACE AND M(A)

(BOSE STATISTICS)

v I
= Z sn[) m(k)j +

(2) (&!)

&r
p +. .. ,

(2)

FIG. 3. Ingsns as a sum over different primary 0-graphs and as
a sum over different contracted 0-graphs. Solid lines are for
primary graphs and the dotted lines are for contracted graphs.
The symmetry numbers are listed under the graphs.

We define (sss) to be the statistical value of the
number of particles' with a. definite momentum k in a
6nite volume, averaged over the grand canonical
ensemble. These average numbers can be shown to be

~ For the sake of uniformity we choose the definition that every
graph (primary, contracted or irreducible} must contain at least
one vertex. Thus, if we delete all 1-vertices from any primary
graph in the first row in Fig. 3 the result is not a contracted graph.'T. D. Lee and C. N. Yang, Phys. Rev. 116, 25 (1959),
hereafter referred to as II.' T. D. Lee and C. N. Yang, Phys. Rev. 112, 1419 (1958). See
especially the discussions given in Sec. 8.

(ng) is the occupation number for particles, not the so-called
phonons.



T. D. LEE AND C. N. YANG

m (k)

M(k) —m(k) ~
g +

m( k)
{l)

m{ k)

il&

f y—+I
k

m (k)
(2)

m{k)

i(

1(

+
g

y
m(k)

(I)

m(k)

m(k)

(2)

m(k)

~r ~r
I w JX

m(k)

( I)

related to Uz by (to be proved in Appendix B)

&zz,)=EL(t—1) i7-'s'
l=l

(ki . k/ i k~ U'$ ~kr . k$ tk) (IV ]9)
k( I

For reasons which will become clear later, it is
extremely useful to define a function M(k) related to
(zz, ) by

(IV.20)M(k) =—sL(zzs)+17.

By using (IV.19), M(k) can be written as

M(k) =s+s'fP(l, !)-isi
L=0

(k k, k~ U+ s~ k, . k,k)7. (IV.21)
k] o ~ ok)

The function M (k) is related to the grand partition
function one by

I3

Q[s 'M(k) —17=+(zzs) =s—incan . (IU.22)
k k S

By using Rule A', M(k) and (n~) can be expressed as
a sum over expressions (IV.4). Similar t,o the discussions
in Sec. 3, we can represent these expressions as primary
graphs. Since in (IV.21) k is not to be summed over,
each of these primary graphs must have one external
outgoing line carrying momentum k and one external
incoming line also carrying momentum k. Thus we can
express M(k) as' (proved in Appendix A)

M(k) =s+s' P (all different primary 1-graphs7
(IV.23)

in which each graph contributes a term given by (IV.12).

It is important to notice that in either (IV.I2) or (IV.17) or
(IV.26) the factors associated with external lines are not included.
Graphically, we adopt the convention that the term corresponding
to a graph is given by (IV.12) L'or (IV.17) or (IV,26)g except for
Figs. 4 and 5. For these two figures the external lines contribute
further multiplicative factors m(k) or SI(k) as explicitly marked
in these graphs.

+ ~ ~ ~ ~

Fro. 4. LM(k) yn(k—)g as a sum over different contracted
1-graphs. The corresponding symmetry numbers are listed under
the graphs. Each graph contributes a term equal to (IV.17) times
m'(k). LSee reference 9.]

6. IRREDUCIBLE GRAPHS (BOSE STATISTICS)

The above form (IV.24) for M(k) can be further
simplified by noticing the property that many of the
contracted graphs in Fig. 4 can be generated from a
simpler contracted graph by a suitable replacement of
the factor m(g) in (IV.17) by M(zI). For example, we

may take the first contracted graph in the sum for
M (k) in Fig. 4 and replace, say, the factors' m(ki) and
m(k) associated with the internal line and the external
outgoing line by M (ki) and M (k), respectively.
Graphically, we represent M(k) by a thick solid line
and illustrate this replacement by changing the appro-
priate dotted lines into thick solid lines. By using Fig. 4
it is easy to And the totality of contracted graphs
represented by this resulting graph. ' This is shown in
Fig. 5.

p
m (k)

m(k )

I
m{k)

m(k) m(k)
4,

t,

m{k) m(k)

m(k) m(k)

+8 + ~ (/'

z+$ y ~ s+. .. .
/ Il~~

m (k)

l
lg ~(+ }

m(k)

+ e e ~

+ ~ ~ ~

Fro. 5. Graphical example of an irreducible 1-graph as a sum
of different contracted 1-graphs. [See reference 9 for the roles of
external lines. ]

In a way entirely similar to the reduction of (IV.13)
to (IV.18) we can reduce M(k) to a sum over different
contracted 1-graphs:

M (k) =m (k) + Pnz(k) 7' g Lail different contracted
1-graphs7 (IV.24)

in which each graph contributes a term given by
(IV.17). This sum is illustrated in Fig. 4. The explicit
algebraic values of the diagrams are given below':

M(k) —m(k)

= Lm(k)7' P(k, kt] vzs[ k, ki)m(k, )
kI

+-', Lm(k)7' P (k, kt, kz~ Tss~ k, ki, kz)m(ki)m(kz)
kikg

+Lm(k)7' g (k k]
~

T, '~ k k, )(k,k,
~

T,s
~

k k,)
kik2

X m(ki) m(ks) + . (IV.25)
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To study such reduction in a systematic way it is
necessary to introduce the concept of redlc~biHty of a
contracted |-graph I.n the present paper we are only
interested in the reducibility for the special cases of
&=0 and 1.

Defifsition A.—contracted O-graph, or a contracted
1-graph, is called reducible if by cutting two of its in-
ternal lines open the entire graph can be separated into
two (or more) disconnected contracted f-graphs (| can
be 1 or 2).

