
B'o(o. , d)Cro REACTION FROM 3. 2 MEV TO 3. 8 MEV 215

the deuterons from 8"(n,d)C's and the protons from
8's(tr, p)C's* (Q=0.981 Mev and Q=0.391 Mev) were
hardly resolved in the backward direction, 0, )90'.
In Fig. 2 the theoretical angular distributions calculated
from a simple stripping equation derived by Bhatia
et ul. ' are compared with the experiment, the theory
being assumed to be applicable to the (ct,d) reaction.
We have calculated only

~ j,(KR) ~', considering the
form factor nearly constant. In order to fit the calcu-
lated functions to the experiment, it is necessary to
assume lg=2, E.=5.4)&10 " cm. The value required
for R is a reasonable one that is used for interpreting
the (d,p) stripping reaction. ' The fact that good agree-
ment is found between the calculated distribution and
the experimental one in the forward direction provides
strong support for a direct process. The increase of in-

tensity in the backward direction suggests that heavy-
particle stripping may exist. Although the absolute
diGerential cross-section measurements are not highly
precise, it is to be noted that their magnitudes are
fairly large and comparable with the largest values in
8"(n,p) C" reactions.

The angular distribution of the inverse reaction,
C"(d,rr)8", has been measured at 0(60' by El Bedewi

' Bhatia, Huang, Huby, and Newns, Phil. Mag. 43, 485 (1953).
4R. Huby, in Progress in NNclear Physics, edited by O. R.

Frisch (Academic Press, New York, 1953), VoL 3, p. 206.

and Hussein' at relatively high-deuteron bombarding
energy of 8.9 Mev. The forward peak can approxi-
mately be fitted to

~
js(KR) ~' with R~S&&10 " cm,

which is somewhat larger than the value employed for
the 8"(rr,d) C" reaction. The difference in the values of
R between the two reactions may be due to the differ-
ence in the bombarding energies employed and to in-
completeness of the calculation.

In conclusion, the results obtained in the present
work indicate that the 8"(tr,d) C" reaction at our rela-
tively low bombarding energy proceeds mostly by a
direct process as in the case of (ot,p) and (n,ct') reactions
at high bombarding energy. The results also suggest
that the probabilities of finding a deuteron and an
alpha particle at the nuclear radii in 3" and C", re-
spectively, are fairly large. These features are very
interesting in terms of a nuclear model, especially a
cluster model in a light nucleus.

A more detailed report is in preparation and will be
published in the Journal of the Physical Society of Japatt
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Stability of the Adiabatic Motion of Charged Particles in the Earth's Field*
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The motion of charged particles in a magnetic field such as that of the earth or that of a magnetic mirror

machine is discussed. It is shown that during the motion and drift of a relativistic particle, not only the

magnetic moment, but also a longitudinal invariant and an additional Rux invariant are adiabatically con-

served. These conservation laws lead to retention of the particles in the field. The derivation of the adiabatic
invariants leads to a set of equations of motion which describe the average drift of the particles from one

force line to the other, and which also describe the changes that occur in the energies and periods associated
with the motion. In the absence of scattering, loss of particles from the magnetic field will be due to the
violation of the adiabatic laws.

I. THE PROBLEM
' OTION of charged particles outside the atmos-

- ' phere in the geomagnetic field has received
recently increased attention because of the discovery
of the Van Allen radiation belts and also because of the
artificial temporary generation of exceedingly low

intensity belts of this kind by small nuclear explosions. '

*Work was performed under auspices of the U. S. Atomic
Energy Commission.

' These experiments have become known under the code name,
Argus, For description and results see, for example: N. C. Chris-
tofilos, University of California Radiation Laboratory Report
UCRL-5548 (to be published). Also, see the Proceedings oi the

It follows from the simplest considerations of the
motion of particles in magnetic fields that many
charged particles will oscillate between the north and
south polar regions along magnetic lines and that they
will be rejected by the mirrors formed by the stronger
magnetic fields in high latitudes. It is also well known
that due to the inhomogeneity of the earth's magnetic
field electrons will drift from west to east and positive
ions from east to west, giving rise in this manner to a
corpuscular radiation belt.

Argus Symposium held at the National Academy of Sciences,
April 29, 1959 (to be published).
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Fio. 1. Lines of force in a
magnetic mirror machine.

If one assumes that the earth's magnetic field
possesses azimuthal symmetry and is independent of
time, then it is obvious that after a circuit of the earth
each particle returns to its original magnetic field line
and will therefore not get lost by drifting away from
the earth or else by drifting toward the atmosphere
where it would be absorbed. In fact, however, the
earth's magnetic field is not symmetrical about any
axis. Furthermore since the Geld varies with time, the
reason for the continued existence of a radiation belt is
less obvious.

Similar questions arise in connection with the mirror
machines which have been used in an attempt to
conGne plasmas for the purpose of generating controlled
thermonuclear power, The lines of force of a mirror
machine having azimuthal symmetry about Z are
shown in Fig. 1. Long containment times have been
found2 for charged particles in such a laboratory-size
mirror machine, and this containment time does not
change when small azimuthal asymme tries are
introduced.

We shall show in this paper that long containment
times are indeed to be expected, provided that the
variation of the magnetic Geld with position and time
is suSciently slow.

II. THE ADIABATIC MOTION OF
CHARGED PARTICLES

The concepts of guiding center motion and of
adiabatic invariants are very useful in predicting the
motion of a particle in a slowly varying Geld. In a
magnetic Geld with time and space variations small
compared to the period and radius of gyration of the
particle, the particle moves approximately in a circle
with a center moving rapidly along a line of force and
drifting slowly at right angles to the line.

The equations for this guiding center motion have
been given by Spitzer' and by Alfven4 and are written
here in a form which remains valid for particles with
relativistic' energy. The rapid motion along the line
is given by

dPff M 88
+eE n,

dt 7 Bs

tivistic momentum P perpendicular and parallel to B,
and tflp is the rest mass. The quantity p equals total
mass divided by nap, n is the unit vector B//8 along the
line of force, and s is the distance along the line of
force.

The drift velocity u& which moves the guiding center
to a neighboring line is given by

11 f 3/Ic c P&i'Bn)
ud= —X

~

—'E+ ~&+—
8 ' Pe ye nap Bs)

(2)

The first term of ud is the velocity of a frame of reference
in which the component of the electric Geld perpen-
dicular to B is eliminated. The second term comes
from the variation in the magnetic field over the circle
of gyration. The third term is the drift due to the
centrifugal force affecting a particle of velocity neil.

For Eq. (1) to be valid, the parallel electric force
eE n must not dominate the magnetic force term
(3f/y)(88/Bs). If the parallel electric force is not
small, the change in the magnetic field in one period
of gyration is large and the guiding center concept is
not valid. In addition, the magnetic moment M, which
has been extensively studied by Kruskal, ' will not be an
adiabatic invariant. Also the derivation of (I) requires
that the component of E perpendicular to B be small.

Equation (2) is valid only if the three terms on the
right-hand side are small compared to v, the velocity
of the particle. If the first term is not small, the guiding
center concept and invariance of 3f are still valid, but
there are additional drift terms coming, for example,
from the acceleration (d/dt)(cEXn/8), which are
comparable to the ~'8 and Bn/Bs terms. In this paper
we assume that E is small. '

Invariance of 3E predicts that, at a field of magnitude
Bz=E'/2Mmp, P" will vanish and that the particle
will be reQected. If there are no electric Gelds, kinetic
energy, hence P', are constants of the motion and the
particle will always reQect at the same magnitude of
magnetic field, B=Bz. The surfaces of constant 8 for
the earth's field have the general shape shown in Fig. 2.
The Geld is intentionally shown as nonazimuthally
symmetric.

The statements made so far (conservation of M and
P', constancy of 8') do not lead to the conclusion that
a particle, after drifting around the earth, must return
to the line of force from which it started. Actually

where B and E are the magnetic and electric fields,
cV=P,'/2mpB is the well-known magnetic moment,
P& and P&t are the components of the particle's rela-

' G. Gibson and E.Lauer, Bull. Am. Phys. Sop. 5, 412 (1958).
'L. Spitzer, Astrophys. J. 116, 299 (1952).' H. Alfven, Cosm~ca/ E/ectrodynamics (Clarendon Press,

Oxford, 1950), Chap. II. .

5 If electric fields are absent, particle energy is constant, and
the trajectory of a relativistic particle can be obtained from the
nonrelativistic equation of motion for a particle of the same
velocity and same total mass.

—giNE oF FoRcE Fxo. 2. Surfaces of con-
stant magnetic 6eld.
strength and lines of force

AcE e=BT about the earth.

EARTH

M. Kruskal, Princeton .University, Project Matterhorn
Report PM-S-33 (NYO-7903), March, 1958 (unpublished).

7 Or following Kruskal, K is assumed to go to zero as mo je=—c.
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in the absence of azimuthal symmetry, there are field
gradients and components of line curvature in the
azimuthal direction, and by Eq. (2) these give drifts in
a generally radial direction. In a static field it is never-
theless true that the particle returns to its original line
so long as the second or longitudinal adiabatic
invariant, s

FIG. 3. A longitudinal
invariant surface.

GEOGRAPHIC AX IS

EARTH

LONG ITUDINAL
I NVAR I ANT
SURFACE

J= PfidS,

is conserved. Here ds is the element of length of the line
of force. The integral is taken over a complete oscil-
lation along the line. In the next section we will prove
that J is an adiabatic invariant if during a period of
oscillation T the effects of the drift u~ and the fractional
change of 8 due to time dependence are small. The
quantity J is the action variable for the parallel
equation of motion (I) and it seems plausible that the
number of quanta of action should be conserved in a
slow process. But because of the slow drift off the line
there is no strict analogy with one-dimensional motion
and the proof in the next section seems necessary. Also
the proof gives insight into the mechanism by which
the particle drifts conserve J and supplies us with
equations of motion for the average drift. But first we
shall discuss consequences of the invariance of J.

In a static 6eld invariance of J makes it unnecessary
to integrate the guiding center equations of motion (1)
and (2) to locate the particle after it has drifted once
around the earth. If a particle starting from an interior
line Q returned to line R of Fig. 2, it would have a
larger J than if it returned to Q. In a dipole field J
increases faster than the first power of ro, where ro.is the
distance at the equator from the dipole to the line of
force. The first power of ro comes from the scaling of ds
in +P~ids. The "faster than" arises because P~~ is
somewhat larger on R than on Q at a given latitude,
since in the absence of electric fields, P„=P(l B/Bz)'*-
and 8 is less on R. For the actual nonazimuthally
symmetric field a qualitatively similar situation is
encountered. Therefore, as has been pointed out
previously, ' the particle must return to line Q after a
circuit of the earth. As the particle drifts in longitude
it sweeps out a "longitudinal invariant surface. " Such
an invariant surface is sketched in Fig. 3.