Ke see, for example, the 6rst two and the fourth
contracted 1-graphs in the sum for [M(k) —m(k)] in
Fig. 4 are not reducible while the third and the fifth
graphs are reducible.

Ke now introduce the concept of an irredlcible graph
and its algebraic value.

Depfritfon An .i—rreducible f-graph is a contracted
f'-graph which is not reducible, with its dotted lines
[representing fn(k)] replaced by thick solid lines
[representing M(k)]. PJotice that in this terminology
an irreducible graph is not just a contracted graph that
is not reducible. )

To obtain the value of an irreducible graph we go
through the set of procedures (i)—(v) used to obtain
(IV.12), except tha, t (iv) is replaced by (iv)".

(iv)" Assign a factor M(k;) to the ith internal line,
where i = 1, 2, t.

The term that corresponds to an irreducible graph
is given by

[product of all factors in (iii), (iv)", and (v)].
~ ~ o k)

(IV.26)

In terms of irreducible graphs, M(k) can be ex-
pressed in a much simpler sum. '

M(k) —m(k) =ffs(k)M(k)E, (IV.27)

m (k) —M (k) ;0
(2)

t2)

(IV.29) are listed in the same order in I'ig. 6. The
numerical constant in front of each term in the sum
(IV.29) is the appropriate factor (symmetry number) '
of the corresponding irreducible i-graph in Fig. 6.

(IV.27) is in the form of an integral equation for
M(k). By repeated iterations, one can use (IV.27) to
express M(k) explicitly in terms of m(k). It is easy to
see that the resulting formula is identical with (IV.24).

It may be emphasized that while formally the sum
over contracted graphs, (IV.24), is equivalent to the
sum over irreducible graphs, (IV.27), this regrouping
of in6nitely many contracted graphs into fewer irre-
ducible graphs is actually important in avoiding un-
necessary infinities as s approaches one.

To understand this, let us consider any reducible
graph in the sum (IV.24). In such a graph, because of
conservation of momentum some of the momenta
(associated with different lines) must be identical. " In
cases where these identical momenta are associated with
internal lines, say, 1 e, such a reducible graph would
contribute to the sum (IV.24) a. term of the form

+ ~ ~ 0 ~

Fro. 6. E LEq. (IV.28)] as a sum of different irreducible 1-
graphs. The corresponding symmetry numbers are listed under
these graphs.

where

E=g [all differe'nt irreducible 1-graphs] (IV.28)
[m(q)]"d'q G(q), (IV.30)

in which each graph contributes a term given by (IV.26).
It is important to notice that the role of symmetry

numbers is again preserved under this process of re-
duction.

In explicit form (IV.28) can be written as

If. =P(k,kr
~

Ts~
~
k, k, )M(kr)

k1

+-,' P (k,kt, ks
~

Ts'~ k)kt, ks)M(kt)M(ks)
kik2

+s P (k k, ~T,s~k, k, )(k, k,
~
Y,s(k k, )

k1kgk3

)&g M(k,)+-,' Q (k, kt ks, k&~T4s~ k,kt, ks, ks)
kIk2k3

Xg M(k.;)+ . (IV.29)

The corresponding irreducible 1-graphs for the sum

where G(q) represents the factors from the other ele-
ments of the graph such as vertices, etc. At z=1, ffs(q)
has a singularity at q=0. Thus (IV.30) behaves like

G(q= 0)[1—z]l—" (IV.31)

as z —+ 1—.Consequently, to obtain the form of M(k)
as z nears 1 it is necessary in (IV.24) to sum over all
such singular terms (IV.31), especially for large values
of e. The result of these infinite sums over various
reducible graphs is precisely the ftnal form (IV.27).

Thus, the reduction of contracted graphs to irre-

' For example, in the fifth graph in the sum in Fig. 4, the two
momenta in the middle loop must be identical. In general, by
definition, a reducible graph can be separated into two parts 3
and 8 connected by not more than two lines. (Both A and 8
must each contain some vertices. ) In the case that A and 8 are
connected by two lines the momenta associated with these two
lines must be identical. Otherwise, fe.g. , in the third graph in Fig.
3j the momentum associated with the single line which connects
2 and 8 must be the same as that of the external line.
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then the integral equation (IV. 27) for M follows auto-
matically.

Furthermore, if we denote the second functional
derivatives of 6' by a matrix E».,

(81

bo

m(k)m(l '), (IV.36)

+ ~ ~ ~ ~

FIG. 7. (P' PEq. (IV.34)j as a sum over diferent irreducible
0-graphs. The corresponding symmetry numbers are listed under
these graphs.

ducible graphs represents not only a mathematical sim-

plification but also a physical necessity as s —+ 1.
In terms of M(k) we can also express the pressure p

of any Bose system in a hnite volume 0 as a sum over
different irreducible 0-graphs (proved in Appendix C),

(AT) 'Op=6'(s, M), (IV.32)
where

(P(s,M) =—Qi, ln[s 'M(k) j
—Pa [m(k) j '[M(k) —m(k) j

+g fall different irreducible O-graphs], (IV.33)

in which each graph contributes a term given by
(IV.26). More explicitly, if we define (P' to be the sum

over all diGerent irreducible O-graphs, then.

then at the point that (IV.35) is true, the inverse E '
of this matrix is given by [proved in Appendix D$

(E ) sa~ = sM (k)bag~
—s'((ea —(na)) (ea' —(~a')) ), (IV.37)

where ( ) means statistical average over the grand
canonical ensemble and 6» is the Kronecker b-symbol.
Thus, Ei, i, is a negative matrix [i.e., its eigenvalues are
always negative]. Combining (IV.35) and (IV.37), we
find that if we regard 6'(s,M) as a functional of an
arbitrary function M(k) then the pressure of the system
is given by"

QP(AT) '= maximum [(P(s,M)] (IV.38)

at constant s.
It is of interest to notice that (IV.38) holds for a,

finite, as well as for an infinite, volume.
Upon taking the derivative of 6' with respect to inc'

we have, by using (IV.22),

O '(s,M)

=-', P (kr, ks
~
Ys

~
kr, ks) g M(k, )

l3

O (s M) =np,
8 lns

(IV.39)

kIkg

+-,'. P (kr, ks, k3~Tss~kr, ks, k3)QM(k;)
kIk2k3 i=1

P [(k„l,
~

Y, '~ k„k,)]
k4

X[(k„k.
~

Y, ~k„k,@AM(k,)

where p is the particle density of the system.
2. From (IV.32), the free energy F of the system can

be readily evaluated if M(k) is known. It is useful to
express F as an explicit functional of p and M (k),

(AT) 'F = F(p,M). (IV.40)

The functional F(p,M) is given by the I egendre trans-
formation

+— P (kr, ks, ks, k4~ Y4'~ k, ,k, , k, , k, )
F(p,M) =—Op lns —$'(s, M),

in which we use (IV.39) and regard

(IV.41)

Xg M(k,)+ . (IV.34)

In (IV.34) the first four terms correspond to, respec-
tively, the four irreducible 0-graphs in Fig. 7.

V. VARIATIONAL PRINCIPLES

In this section we shall discuss some general vari-
ational properties.

1. In (IU.33) we regard tP a,s an explicit functional
of s and M(k). It is shown in Appendix C that if we
set the variation of (P(s,M) with respect. to M to be zero,

s=s(p, M). (IV.42)

.3M(k), .3M(k),
(IV.43)

(IV.44)
.SM(k)3M(k'), .&M(k)SM(k'),

Consequently, if we regard F as a functional of an
arbitrary function M(k), then the Helmholtz free

The functional derivatives of 5 with respect to M at
constant p are related to the derivatives of (P by

~P(s M) =0,
bM(k)

(IV.35) I' It will be further shown in Appendix D that under certain
general conditions this maximum is also an absolute maximum
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energy is given by

(aT) 'P=minimum t F(p,M)) (IV.45)

(IV.22), (IU.41), and (IV.34) become, respectively,

at constant p.
Although these functions 6'(s, M) and $(p,M) are

expressed in terms of infinite sums of irreducible
O-graphs, it is important to notice that especially for a
dilute Bose system at low temperature the various
irreducible 0-graphs contribute quite diGerently to
these sums.

For definiteness, let us consider a dilute Bose system
of hard spheres of radius u in its gaseous state. For such
a system it is possible to estimate directly the mag-
nitudes of different terms in the sum (IV.34). Let us
consider a typical irreducible 0-graph with nz n-vertices
and / internal lines,

p= (8m') —' Ls
—'M(k) —1)d'k,

J
(IV.51)

+ (84r') —' Lm(k))
—'

XLM(k) —~(k))d'k —n-'o ', (IV.52)

(8n') 0 '(P'(M)

(ki, k2~ v2s~ ki, k2) g M(k;)d'k;

II 'S(p M) =p ins —(84r') ' in(s-'M(k))d'k

Such a graph would contribute a term of the form + is ~p(ki, k2( v2e
i k3,k4))'8'(ki+k2 —k3 —k4)

2 HI Y-')HIM(k')) (IV.46)
X Q M(k;)d'k;+-,' (ki, k2,ki

~
v3s~ ki, k2, ka)

to the sum (IV.34). Since the system is in the gaseous
state, and since M(k) is related to the physical quan-
tities (44|,) and the fugacity s by (IV.20), we find

M(k) = finite ~ pX', (IV.47)

nI -4(o/I ) '--(pI ') &, (IV.49)

where e is the total number of vertices in the graph:

(IV.50)

8. APPROXIMATION METHODS AND
APPLICATIONS

We shall show that for a Bose system of hard spheres
at given p and T in the gaseo44s phase, all the thermo-
dynamical functions can be evaluated systematically
provided a is small Pi.e., (apX')&(1 and (a/I~)&(1).

As 0 —+ ~, we can replace all summation over
momentum space by continuous integration. Thus

where X'= (4irP).
We recall that for small a Lsee Appendix E and paper

IIIi')
(1'2' e'

i
T,e

i
1 2 4i) ~ (aX'/II) ' (IV.48)

for small values of k, and decreases exponentially like
exp( —Pk 2) for large k;. Thus in each summation over
k, only regions

~
k;

~

&Ii ' are of importance. Because of
momentum conservation there are (l—P m +1) inde-
pendent momenta to be summed over. Combining all
these factors, it is easy to see that (IV.46) is of the
magnitude

XP M(k;)d'k;+, (IV.53)

where u~~ are related to the Boltzmann N~ functions
Ldefined in Eq. (I.54) of paper I) by

(ki', ki'i »'i kii ki)
=Xi &'(ki', kl ~Nl~kl '''kl)) (IV.54)

and are independent of the volume. In (IV.54) the sum
extends over all permutations of ki', ki'. In proving
(IV.53) the detailed relationship between Ti and vi

discussed in Appendix E is used.
(IV.49) gives a direct classification of the magnitudes

of each term in the infinite sum (IV.53) as powers of a.
To calculate, for example, the free energy Ii accurate
to a certain power in a, we can neglect all those terms
in (IV.53) which give only higher order contributions.
The corresponding approximate integral equation for
3f can be generated by the variational principle

PF/8M(k)), =0, (IV.55)

which automatically insures the consistency between
the two approximate formulas for M and for Ii.

In the following, we shall solve for s, M(k) and Ii
explicitly as functions of p and in powers of a. The eth
order approximate solutions Laccurate to O(a")) will
all be denoted by subscripts m.