The five quantities P&, PII, and the coordinates of
position r at some time t are sufIicient to specify the
motion of a guiding center and therefore to specify the
invariant surface on which it moves. The perpendicular
momentum P& can be replaced by 3E, and J can be used
in place of P». Therefore J, M, and r are also sufhcient
to specify a surface. In specifying a surface the position
of the particle between reflection points on a given line

According to Chew, Goldberger, and Low, Los Alamos
Scienti6c Laboratory Report LA-2055 (unpublished), the existence
of J was initially suggested by Rosenbluth.

K. Teller, University of California Radiation Laboratory
Report UCRL-5257, July 3, 1958 (unpublished).

is not of interest, nor is the particular line on the surface.
Thus two of the five quantities are unnecessary and we
expect the invariant surfaces to form in general a.
three-parameter family, two of the parameters being J
and M.

In static fields, the total energy E= (P'c'+mo'c4) &+eP
is constant and constitutes the third parameter, P being
the electrostatic potential. Then the longitudinal in-
variant is given by

(E eP~ '—
mo'0 —2&V mB ds

E c ) (4)

The three constants of the motion J, M, and E are
then the three parameters which specify an invariant
surface.

If there are no electric fields, the system of surfaces
is degenerate. For if &=0, the momentum P is constant
and (4) reduces to

J/I' f(1 B/B~) kds=—

The two parameters J/P and Br P'/2Mmo are ——then
sufficient to specify a surface. Varying P' while holding
P'/3l and J/P constant changes the speed with which
the particle traverses the same surface. For in the
absence of electric fields, Eq. (2) can be written

11 Pc VB ( B )811
+2l I—

B 2yemp Bp 4 Br/ Bs

It is apparent that the drift velocity is proportional to
P'/y for a given Br.

In the presence of static fields an infinite number of
invariant surfaces intersect along a finite length of a
line of force. Consider. a particIe as it rapidly oscillates
between reQection points and drifts slowly at right
angles to the line with velocity u&. The time average
of the drift over a period T gives the adjacent line on
which the particle is to be found at the end of the period.
In the next section we prove that this time average
of the drift conserves the longitudinal invariant J. If
two particles with the same M and E are started at
different points on the same line, they will be on the
same adjacent line one period later, but not at times in
between. For only after one complete period have both
particles experienced the same drifts (although in
diferent time sequence). They have the same average
drift and by Eq. (4) they have the same J.But suppose
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the two particles have diferent M or E. They then
have different reflection points and different periods of
oscillation. They do not experience the same drifts and
their average drifts do not carry them to the same
adjacent line. They therefore must be on different
invariant surfaces. This conclusion is again in agreement
with (4), since the J integral along a given line is a
function of 3f and E. After each particle has drifted all
the way around the earth, it will return to its original
line.

If a collection of particles with a distribution of M
and E is injected along a line of force by an Argus-type
explosion, then when the particles have drifted around
on their respective surfaces there will be a layer of zero
thickness at the injection longitude, but of greater
thickness at other longitudes. We have estimated the
maximum layer thickness to be of the order of the
radius of the earth times the fractional azimuthal
asymmetry of the magnetic field, or approximately
300 km.

To treat the case of the time-dependent field, the
third or Qux invariant C is needed, where 4 is the Qux
of B inside the invariant surface on which the particle
is located. In Sec. V it will be proved that if the 6eld
varies slowly compared to the time for the particle
to drift around the invariant surface then dC/dt=o
Although J and M are also constants, their invariance
is not sufficient to prescribe the particle motion,
because E is no longer a constant. However if the
variation is slow enough, C replaces E as a constant.

To illustrate the use of the third invariant, consider
an initially static field which undergoes slow changes
and then at some later time returns to its original

configuration. All the magnetic surfaces obviously
return to their original geometry and any particle will

be back on its original surface provided its E returns
to its original value. But unless E has returned to its
original value, 4 will be diferent since C is a function
of J, M, and E.An example is furnished by the earth' s

rotation coupled with the azimuthal asymmetry of the
field about the geographic axis. In a nonrotating frame
an observer sees a time-dependent B field and an E
field due to c)B/Bt. The time scale of the variation is

24 hours. A particle which drifts around the earth in a
fraction of an hour might satisfy the requirement for
the invariance of C. The particle will then appear to
move rapidly around a surface like that of Fig. 3, and
the surface rotates slowly and rigidly with the earth.

H time Quctuations are comparable to the drift
time around the earth, but slow compared to T, then
4 is lost as an invariant, but J and M are retained and
may furnish useful information. If the Quctuations are
comparable to T but slow compared to the gyration
frequency, only M is invariant. One would therefore

expect that, of the three invariants, M should be the
most difficult to destroy.

III. THE LONGITUDINAL INVARIANT, J= +Piids

The particle (i.e., guiding center) motion has a
component nv«along the line of force on which the
particle is instantaneously located, and a perpendicular
drift uz towards an adjacent line. Because J is an
integral along the line, it is not changed by the parallel
motion, but is changed by u&. It will be shown that
dJ/dt does not in general vanish, but that the quantity

does vanish, " where the integral is to be evaluated
along the line of force.