Zeroth Approximation

In the zeroth approximation we do not include any
irreducible O-graph."T. D. Lee and C. X.Yang, Phys. Rev. 117, 12 (1960), Sec. 3. (Pp' ——0. (IV.56)
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The zeroth order solution for M(k) is

.Mp(k) =»Li —» exp( —Pk') j ' (IV.57)
&=si 1—(2ir') 'gX' "Mi(q) exp( —Pq')d'q . (IV.68)

where so, as a function of p and T, is given by

(IV.58)

Correspondingly, the zeroth order free energy is

(Q~T) 'Fo= p lnso —li 'g;(»). (IV.59)

The zeroth approximation is identical with that of a
free Bose gas.

First Approximation

There is only one irreducible 0-graph which con-
tributes to the order of a. Hence,

Second Approximation

To calculate F to O(a') we have to include in 6'2'

the first three terms in (IV.53). Because of the mini-
mum property of F we can substitute the 6rst order
solutions si(p, T) and M'i(p, T,k) into (P2' and directly
obtain the second order expression for F.

v. SrmGULARITV OF m(A. )

From these approximate solutions we expect that
there exists a critical value s, . At s(s„M(k) is finite
for all k values; but, at s=s„M(k) becomes infinite
at k=0. In general we may write (IV.27) as

(8~')Q '5'i' ———', (kik2I» I
kik&)

XM(ki)M(k2)d'ki d'kg. (IV.60)

—M-'(k)+m-'(k) =E(k).
Thus, the condition for s, is

(IV.69)

Because of the variational character of the free energy,
we can substitute directly the zeroth order solution so,
Mo(k) into (IV.52) and obtain the first order expression
for F. Substituting (IV.57), (IV.58) and the explicit
form of u2 Lsee Eq. (I.67) of Ij
(kik2~ u,

~
kikg) —= (2m') 'a'A'

XexpL —P(ki'+k2') j+O(a') (IV.61)

into (IV.60), we obtain Lneglecting O(a')7

s '= 1+E(k=0) (IV.70)

By using the approximate solutions we can evaluate s,
as a power series in a. Substituting (IV.66) in (IV.70)
we have

s,= 1+4(2.612) (u/X)+ (IV.71)

Correspondingly, the density and the pressure at s= s,
are given by

(IV 62) aild.

Corresporidingly, we find the erst order expression for
Ii tobe

(IITQ) 'Fi ——p ln» —'A 'g;(»)+2aX'p', (IV.63)

where» is given by (IV.58). Using (IV.63) we can
obtain the first order expression for p as

)P(~T) 'p = (1.342)+—2(2.612)'(a/X)+ . (IV.72)

As will be shown in detail in paper V, such singular
behavior of M (k) at k=0 is a general characteristic of
a Bose-Einstein phase transition. Physically, it means
that in the condensed phase

Pi ——X '(zT)g;(so)+8m. ap'. (IV.64) M(1 =0)=*pQ, (IV.73)

Expressions (IV.63) and (IV.64) are identical with
the results obtained by the pseudopotential method. "

To obtain the first order solution M~ and s~, we have
to use (IV.60) and apply the variational principle
(IV.55). The resulting equation is

—Mi '(k)+si ' —exp( —Pk')+(2m') —'ag'

which can be readily solved. The first order solutions
3f~ and s~ are given by

Mi(k) =siL1—
g exp( —Pk')] ', (IV.66)

(IV.67)
"T.D. Lee and C. N. Yang, Phys. Rev. 112, 14f9 (1958).

where x is a finite number between 0 and 1. Conse-
quently, M(k=0) becomes infinite as Q —+ ~.

It is of course true that even though M(k=0) may
be proportional to 0, our present formalism still is
formally valid. However, if @@0,then unless a further
re-grouping of the series is performed, our basic equa-
tions in terms of irreducible graphs cannot be used.
Indeed, e.g. , the sum (IV.34) is a series consisting of
infinite members of increasingly divergent terms. To
show this, let us consider a typical irreducible 0-graph
(IV.46). By using (IV.73) and (IV.48), we find that if
x/0, (IV.46) is proportional to

(IV.74)

plus terms proportional to lower powers in Q. The
maximum power e is equal to the total number of
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vertices in the graph:

7Ãcr.
A=2

Consequently, if @~0, the higher order terms in the
sums (IV.28) and (IV.34) become more and more
divergent as 0 —+ ~.

In paper V, we shall give a new formalism which
reduces to the present one in the gaseous phase (x=O).
But unlike the present one it can be applied also in the
condensed phase and does not contain the above-
mentioned divergence difhculties.

iO. FERMI STATISTICS

In this section we consider a system of Fermi par-
ticles with spin J in a 6nite volume Q. The grand
partition function gz" is given by

to each n-vertex where qA1 . qA and qB1 qB are the
momenta and spins associated with its (internal or
external) incoming and outgoing lines, respectively. The
definition of Y " is given by (I.31).

(ivA) To each ith ieterna/ lines, we assign a factor s
in the case of a primary graph, a factor

m~(q, ) =—sL1+s exp( —Pk,2)7 ' (IV.79)

in the case of a contracted graph, and a factor M" (q,)
in the case of an irreducible graph. In (IV.79), k, is the
momentum represented by q;.

(vA) Assign a factor

(symmetry number) ',

to the entire graph. The definition of the symmetry
number is identical with that in the Bose case.

(viA) Assign a factor 8 to the entire graph. Here 8 is
+1 (or —1) if the permutation

gA1 ~ gB ) gA2 ~ gB2) ' ' ') gA~ ~ /Br')

from all the initial coordinates into all the final coor-
dinates of all the vertex functions Y A taken together
is even (or odd).

The term that corresponds to each graph is given by

where q, represents both the momentum and the spin
coordinates of the ith particle (i=1, 2, l). Starting
from rule 8 of paper I, we can also formulate pe" in
terms of the average occupation number by procedures
similar to those used in the previous sections.

Let (e,) be the statistical (averaged over a grand
canonical ensemble) average number of particles with
a definite momentum and a definite spin component.
Both of these coordinates are represented by q. The
corresponding function M" (q) is defined by

Lproduct of all factors in (iiiA), (ivA), (vA)

and (viA)7. (IV. 80)

In terms of these graphs, we can write in complete
analogy with (IV.13), (IV.18), and (IV.33)

(xT) 'Qp =g fall diferent primary O-graphs7, (IV.81)
= —g~ lnLs 'm" (q)7

M" (q) =—sL1—(n, )7. (IV.76)

in'. =P(I!)-s P (q, q,
~

V, ~q, q, ), (IV 75).
Z=1 (jj ~ ~ o Ql

The particle density p is related to MA by

IIp= Q,(1—s 'M" (q)7. (IV.77)

Similarly to (IV.21), M" can also be expressed in terms
of Ui" (proved in Appendix 8),

Next we define a primary f'-graph, a contracted
|-graph, and an irreducible l-graph (&=0, 1, 2 ) in
exactly the same way as in the Bose case. To each of
these graphs we assign a term, slightly different from
its counterpart in the Bose case, determined by the
following procedures for &=0 or 1:

(iA) Associate with each internal line a different.
integer i (i=i, 2 l) and its corresponding q;.

(iiA) Associate each of the external lines with some
pre-given momenta and spin values.

(iiiA) Assign a factor

(qai qa ~Y "~q~i q~„)

M "(q) = s—+L(l—1)!7—'s'+'
l=l

X Q (qi qi i, q~ Ui ~qi . qt i,q). (IV.78)
Ql' '0/ —1

+P Lail different contracted O-graphs7,
= —P, lugs 'M" (q)7

+Pfm~(q)7 'LM" (q) —m" (q)7

(IV.82)

+P Pall different irreducible 0-graphs7. (IV.83)

Similarly,

M" (q) =s—s' Q fall diferent primary l-graphs7,

(IV.84)

=m" (q) —Lm" (q)7' P Lail different

contracted 1-graphs7, (IV.85)

=m" (q) —farl" (q)M" (q) 7 P Pall different

irreducible 1-graphs7. (IV.86)

In the above equations (IV.81)—(IV.86) each graph
contributes a term given by (IV.80). )Notice the dif-
ference in factors (ivA) for primary, contracted and
irreducible graphs. ) The first few terms of (IV.82)
have been derived also in paper II.

In a similar manner to that for the Bose system, a
variational principle can be obtained for the Fermi
system.
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D= (l!)s—', (IV.87)

where s and l are, respectively, the symmetry number
and the number of internal lines in the original t -graph.

To prove (IV.13) and (IV.23), we notice that dif-
ferent terms in (IV.4) [e.g. (Ai) and (Aii) given by
(IV.S) and (IV.9)] can give identical results after
summing over all their cetera@/ momenta. Graphically
these terms correspond to the same primary f graph-
but different numbered primary f-graphs [e.g. , (Ai)'
and (Aii)' in Fig. 1].Thus, the total number of such
terms is identical with the total number, D of the
corresponding different numbered f'-graphs. In both
(IV.1) and (IV.21) we have to sum over such terms,
sum over their internal momenta ki ki, and then
divide by (l!).Consequently, we obtain a factor

(lt) 'D

which is, by (IV.87), (symmetry number) '. By using
(IV.12), it then follows that (IV.13) and (IV.23) cor-
rectly express the sums (IV.1) and (IV.21), respectively.

APPENDIX B

To prove (IV.19) and (IV.78), we recall that in the

APPENDIX A

Ke first discuss an elementary property of the sym-
metry number.

Let us assign a different integer i (i=1, 2, t) to
every internal line of a f-graph. The resulting graph is
called a numbered f'-graph generated from the original
graph. '4 Two numbered f-graphs are different only if
they have different topological structures, including the
positions of these numbers.

Let D be the total number of different numbered
f-graphs which can be generated from the same f'-graph.
From the definition of symmetry number given by
(IV.11), it is easy to see that

In (IV.89) we have utilized the property that
(1, 1VlWii

l
1, iV) is a symmetric function with

respect to the A particles. We now use the definitions
of Ui [e.g. , (I.12) of paper I] and observe that each
8'~ can be written as a sum over products of the form

(q,si, 6 il U lq, Gi, ' ' 'Q~ i)
)&(bi, bil Ui

I bi, . bi): (IV.90)

In general, (IV.90) is a product of one U„which
contains q as one of its variables, and m1U1" functions,
m2U2 functions, etc. , which contain other particles as
variables. In (1, lV —1, qlW~ l1, iV —1, q), there
are altogether

(iV—1)!

(~—1) ' IIi[(~ )"'(mi )]
(IV.91)

such terms where

X=I++ hami.
1=1

(IV.92)

(q, 1, "» 1IW~" Iq,
—1, '&~—».

Substituting these factors into (IV.89), we find

(iz,)=P [(e—1)!]—'s"
n=l

&& Q (q, 1, I 1l U„ l—q) 1) ii —1). (IV.94)
1, ~ ~ .n—1

If we define the corresponding M (q) to be

M (q) —=s[1a(ii,)], (IV.9&)

Each of such terms contributes a term

(q, 1, »—1l U.-lq, 1, ~—1)]
1, ~ ~ -n—1

Q&[l!Qb&(Q)] "& (IV.93)
to the sum

with + sign for n=S, —sign for n=A (in the text,
the superscript n=S is omitted), then Ms(q) and
M" (a) are given, respectively, by (IV.21) and (IV.78).