In Fig. 4 is shown the line of force Lo on which the
particle is located at some instant of time. The particle
is assumed to be on the arc element ds and drifting
towards the adjacent line Lj with velocity u&. On Li
the element of arc which is opposite ds will have a
diGerent length than ds because of the curvature. Also
P» will be different on the adjacent arc element because
of 7'8 and because of electric fields. The gradient of 8
changes the distribution of P' between Ell' and I'j'
without changing P' itself during the drift to the
adjacent line. Electric fields change I".Both the change
in E'l& and in ds affect J. Since J on the adjacent line is
an integral along that line, one must calculate the
variation in Pl l and arc length not only for ds, but for all
other arcs ds' on Lo between the reflection points. At
any other arc ds' let V(s,s') be the velocity which
carries a point from Lo to L~ in the same time that the
actual particle on ds goes from Lo to L~. It is this
velocity V, not the drift velocity u&' at s', that is
needed to compute dJ/dt at the instant the particle is at
s. The velocities V(s,s') and uq' are not even in the same
direction, except for the special case where the particle
always drifts towards the same adjacent line at all
points of its rapid motion along Lo. When the particle
actually arrives at s, it will not be drifting towards L&,

but towards some other line L2. However in the follow-

ing analysis it will be shown that: The chaege ie J due
to ds while the particle is on ds and drifting towards Li

just cancels the change in J due to ds while the particle
is on ds' and drifting towards Is. This cancellation
applies to a/l pairs of arc elements on Lo and is the de-
tailed mechanism by which the drifts make the net
change in J between reflections vanish.

There is a convenient way to describe the divergence-
free field B and its vector potential A. One sets A= nV'p,

where rr and p are two appropriate functions of r and t.
Then B=VXA=VnXV'P. The flux of B through a
surface is gA dl around the boundary of the surface,

'0 What is actually proved is that (dJ/dt)=0+0(~'), so that
times of order 1/~2are required for J to change. Then J is constant
for times of order 1/e, which is the time to drift around the earth.
If Eq did not go to zero as e, the drift off the line would not be
negligible and T(dJ/dt) would not approximate the change in J
per period.
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SURFACE
WHERE Pi)=

SURFACE
WHERE Pjl= 0

J=J(a,P,K,M, t) is given by
-E'—e(y+P) ' 2

J= —mo'c' —2Mmo8 ds', (11)
C 8

FiG. 4. Particle at ds on line of force Lo drifts towards 1.&.

and this becomes gaVp dl=gadp. This can also be
written as J'j'dadp over the surface, and dadp then
represents the Aux through a surface element.

In order to determine the effect of the motion of the
particle at s on the contribution at s' to the J integral,
it is convenient to use a quantity which is conserved
by the motion along a line of force. If the field is static,
the total energy E is such a quantity. We shall sh
that in the nonstatic case E can be generalized to

E= (P'c'+m 'cd)'+e(Q+f)

where the radical is P«. At the instant the particle is at
s, dJ/dt is

dd/dt f[=P„(s')ds'+P„(s')dd'd,

where the dots mean the time derivative including
terms due to the velocity V(s,s'). It is easily seen
geometrically that if bx is a displacement along the
radius of curvature of the field line, then the change
in arc length is

B(ds') = —bx(ds'/E), (13)

where R is the radius of curvature and equals
~
an/as

~

Therefore

M 88
E=e(v„n+u„) E+— +e(v„n+ ud)

y Bt 1 E—e(y+))t )'
P„(s')=

p C

X[E(s) e(j+j)'j—MmoB'—, (15)

V(a+4)+e (a+4). —(8)

where p = (a/c) (ap/at) . To verify that this is the suitable ds'= —V (an/ds')ds'. (14)
generalization, we calculate the rate of change of E due I bta, , p ( d) th l f E. t
to the guiding center motion If we solve (7) for P„' replace P,' by 2MmoB, and

differentiate with respect to time, we obtain

The first term in (8) is the change in the energy term
(P'c'+mo'c4)'* due to work done by the electric field
on the guiding center. A static magnetic field has no
effect on the energy; however, the induction effect of a
time-dependent field gives rise to the second term,
which is proportional to BB/at and is due to the curlE
acting on the gyrating particle. The last two terms are
the total rate of change of e(dtd+f). The two terms
containing v„ in (8) cancel, since

(1 BA
n E= —n

i

— +Vdt) )

&c at

a (aap ) a

as Ec at dJ as

where the primes mean evaluated at s'. Here 8'
= (BB/at), .+V (VB), and similarly for)t'and&'. Now
[K e(dt)+p)—'j/c'=my ', so that [E e(dt)+p)'—]/P„'c'
=1/v„'. Substitution of (14) and (15) into (12) gives

dj ds' a ( MB)'
E(s) e Ip+))t +- —

dt at( Ve J

M q a—V. «] p+))t+—B [+v»P))—,(16)
ye ) as

where the prime on any quantity means evaluated at
s'. The vector V must now be evaluated explicitly.
Since V is perpendicular to n and is defined so that ri
and p at s' are the same as at s, we have

Because the v„ terms cancel, we conclude that BE/as
must be zero. Thus E is not affected by the rapid
particle motion along the line. Actually E can be
considered as the energy integral of the parallel equation
of motion 1 . After cancellation of the v« terms K
be

a(s) = (aa/at+up Va).= (aa/at+V V'a), ,

p(s) = (ap/at+u Vp), = (ap/at+V Vp). , (17)
o=n' V.()

We will now verify that the solution of (17) for V is

V= [(aVP' —PVa')+w')Xn'/B'. (18)
~

@+~+ ~)+ "'~~ P ~' ( ) The scalar product of (18) with V'a' is [after substi-
tuting w'= (ap'/at) V'a' (aa'/at) Vp')—

The quantity [(BP/at) Va —(aa/at) Vg will appear fre-
quently and will be denoted by w.

With the generalized definition of E in (7),

aa') Vp'Xn'
V Va'=i a—

i
Va'.

at) 8'
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But because 8'=«')CV'P', the factor (V'P'&&n'/B')
«'=1, and the first equation of (17) is verified.

Similarly, multiplication by VP' verifies the second
equation (17). The third equation is satisfied since the
right-hand side of (18) is perpendicular to n'.

Let us now return to expression (16) for dJ/dt and
eliminate 7'Q+f) in terms of E.

where dt' is the time element ds'/e„' spent in ds'. We
see that the integrand is antisyrnmetric in s and s'.
Equation (23) can also be written

(24)

1 B
E= ———(nVP) —Vy

c Bt

= —V'(4+4)+—

where t;he average ( ) means )t)"ds/v„( ).There is
no reason for dJ/dt to vanish in general. However,

(2O) (—)=ff lc(s) —x(s')

Using (20) to eliminate V'(g+P) from (16) gives

dJ ds' . B t' 3l
E(s) e 'i y—+P—+ B i—

D B«pe &

e 3IEC c Bn
V cE+ VB+ 'D))P)) +w.

c ye e Bs
(21)

e
+-t P(s)n(s') —n(s)P(s')$ =0. (25)

The average rate of change of J thus vanishes because
of the antisymmetry of the integrand of (25), and it is
because of this antisymmetry that the contributions of
ds and ds' to the change in J cancel over a period T.

The first three terms in the square bracket occur in the
drift velocity (2), and when expression (18) for V is
substituted and the dot and cross interchanged, one
obtains

dJ ds' . B) M q'
K(s)—e—

i
/+le+. B d-

dt Z&l Bt& 7e ]
e . t' n)(wq '

--(-vp'-p«'+ ) i
.,+

c & B )
Then by use of «)& Vp=S and the definition of w the
result is

IV. EQUATIONS OF MOTION FOR THE
AVERAGE DRIFT

Equation (2) gives the instantaneous value of the
drift velocity. In case the oscillation along a line of force
is fast compared to the eGects of the drift, one will be
primarily interested in the line on which the particle
finds itself and what energy it possesses. One is therefore
interested in the average drift which transfers the
particle from line to line (i.e. , the change in n and p),
and in the change of the kinetic energy, derivable from
the quantity E.. Equation (22) permits one to obtain
the motion of a particle in the n, p, E space. By differ-
entiating J=J(n,P,E,M, t) with respect to time we get

dJ ds' B ( 3f ) e
K(s) —e

i y+4+ —B I+-
df BtE ye 9 c

dJ BJ BJ BJ BJ.—=—K+—+—n+ —,p.
dt BE Bt Bn BP

(26)

e ( BP) e. ( Bn) Comparison of this dJ/dt with (24), which also holds—ni u'&P+ —
I +-PI ««+—

i (22) at all places and times, gives
c 0 Bt ) c 4 Bt

Here the quantities n and p are evaluated at s. These
quantities are multiplied by factors which conta n the
drift velocities and therefore these factors are n and p
evaluated at s'. The expression in the brackets in (22)
is according to (10) equal to X(s'), so that

dJ ds'
E (s) E(s')—'

CQ 'Vi l

e
+-Lp( )-(")—( )p(")j

dIt' K s —E s'

c BJ
(n) =— (n,p,K,3II,t), —

eT BP

c BJ
(p)=——,

eT Bo,

1 BJ
(X)= ———,

T B$

BJI=—I BK

(27)

The last of these four is obvious from Eq. (11). The

+ t p(s)n(sl) n(s) p(s~)) (23) first three are the required equations of motion with the
C longitudinal motion eliminated.
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c wean
(V) =

eBT 8
(29)

as the average velocity at any point. "The vector V'J

is to be obtained at fixed values of E, M, and t.
The equations of motion can be expressed differently.

The equation J=J(n,p,E,M, t) can be rewritten as
E=E(n,p,J,M, t). By implicit difFerentiation we obtain
8J/BP = —(BE/EtP)/(EtE/Et J), etc. Then

cBE
(ri)= —— ( nP, ,JMt),

e 8

On the average the particle drifts towards that
adjacent line on which J is unchanged. In the special
case of a static field, K=O; if in addition n/P= (ri)/(P)
at all points of the motion along the line, then all
instantaneous drifts will be directed toward that same
line and dJ/dt =0, by Eq. (24).

The equations in (27) for the rate of change of n and
P can be written in vector form. Suppose (V)
= (1/T)P(ds/i~&)V(s, s') is calculated. Physically (V)
is the average drift at s'. Substitution of (18) for V into
the integral defining (V) gives

(V)=L( )VP' —(P)Vn'+w']Xn'/B'. (2S)

Substituting (ri) and (p) from (27) and dropping the
primes gives

FLUX TUBE AT LATERTiM

(vP
I
I

FLUX TUBE AT t=O

SURFACE OF

FIG. 5. Flux tubes de6ned by a collection of particles
at two different times.

realize of course that the velocity of a line of force is
arbitrary except for the requirement that the velocity
field must lead to the correct cruxes" and therefore to
the correct values of B.

Two flux conservation laws follow from (27) and (30).
Suppose we observe a collection of particles with the
same J and M distributed on a bundle of magnetic
lines of force which form a finite flux tube (Fig. 5).
These particles will have different E, since they will
have different n and p, and each will drift according
to Eqs. (27) or (30). At any later time the particles will

be found within a new Aux tube. It will now be shown
that the flux of B is the same at the later time. The
rate of change of the Aux of any divergence free vector
U through a closed curve whose boundary moves at a
velocity (V) is given by"

cBE
(p)=-

e Bo.

(E)=BE/Elt,

(30) t -EIU
U ~S= —vx((V)xU) dS. (32)

dt~ surface

1=T(EtE/8 J).

These equations are of canonical form, where n and p
play the roles of momentum and spatial coordinate,
respectively, and cE/e plays the role of Hamiltonian.
The Eqs. (27) are not of canonical form because the
factor T is a function of (n,p,K,M, t).

In terms of E the average velocity can be expressed as

(V)= (c/eB) nX V'K+ (wX n)/B. (31)

The BU/Bt term gives the change in the integral due to
the change with time of U at all points within the loop.
The second term, which comes from the distortion of
the shape of the loop with time, is observed by applying
Stokes' theorem to the loop integral of (V)x U. We set
U=B, and (V) is given by (31); then (32) reduces to

d
I P BIB—

~
BdS=

at

The second term in (31) may be considered as the
velocity of the line of force. In fact if an observer moves
with this velocity, then the label o. will change at the
rate

c w&& n—&X —(nXV'E) XnB+ XnB dS,
eB 8

and since n VE=BE/Ebs=0, the integral becomes

(Ejp Etn

+vx
~

«~p
~

dS. (33)—
i8t Bt )"$.B. Kadomtsev has derived the first two equations of (27)

for the case of static Gelds. See Plasrjsa Physics and the Problens
of Controlled Thermonuclear Reactions (Akad. sauk USSR, 1958),
Vol. III, p. 285. In the present paper we have given a proof for
the more general case of relativistic particles in nonstatic fields,
and the results are contained in Eqs. (27) and (28).

'~ W. Newcomb, Ann. of Phys. 3, 347 (1958).
"M. Abraham and R. Seeker, The Classical Theory of EIec-

tricity and Magnetism (Blackie and Son, Ltd. , London, 1950),
second edition, p. 40.

dn/dt =Ttn/Bt+tt (W Xn/B) «
By the definition of w this is zero. The same holds for iE

p. If we adopt this interpretation of the second term,
then the first term in (31) gives the average drift of the dt~ Bt

particle with respect to the moving line. One shouM
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The 6rst and third terms of the integrand cancel
because B=V'nX V'p, and the second term is zero, thus
proving the theorem.

The flux of the vector TB is conserved by the motion
in a static field of a collection of particles having the
same magnetic moment M and energy Eand distributed
on a Aux tube of 6nite size. These particles will have
different n and p, hence different J, in contrast to the
case above, where they all had the same J but diferent
E. In a static Geld E is a constant of the motion, so
that if the particles initially have the same E, they
always have. The proof is similar to that above for the
flux of B. However, 6rst it must be established that
TB has no divergence, and that it indeed is a property
of a tube of force. This is true, since V (TB)=B V'T

+TV' B and B V'T=8(BT/Bs) =0. In this case w=0,
and if the velocity (V) from (29) is substituted into
(32), then

n=X(8/v„). (37)

It is obvious that n should vary inversely as sit along
a line; the factor 8 corresponds to the inverse depend-
ence of e on the cross-sectional area of the Qux tube.
The quantity I, which is independent of distance along
the line, can be evaluated by integrating (37) between
reQection points with respect to distance s.

(3g)

state, a familiar result for a canonical system. Then Q
is constant on a longitudinal invariant surface —i.e.,
on a surface of fixed J, M, and E.

Next let us consider the particle density in conhgura-
tion space. Let n(r, E, M, t) be the density at point r
of particles with energy E and magnetic moment M.
If a steady state exists along a given line of force, we
can write

—,TB dS= VX(—(V)XTB).dS
J

C

&X -(&JXn)Xn dS

Since dndP is the element of flux, we have dndP
=8dVt/ds, where dVt is the volume element in the
flux tube and dVt/ds is therefore the cross-sectional
area. Then (38) becomes

C p=-, I VXVZ dS,
e~

t ndVt dndP(X——T/2) (39)

BQ B B
+—(e(-))+—(e(p)) =o

Bt Bn BP

By (30), (B/Bn)(n)+ (B/BP)(P)=0, so that

de Be Be Be
+(-) +(p)

dt Bt Bn BP

(34)

(35)

and Q is conserved under the velocity (n), (P).
Physically, QdndP is the number of particles of

moment M and longitudinal invariant J in the Aux

tube dC=dndp at time t. Suppose now there is a
steady-state particle distribution in the (n,p,J,M)
space, so that BQ/Bt=0. This will occur if we have a
steady-state in con6guration space, with static 6elds.
Then (35) becomes, after eliminating (n) and (p) by
(30)

B(Q E)IB(n,p) =o (36)

Since this Jacobian vanishes, Q is a function of the
constants of the motion J, Jr/I, and IC in the steady

which vanishes.
A Liouville theorem exists in (n,p,J,M) space, since

the equations of motion (30) are canonical. Let
Q(n, p,J,M, t) be the particle density in this space at
time t. Each point in the space represents a particle
somewhere on the line (n,p) at time t with magnetic
moment JI/I and longitudinal invariant J. The equation
of continuity in this space is, since J and 3I vanish,

The left, -hand side is the total number of particles of
moment M and energy E in dndP. Let this total number
be denoted by E(n,P,K,M, t)dndP. Then X=2N/T and
(37) becomes

n= (28/v„) (X/T). (40)

The quantities 1V and Q are related by EdE= Qd/, or
E=QBJ/BE. By Eq. (27), T=BJ/BK, so thatlV/T=Q.
Then (40) becomes

n= (28/v„)e. (41)

V. THIRD ADIABATIC THEORY AND THE
THIRD OR FLUX INVARIANT C'

The equation of motion of a charged particle gives
the guiding center equations of motion (1) and (2) and
the adiabatic invariant 3f after an average has been
taken over the rapid gyration around the field line. In
the previous section it was shown how the guiding
center equations of motion and the invariance of M
lead to the equations of motion (30) in n, P, and E, and

Because Q is constant on a longitudinal invariant
surface in a steady state, Eq. (41) says that in a steady
state, the density n is a constant times 8/v„on an
invariant surface. In the special case where electric 6elds
are absent, v» = (1/ntoy) L(E — '

rn)o/ c4c22Mnto8']' and
e becomes a function of 8 for a given J, M, and E.
In a steady state with no electric fields present, contours of
constant 8 on an invariant surface are also contours of
constant particle density n
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SURFACE OF CONSTANT

J,M, AND K

y (k' )

J,M, K = CONSTANT PN
CURVE

Fro. 6. The representation in (n, p, s) space of a
longitudinal invariant surface. Fio. 7. Cross section of a longitudinal invariant

surface in (a,p, s) space.

to the invariant J.An average over the rapid oscillation
between reflection points was used. In this section it
will be shown how the (rr,P,E) equations of motion lead
to the third invariant C by means of an average over
rapid motion in a and P.