It is of interest to notice that in terms of second
quantized field operators, M (q) can be written as[n=s, A depending on the statistics],

Qo = Q (El) 's~ Q (1, EIW l1, E), (IV.SS).
1 ~ ~ ~ N

each term represents a relative probability. Thus, the
statistical value (ii,) of particles with momentum (and
spin coordinate) q a,veraged over a grand canonical
ensemble is

(Z.")-' 2 [(»'- 1) ']-"~
%=0

s 'M (q) =
(qadi )

—'—
trace[at (q)

)& exp (—PX)s"a(q)], (IV.96)

where g(q), a~(q) are the appropriate annihilation and
creation operators and K, X are, respectively, the
second quantized operators for the Hamiltonian and the
total number of particles.

(1, 2, 1V—1, qlW~ l
1, 2, 'V 1q). —

1, ~ ~ ~, cV—1

(IV.89)

APPENDIX C

Equation (IV.32) asserts that

in/„s 5 (s M (IV.97)
'4 For simplicity, a f-graph (or a numbered p-graph} refers to

a primary or a contracted or an irreducible f-graph (or the cor-
responding numbered t-graph).

for all values of s~o. In this formula the left-hand side
is a function of s defined in (IV.1), and the right-hand
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66'
=0

EbM(k)),
(IV.100)

for the values of M' satisfying (IV.27), i.e., satisfying

M '(k)=m '(k) —E(k,M). (IV.101)

Using (IV.101), we can write (IV.100) in the form

+[all different irreducible 0-graphs]
bM(k), =E(k,M),
or, by (IV. 28), in the form

side is defined as a functional of s, M through(IV. 33)
while M is in turn defined by (IV.21), or equivalently
(IV.27). To prove (IV.97), one notices that as s —+0,
by their definitions,

gas -+ 1, M(k) -+ s, m(k) -+ s.

Thus, (IV.97) is correct at s=0. We now proceed to
prove that the derivatives of both sides with respect to
lns are the same for all a~0. The derivative with
respect to lns of the left-hand side is, by (IV.22)

Q j,[s—'M (k) —1]. (IV.98)

That of the right-hand side, by the rules of implicit
diGerentiation is:

t
cjoy' i t' 5(P i dM(k)

I +&I
I cj 1ns) sr ~ E bM(k) l, d lns

Now, in (IV.33) the irreducible 0-graphs are dependent
on s only implicitly through M. Hence, using the
explicit form of M(k), one obtains

/B(P ) = —1++ s 'M(k) = (IV.98).
( a Ins),„,,

Thus to prove (IV.97), it is only necessary to prove

which is the first irreducible 1-graph in column 8,
Fig. 2. The other graphs in Fig. 2 give similar results.

For a general irreducible 0-graph we first define a
relationship, to be called correspondence, between the
0-graphs and the 1-graphs. "If we take any 0-graph and
cut any one of its lines open, the resulting graph is a
1-graph. Conversely, by connecting together the two
external lines of a 1-graph we obtain a 0-graph. Further-
more, if the 0-graph is an irreducible graph then As

corresponding I graphs -are all irreducible

By cutting open one of the / lines of an irreducible
0-graphs one obtains a corresponding 1-graph. Varying
the line that is cut leads to 1 corresponding 1-graphs.
Among these, a particular 1-graph may occur, say, n
times. Tet So and S~ be, respectively, the symmetry
numbers of the irreducible 0-graph and this particular
1-graph. From the definition of symmetry number it is
straightforward to show that

So——nSg. (IV.103)

Equation (IV.103) is illustrated in Fig. 2.
To prove (IV.102), one notices that in taking the

functional derivative b/oM (k) of any irreducible
0-graph with / lines, one generates 3 terms each of which
is equal to So 'S~ times a corresponding 1-graph, which
is obtained by cutting open one of the l lines. Equation
(IV.102), then, follows immediately by using (IV.103).

We remark that (IV.100) proves also the stationary
property of (P with respect to variations BM(k), as
stated in (IV.35).

APPENDIX D

The functional 6'(s,M) will be written in this Ap-
pendix in the form

IP(s,M) =P„ln[s-'M(k)]
—Pq([s ' —exp( —Pk')]M(k) —1)+P' (IV.104)

where 6"(M) =P all different irreducible O-graphs.
We recall that from (IV.102) one obtains

+[all different irreducible O-graphs],
bM(1)

=+[all different irreducible 1-graphs]. (IV.102)

Now (IV.102) is an identity. It is correct even if
(IV.101) is not satisfied, and all M(k) are independ-
ently and freely variable.

'Zo prove this statement, we take as an illustration
the first irreducible 0-graph in column A, Fig. 2. It is
equal to

—,', Q (k„kg~ r2e~ ki, k2)M(ki)M(k2).
klk2

Di6'erentiation with respect to M(k) yields

2(-', ) g(k, kg~ Y2
~
k, k2)M(k2),

= IC(k,M).
bM(k)

The functional derivative of (P at fixed s vanishes for
M satisfying the equilibrium distribution, as shown by
(IV.35). To obtain the second (functional) derivative
of 6' we shall regard s and T as fixed. Furthermore in
this Appendix we shall regard both M(k) and m(k) as
arbitrary functions related by

m—'(k) =M '(k)+E(k, M), (IV.105)

where the functional E(k,M) is given explicitly by
(IV.28). (IV.105) expresses m as a functional of M.
If one solves (IV.104) for M it is obvious that one
obtains (IV.24):

M(k) =m(k)+[m(k)]2 Q [all diferent con-

tracted 1-graphs]. (IV.106)
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Equations (IV.105) and (IV.106) are identical with
(IV.24) and (IV.27) except that now m(k) is considered
to be independent of s."

By directly difFerentiating (IV.104) with respect to
M but keeping s constant, we find

8'!P(s,M)
~kk' =

bM (k)bM (k'),

where ek is the occupation number for particles with
momentum k and ( ) refers to statistical averages
over a grand canonical ensemble.

Proof. W—e consider first a carioriical ensemble of
systems, each containing X identical (but regarded
hypothetically as distinguishable) particles. The prob-
ability that the first particle has momentum h and the
second particle has k' is given by

(IV.112)
where

which, upon using (IV.105) and (IV.102), can also be
written as Q~s ——Q (1, 2, 'V Wp. s~i, z, . V).

a"(M) (g~')-' P (k, k', 3, .V~Wi„s~k, k', 3, iv),= —[M(k)]—'bi, i,.+, (IV.107) s "x
SM(k) bM(k')

bm-'(k)

&M(k')

Its inverse matrix E. ' is given by

bM(k)
(~ )kk'

bm '(k')

1 ~ ~ ~ N

Since these particles are identical, the same probability
must also be given by the average value of

[~,/X][~,./PV —1)] if

(IV 10g) and the average value of

[iig/1V)[(ri, i, 1)/—(X—1)] if k= k'.

which can be analyzed in terms of the contracted
graphs.

By using (IV.105), the functional derivative

[bM(k)/bm(1 ')]
can be expressed as a sum over graphs. These graphs
are obtained by taking any contracted 1-graph and
cutting one of its lines open. The result may either be
simply two disconnected contracted 1-graphs or a single
contracted 2-graph.

We define
bM(k)

OR2(kk') =—m'(k') —[M(k)]'bi, ~.. (IV.109)
bm(k')

By differentiating (IV.106) and using the definition

(IV.109), we find (after some manipulations)

OR~(k, k') = [m(k)m(k')]' P [all difFerent

contracted 2-graphs] (IV.110)

in which each graph contributes a term given by
(IV.17). The two momenta carried by the two external
outgoing (and also the external incoming lines) in these
2-graphs are k and k'.

In order to find the relation between AR2(k, k') and

(ni,eq ) we must first establish the following theorems.
Theorem' l.

These averages are taken over the canonical ensemble.
Upon equating these probabilities and further averaging
over a grand canonical ensemble, we obtain

(egmi, )—(eg)bi, g

=(Za') 'Z [(&—2) ] 's"
N=2

X Q (k k', 12, 1V—2
1 ~ - ~ N—2

X ~Wxs~k, k', 1, . cV—2). (IV.113)

Using similar arguments to those used in Appendix 8,
we can regard WN as a sum over products of U2

functions. We distinguish the two difFerent cases: (a) k
and k' are in the same Uis function, and (b) k and k'
are in two different U2~ functions. We can then show
that the right-hand side of (IV.113) is equal to

P[(l—)!] 's' P (k, k'.
2=2 ~ ~ ~

X
~

Uls
~

k, k', 1, &
—2)+ (~~)(ii~ ),

where these two terms correspond, respectively, to the
above two cases (a) and (b). Thus, Theorem 1 is proved.

Theorem Z.—If
(ekmg ) (n~)(mi, —) (Ni )b„i— m(k) =s[1—s exp( —Pk')] ', (IV.16)

then

s' P[(l—2)!]—'s' P (k k', 1, t—2
2=2 1- ~ ~ 2—2

XiU, 'ik, k', 1, .&-2)

=5Kg(k, k')+[M(k) —s]'bye . (IV.113)

=+[(l—2)!]—' Q (k, k', 1, 2, l 2—
2=2 l$2 2

X]Uis[k, k', 1, 2, . t 2), (IV.1—11)
' Throughout this Appendix, unless stated explicitly, nz(k)

does not satisfy (IV.16). For example, in the sum (IV.106) and
(IV.110) the factor assigned to an internal line is m(k) and Not

sL1 —s exp( —Ph'lg '.
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Proof .The left-hand side can be regarded as a sum
over primary graphs. Graphically, we can represent
these sums by first considering a primary 1-graph with
external momentum k. Then we cut one of its internal
lines open into two external lines, each labelled by k'.
The resulting form may either: (a') consist of two dis-
connected primary 1-graphs, or (b') consist of a single
primary 2-graph. Thus, we find that the left side of
(IV.113) is equal to

Bkk [s' Q(all difFerent primary 1-graphs)]'
+s4 g (all different primary 2-graphs), (IV.114)

in which these two terms correspond to the above two
cases (a') and (b'), respectively. (IV.113) now follows

by using the identity

s' Q (all difFerent primary 2-graphs)
= [m(k)m(k'))' P (all different con-

tracted 2-graphs) (IV.115)

provided m(k) is given by (IV.16).
Theorem 3.—If

For arbitrary function M(k) we can, by using (IV.105)
and (IV.116), regard sk as a functional of M(k) and
vice versa,

Theorem 4.—E» is a negative matrix for arbitrary
function M(k) provided the corresponding sk is positive.

Proof. Let —K be the Hamiltonian of the present
problem in terms of the second quantized operators.
Instead of the actual grand partition function, we
consider a pseudo-partition function defined by

g' —= trace[exp( —pX)gk(sk) "k$. (IV.117)

Similar to the grand canonical ensemble, we can con-
struct a g'-ensemble and regard the probability of
finding any system in the ensemble with X particles
(identical but considered to be distinguishable) and
with a momentum distribution in which the ith particle
has k; (i=1, 2 X) to be

(g')—'(~v!)—'(I &,k2 1& (
w&'

~
ki, l 2 ~ I &), (IV.118)

where

b(P(s, M)
=0,

bM(k)
(IV.35)

(ki k~
I
W&'

I
k„.. .k~)

—=P (P(k, k )IW Ik . k )g „(IV119)

-&II (s,M)-

bM(k)
=0

is identical with m(k)=s[1 —sexp( —Pk')j '. Theorem
3 now follows immediately by combining (IV.108),
(IV.109) with Theorems 1 and 2.

We remark that since the matrix

(ek —(nk)) (nk —(ek ))

is a positive matrix and since the average over the
grand canonical ensemble is an average with positive
probabilities, the resulting matrix

ÃQÃg~ fl Q 'Sg~

must also be a positive matrix. Furthermore, if (IV.35)
holds, then

M (k) =.[(n,)+1j,
which is positive. Thus E. ' and consequently R must
be negative matrices if (IV.35) holds.