This third invariant C has been defined as the Aux of
B enclosed by the invariant surface; the invariance of
C has been used in Sec. II. To prove its invariance,
consider the representation of longitudinal invariant
surfaces in (o.,P,s) space (Fig. 6). Each surface is a
cylinder of finite length with elements parallel to the s
axis. At any time t the three parameters (J,M,E) are
needed to specify a surface. Since the line length
between reflection points is a function of (rr,P), the
elements of the cylinder are not all of equal length. In a
static Geld a particle rapidly oscillates between the
ends of the cylinder and slowly drifts around it. If the
Geld is nonstatic with a time dependence slow com-
pared to the time to drift around the surface, the
particle moves slowly from one cylinder to another
characterized by the same J and M, but diferent E.
Then d4/Ch can be found at each instant of the motion
around the cylinder, and the time average of d4/Ch over
one circuit of the cylinder can be shown to vanish. This
is analogous to calculating dJ/Ch at each instant of the
lowest order motion along the line of force and then
showing that (dJ/dt) =0.

Since the differential of flux is d4=dndP, 4 is the
cross-sectional area of the cylinder, and invariance of C

is equivalent to invariance of the cross-sectional area
of the cylinder on which the particle is located. Figure 7

shows the intersection of the cylinder with the (n,P)
plane. Suppose that at some instant of time the particle
is on dl and drifting slowly at right angles to it while

moving rapidly around the surface. At any other arc
element dt' let Y(t') be the velocity which is required
in order to remain on the same (J,M,E) surface as
the actual particle during its slow drift oG dl. The
velocity Y(t') is the analog of V(s') for the longitudinal
invariant. By using K=K(n,P,J,M, t) we find that Y
must satisfy the equation

outside of the loop)

d4 Y(t') V.pK (t')'
dl'

i
V.pK(t') i

dt' ( BE')
(V.pK'J L Bh )

(43)

where the primes mean evaluated at t'. By (30) BK'/Bt
=(K)', and (c/e) i

V' pE'i =((rr)'+(P)'$-*, which is the
velocity of the particle parallel to the loop at l'. Denote
this velocity by v p'. Then

dC' c dl

,((E)i—(K)i ).
dt e v p'

(44)

This is the analog of (24) and does not in general
vanish. However,

dC cr—=—(((K))—(E)),
dt e

(46)

where ((K)) is the time average of (X) during the
motion around the surface, and r= J dt/s p is the time
to drift around the surface. Since 4 =4 (J,M,E,t),

dC BC . BC
(E)+'

dk BE Bt
(47)

Comparison of (46) and (47) gives

c dldl'
((K)i—(K)i ) =0. (45)

e &ap&ap

Because of the antisymmetry in l and l' of the inte-
grand in (45), it follows that the effects of dt and dt' on
C cancel. This is the analog of the cancellation of the
eGects of ds' and ds on J.

Equation (44) can be written as

(K)i= V pK(t') Y(t')+BK(t')/Bt, (42)

where V p means the gradient in the n, P plane. Since K
is constant on the closed curve of Fig. 7, then V' pE(t')
is perpendicular to the line element dl', and the rate
of change of area is (assuming that V pE is towards the

8 B4
(J,M,E,t),

cBE

e BC

((K))=——
cv Bt

(48)
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FIG. 8. Cross section of a
double-leave d longitudinal
invariant surf ace.

I'Ic. 9. Variation of Geld strength
8 as a function of s.

as the equations of motion, analogous to those in (27);
they can be solved to give E and r as functions of time.
The second equation in (48) can also be written as

BE(C,J,M, f)
((&))=—

which is the analog of (30).

VI. CONTAINMENT OF PARTICLES IN THE
EARTH'S MAGNETIC FIELD

In the previous sections we have derived the equations
of motion for the drift of particles from line to line and
we have also discussed the Aux inside the invariant
surfaces in a time-dependent field. We are now pre-
pared to discuss the question to what extent the charged
spiralling particles will be retained by the earth' s
magnetic field.

In Sec. II we have given reasons that particles are
retained provided the quaiitities 3f, J, and 4, the
magnetic moment, the longitudinal invariant, and the
fiux through the invariant surface remain time in-
dependent. Because of the rapidity of the spiralling
action we must expect that M indeed is conserved in
extremely good approximation. '" Magnetic disturb-
ances probably due to solar activity could have short
enough periods to interfere with the conservation of the
longitudinal invariant. On the other hand, the third
invariant C requires that time variation should be slow
compared to the period in which the particle encircles
the earth. This period lies in the vicinity of a half hour
for a 1-Mev electron. One will expect that in a magnetic
storm particles will diffuse from one invariant surface to
another and may eventually get lost either by diGusing
away from the earth or diffusing down into the
atmosphere.

We shall conclude our discussion by considering
other ways in which the actual situation might differ
from the simple adiabatic one presented in the previous
sections, since such diGerences might conceivably lead
to a loss of particles. Thus, in the previous discussion we
have assumed that each invariant surface is a single
cylinder as shown in Fig. 6. This is not necessarily true.
For example an invariant surface might be double, as
shown in Fig. 8 in an (n,p) plane. Neighboring constant

'4 A. Garren et aL., University of California Radiation Laboratory
Report UCRL-8076, March, 1958 (unpublished); and Proceedings
of the Second United 2Vations InternationaL Conference on PeacefuL
Uses of Atomic Energy, Geneva, 1958 (United Nations, Geneva,
1958), Paper P/383.

J contours are also represented. The intersections of the
two surfaces with the same J value, which occur at a
and b, represent lines of stagnation on which (a) and

(p) must vanish. Because they vanish, the equations of
motion (27) show that BJ/Bn and BJ/BP must also
vanish at a and b. One possibility is that the surface
J=J(n,p) has saddle points at a and b; the arrows
showing particle motion in Fig. 8 have been drawn in a
manner consistent with such a topology.

The time for a particle to approach a and b along a
branch diverges logarithmically. For expansion of J
about the saddle value Jo gives

(Qo) B Jo B Jo (QP)P B JoJ=Jp+ +AnhP + . (50)
2 Bn' BnBP 2 BP'

Then in the vicinity of a or b

e BJ c ( BJp BJp)
+~p

eT BP eT ( B(P BP' ) (51)

Along the invariant surface given by J=J&, ho. is
proportional to Dp, as is seen from Eq. (50). Therefore
on this invariant surface, Eq. (51) for (ri) takes on the
form (rr)=khn, where k is a constant. By integration,

1—(1/k) lnhn. (52)

This expression is approximate since higher powers in
the expansion (50), as well as the variation of T, have
been neglected.

Another assumption which we have tacitly made in
our earlier discussion is that the field strength 8 has a
single minimum as a function of s between the two
mirror points Bz, as illustrated by curve G of Fig. 9.
Suppose that a particle is initially on a line of this type,
and suppose that the particle is then brought into a
configuration corresponding to the line F. This can
happen in one of two ways, either the magnetic field is
time dependent and it happens to acquire a maximum
within the original range of the longitudinal motion
of the particle or else the particle drifts toward a
configuration with a maximum. One will oGhand
suspect that when this happens the original orbit of the
particle will split into two smaller segments s~ and s~

and that the original value of the longitudinal in-
variant J will be replaced by one of two new values J&
or Jp where Jr+Jp= J.If this were the case, there would
clearly be a reason for a change in the longitudinal
invariant. Furthermore, one will expect that the dis-
appearance of the maximum along the magnetic line
will lead to a change which is qualitatively the reverse
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of the change which we have discussed. There exists,
however, the possibility that the drift along the two
segments s~ and s. will have carried particles to two
different Qux lines and that, when the maximum
vanishes, s~ and s2 will join new Aux lines instead of being
reunited. This indeed could lead to a permanent change
in J and one might expect that as a consequence a
significant radial motion in the earth's magnetic field
might be set up.

We shall suggest the reason why the types of processes
which we discussed above may require an infinite time
in the approximation which has been made throughout
this paper.

When an appearance of the maximum in the magnetic
field is about to sever the longitudinal oscillation into
two portions, the particle will have a large period of
oscillation, and in particular it will spend a long time
near the maximum, at time which tends toward
logarithmic infinity at the time of severance. However,
for the time-dependent 6eld case the increase of mag-
netic field near the maximum will by its inductive
effect increase the energy of the particle. Thus a particle
will not be trapped on either side if it is near the maxi-
mum, but will instead acquire enough energy to remain
above the maximum. Actual trapping is likely to occur
only if the particle is not near the maximum as severance
is reached. However, the probability that the particle
is not near the maximum decreases as severance is
approached.

In the case of a static purely magnetic field where
the particle drifts toward a region where its longi-
tudinal orbit could be severed, we shall again find that
during the drift the particle will spend increasing time
intervals near the maximum of the magnetic field and
again the time spent near the maximum will tend
toward logarithmic infinity. During the proximity of
the particle to the maximum, its drift due to the
centrifugal force will approach zero. The drift due to
the inhomogeneity of the magnetic field will persist
but will be directed at right angles to the gradient of
the magnetic field and move the particle at right
angles to the direction of approach toward a line of
severance. Again, as in the previous case, the approach
is likely to depend on the periods that the particle
spends away from the proximity of the maximum in

the magnetic field, and again the fraction of time that
the particle spends in these regions will tend to zero
as the line of severance is approached.

We expect that in a more exact and detailed theory
the processes to which we have assigned infinite time
in the previous two examples will actually be ac-
complished in Rnite but long times. We cannot exclude
the possibility that near points a and b in Fig. 8,
particles might be transferred between zones I, II, III,
and IV, a possibility which does not exist according to'
the strictly adiabatic theory. Likewise, we must expect
that in the time-dependent case, the growth of the
maximum in the magnetic field such as shown in Fig. 9
will actually give rise to a severance of a longitudinal
orbit. Our present purpose is only to show that a simple
application of our equations of motion gives arguments
against the ready occurrence of these more complex
patterns of motion.

The observed radiation around the earth has a
marked structure, " with maxima at 10000 km and
22 000 km equatorial distances separated by a radiation
minimum at approximately 15000 km. It might be
tempting to assume that these two radiation belts are
due to some complexity of the earth's magnetic Geld.
However, preliminary observations have shown that
the particle energy spectra differ in the two belts.
Thus it is likely that the two belts have a different
physical origin. The discussion which we have given
here indeed does not open up any simple explanation
why two such belts should be due to purely kinematic
causes.
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