Next, we will prove that Ei,~ is a negative matrix
even though m(k) is not given by s[1—s exp( —Pk')$ ',
i.e., even though (IV.35) does not. hold. We define a.

function si„

sk ' =—mk '+exp( —Pk'). (IV.116)

then

(R ) kk~ = —sM(k)bkk~
—s'[(nknk )—(ek)(nk )j. (IV.37)

Proof. We notice th—at by using (IV.104) and (IV.-
105), the condition

and 8"& is the Boltzmann 8"~ function given by Eq.
(I.4) in paper I.

We can also define (ek)' and (nkek )' as the averages
of ek and (nkek ) over a g'-ensemble.

In complete analogy with (IV.20), (IV.111), and
(IV.113), it can be shown that if we regard M(k) and
BR2(kk') as functions of sk through (IV.106), (IV.110),
and (IV.116), then

M(k) =sk[(nk)'+1j, (IV.120)

APPENDIX E

In this Appendix we list some relationships between
U&) U)oo) I& and v& in momentum space.

The V~ and Y~~ functions used in this paper are
defined for a finite volume O. They are related to U~, o

and

DIIg(kk')+[M (k) —ski2bkk.

=sksk [(eknk )'—(ek)'(ek )'—(nk) bkk j. (IV.121)

Consequently, by using (IV.108) and (IV.109), we find

+kk' skM(k)bkk —sksk'[(nknk )'—(nk)'(nk )'j.
(IV.122)

If sk ~ 0, then the probability (IV.118) is always
positive. Consequently, E&i, is always a negative
matrix.

Thus, we find that the true pressure is given by the
absolute maximum for (P(s,M) at constant s provided
we restrict the variation of M(k) to the domain in
which the corresponding si, is positive.
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(see paper I, Sec. 5) in coordinate space by

(ki ' 'kl Iffllkl ' ki)

(ri'" «'I fft.nlri "«)
&&exp[s P (k ' r ' —k r )]g d'r d'r '

where U~„ in the coordinate space was defined in paper
I. Thus if we define Ni by Eq. (I.54), then as fl —+ ~,
[0/(Sm')]' —'(ki', ki'I Utl k„k,)

—+ (k,', .k, 'I tet
I ki, .kt)bx x, (IV.125)

(IV 123) where K=+ k and K'=p k '. Similarly we find, as
0 —+~,

The l'ft functiolls in momentuill space are defined by

(k,', .ki'I &t Ik, , kt) ~ kx x.(k,', kt'I vt'I ki, kt), (IV.126)

= (8sr') —
'~ (r, ', . rt'

I
ff t I » ' ' ' rt)

&&exp[s P(k ' r ' —k r )jg d'r d'r ', (IV.124)

where vis is defined by (IV.54). Both stt and vi are
independent of volume.

Some explicit forms of T~ and U~ for hard spheres
have been given in papers II and III.
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Theory of Fluorescence Time Constant Measurements in Liquid and Rigid Solutions*

HARTMUT KALLMANN

DePartmestt of Pkystcs, Eeeo York Ustseersity, Seto York, Pew York

(Received June 16, 1959)

Formulas are derived for the dependence of Quorescence upon time for the case when energy transfer
from the solvent to the solute is involved. Three cases are considered: excitation by single fast particles,
excitation by one burst of particles during a given period, and periodic excitation. One important point
is that in the rise and decay of Quorescence from a burst of particles, it is the difference of two exponential
functions and not their sum which occurs. The results are compared with the experiments of Burton and
Dreeskamp, of Swank and Buck, and of Knau, These experiments are in general accordance with the derived
formulas.

A THEORY of light emission from a liquid or rigid
solution which is energized by a fast particle has

been given by Brucker and Kallmann. ' It shows that in
a solution containing a single solute and solvent where
the Aourescence is emitted mainly by the solute, the
light emission, I, varies with time according to the
formula

(—
t& (-tl

I=N~c.
'

e~l I
—expl

r r L r j ( r )

This formula holds if the solute is excited via energy
transfer only. X is the total number of excited molecules
of the bulk material, nc is the probability per unit time
that energy is transferred to the solute, and ~„ is the
decay time of the solute as measured under direct light
excitation (not via energy transfer). 1/r =1/rp+Q'c,
where eo is the time constant of the solvent in the
absence of solute. a is the product of the quantum

efficiency of the solute when directly excited by light
and the e%ciency of energy transfer. According to
recent measurements, this latter e%ciency is close to

*This work was supported by the Signal Corps Engineering
Laboratories, Fort Monmouth, New Jersey.' G. Brucker and H. Kallmann, Phys. Rev. 108, 1122 (1957).

t&T' I—Noctcttr,
[ (—tP
r, 1—exp l(, )T(r, r)—

—r„1—exp I (2)

2 Brown, Furst, and Kallmann, Discussions Faraday Soc.
(to be published).

3M. Burton and H. Dreeskamp, Discussions Faraday Soc.
(unpublished) .

4 W. L. Buck and R. K. Swank, Argonne National Laboratory,
Physics Division, Summary Report, 1958 (unpublished).

' H. Knau, Z. Naturforsch. 12a, 881 (1957).

one. ' Often, however, the solution is not energized by a
single particle but by a burst of particles during a
period of time, T, as is the case in the experiments of
Burton and Dreeskamp' and Swank and Suck4;
or, the solution is continuously excited with an excita-
tion intensity varying with the period ~. This is the
case in the experiments of Knau. '

Formula (1) cannot be applied directly to these
cases, but the theory can be extended by a straight-
forward procedure to include the effect of a burst of
particles or of periodic excitation.

If the excitation is extended over a period of T
seconds, then the following formulas for the light
emission are obtained:


