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Single Particle Energies in the Theory of Nuclear Matter*
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The excitation spectrum of real and virtual excitations is discussed from the point of view of the pertur-
bation series expansion. The effect of the rearrangement energy terms in the single-particle virtual excitation
spectrum is evaluated and seen to be very small. It is also noted that the virtual particle energies are real
due to the e8ects of off-energy-shell propagation.

Starting from the reaction matrix approximation for the ground state energy, the energies of real particle
and hole excitations are de6ned which satisfy the separation energy theorem. It is shown that the energies
so de6ned depend on an in6nite sequence of terms giving the rearrangement energy for multiple excitations.
Appropriate termination and evaluation of this series are discussed.

I. INTRODUCTION

'T has been shown by Hrueckner' and by Hugenholtz
~ - and van Hove' that an approximate theory of a
many-body system of strongly interacting particles will

usually lead to a violation of the equality between the
mean binding energy and the separation energy of the
last particle. The equality follows quite generally from
the linear relation between energy and total particle
number for a saturating system. These authors have
analyzed the origin of this difhculty from the particular
viewpoint of the many-body theory in the approxi-
mation of Brueckner and also from the general view-
point of perturbation theory.

In this paper we shall first discuss from a perturbation
viewpoint' the excitation spectrum of real or energy
conserving excitations and of virtual excitations, the
latter spectrum determining the energies required to
evaluate the reaction-matrix. Such virtual excitations,
since they typically exist only for the very short times
characteristic of two-body collisions, are changed only
slightly by rearrangement eGects. A consequence of
this is that the convergence of the cluster expansion for
the ground-state energy is nearly unaR'ected by rear-
rangement terms in the single-particle virtual excitation
spectrum.

We next consider the definition of real particle and
hole energies, starting from the reaction matrix ap-
proximation for the ground state energy. We shall
show within this framework how single-particle energies
can be defined which automatically satisfy the sepa-
ration energy theorem and also how they may be
evaluated.

II. SINGLE-PARTICLE ENERGIES IN
PERTURBATION THEORY

In this section we consider the single-particle energies
from the viewpoint of perturbation theory. This dis-
cussion will not be intended to lead to a quantitative
theory, which can be done only starting from a more
rigorous formulation, but rather to indicate some
characteristic features of the spectra. In particular we
shall be interested in showing the changes in the
energies which occur when the off-energy-shell effects
typical of virtual excitations are included.

The single-particle energy in the first two orders of
perturbation theory is given in Fig. 1, not including
the eGects of exchange explicitly. The matrix elements
corresponding to a and b in Fig. 1 are included in the
usual definition of the E-matrix. The single-particle
energy computed in this approximation will be complex,
since an excited particle can transfer energy to the
unexcited medium and bring about energy-conserving
transitions. These transitions lead to a finite lifetime and
hence a complex energy.

The process represented in Fig. 1(c) arises from the
identity of the particles. It can be viewed as the
correction for the alteration of eGects of the exclusion
principle on a ground-state pair. In the presence of a
particle in a formerly empty state, a ground-state pair
can no longer make transitions into this state. This is
shown in Fig. 1(d) which gives an equivalent diagram,
the matrix element corresponding to this diagram
having the same structure as that corresponding to
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(b)

Fro. 1. Single-particle energies in the 6rst L(a)g and second
L(b) —(d)g orders of perturbation theory.

f 4K. A. Srueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958).
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(b) (c)

FIG. 2. Hole energies in the iirst L(a)] and second L(bl and (cl]
orders of perturbation theory.

Fig. 1(c). This correction term has been called a
rearrangement term, ' since it arises from the effect of
the change in the state of one particle on the energies
of the other bound particles. The rearrangement
corrections vanish at low density in comparison with
the E-matrix terms in the energy, since, in the former
terms, an additional intermediate state is involved in
which transitions into levels of the Fermi gas are
required.

The energy of a hole in the erst two orders of pertur-
bation theory is given in Fig. 2. Again the matrix
elements corresponding to Fig. 2(a) and Fig. 2(b) are
included in the definition of the E-matrix. In the hole

energy, in contrast to the particle energy, the E-matrix
terms are real since no intermediate state conserving
energy is possible. The matrix element corresponding
to Fig. 2(c) is similar to that corresponding to Fig. 1(c)
since again it occurs only because of the identity of the
particles. The presence of a hole allows transitions to
occur from other hole states and so alters the energy
of other bound particles. This type of term is conse-
quently also called a "rearrangement" term and van-
ishes at low density compared to the other E-matrix
terms. The hole energy is complex due to the occurrence
of this term since the hole-hole transitions which it
includes can conserve energy and so lead to a finite
hole life time.

We next examine the change in the matrix elements
giving the single-particle energies when they appear as
insertions into the ground-state energy, which is repre-
sented by the second order term of Fig. 3(a). The
contributions from the insertions represented by Fig.
3(b) and Fig. 3 (c) a,re similar to Fig. 1(a) and Fig. 1(b),
except that the system is off-the-energy-shell by the
excitation energy

oK-energy-shell energy shift makes intermediate-state
energy-conserving transitions impossible.

The rearrangement energy corrections to the particle
energy are given in Fig. 3(d). We also give three other
topologically equivalent diagrams in Fig. 3(e), Fig.
3(f), and Fig. 3(g). These give corrections to the
energy of the same form as Fig. 3(d) and, to be con-
sistent, must be included. They can be generated from
the diagram of Fig. 3(d) simply by reordering the time
sequence of the vertices. The separate appearance of
these diagrams is a characteristic complication of the
introduction of hole theory and is readily avoided in,
for example, the ordinary Rayleigh-Schrodinger formu-
lation of the perturbation theory. '

Before collecting all terms of rearrangement energy
form together, we first note that Fig. 3(d) and Fig. 3(g)
as well as Fig. 3(f) and Fig. 3(e) arise from each other
simply by reflection of the diagram about its vertical
axis. Both sets of diagrams should therefore not be
separately counted when summing freely over all
particle coordinates. The rearrangement terms of Fig.
3(d) and Fig. 3(e) can easily be written out explicitly.
They combine to give the simple result

The quantity in the square bracket is precisely the
matrix element corresponding to Fig. 1(c), with no
correction in the energy denominator for the excitation
energy of the rest of the diagram. This decoupling of
the energy denominators is a consequence of the
combination of the various contributions coming from
different time sequences. We thus obtain the important
result that the matrix element giving the particle
rearrangement energy is unaltered by o8-energy-shell
effects when inserted into a ground-state diagram.

Consider next the hole energy. The insertions into
the ground state energy are given in Fig. 4. The

(0) (c)

Thus the K-matrix term represented by Fig. 3(c) must
be computed "oG-the-energy-shell. " The oG-energy-
shell corrections arising from this change in the E-
matrix have been discussed in detail and evaluated by
Brueckner and Gammel. 4 There is a considerable shift
in the energy resulting from this effect and also, more
important, the E-matrix so computed is real since the

' K. A, Brueckner, Phys. Rev. 97, 1353 (1955).

{q)

I'zc. 3. The ground-state energy diagram (a) with first (b) and
second (c)—(g) order corrections to the virtual particle energy.

' K. A. Brueckner, Phys. Rev. 100, 36 (1955).
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rearrangenient energy goes off-energy-shell and becomes
real.

(b) (c)

(e)

Fro. 4. The ground-state energy diagram with 6rst (a) and second
(b)—(f) order corrections to the virtual hole energy.

E-matrix hole energy diagrams are given in Fig. 4(a—e).
Again we see that Fig. 4(d) and Fig. 4(e) give the same
matrix elements as Fig. 4(b) and Fig. 4(c). The matrix
elements of Fig. 4(b) and Fig. 4(c) combine to give a
E-matrix insertion for the hole energy which is not
altered by the excitation energy of the rest of the
diagram. Thus the E-matrix contribution to the hole
energies is not aGected by oG-energy-shell propagation.

The hole rearrangement term is given in Fig. 4(f).
In this case, in contrast to the particle rearrangement
energy, there are no other matrix elements of similar
structure but diGerent time sequence. Consequently
the matrix element is

E,+E, E,' E:, — —

X &az,.-z Diz', kz

Es+E(+E,—E, F,' E(. — —

where the quantity in the square brackets differs from
the rearrangement: energy of a hole LFig. 2(c)j since
the denominator includes the excitation energy of the
rest of the diagram. The presence of this energy
removes the possibility of energy-conserving transitions
and the hole-rearrangement energies become real.

To summarize these results, we observe that in the
first two orders of perturbation theory, the contribu-
tions to the single particle energies have the following
properties:

This asymmetrical behavior of particles and holes in
the E-matrix approximation has already been taken
into account by Brueckner and Gammel4 in their study
of nuclear matter. The asymmetry is also trivially
apparent in the Rayleigh-Schrodinger form of the
linked cluster expansion. '

We now note some consequences of these corrections
to the real excitation energies. The oK-energy-shell
corrections to the E-matrix particle energies are repul-
sive and give an appreciable upward shift to the single
particle energy for states above the Fermi surface. On
the other hand, the rearrangement corrections are
repulsive and are made less so for the hole energies by
the off-energy-shell effects (to which we return in more
detail later). Consequently the virtual hole and particle
energies are shifted in opposite directions relative to
the energies of real excitations.

Another consequence of the oG-energy-shell correc-
tions is to alter somewhat the singularity near the
Fermi surface which may for some states be present
for attractive forces. If, as has been done in the studies
of nuclear matter, the excitation energy of Eq. (1) is
replaced by an average value, then a large energy gap
appears in the virtual excitation spectrum at the Fermi
surface. This prevents the occurrence of "dangerous
denominators" in the E-matrix equation which in this
approximation can then be solved without difficulty.
These comments are, of course, not intended to imply
that the characteristic singularities near the Fermi
surface associated with attractive forces are necessarily
absent, but only that in a practical calculation, the
difhculty well may not appear.

We finally turn to the question of the magnitude of
the eGects of the rearrangement terms on the ground-
state energy. To do so we restrict ourselves to the second
order rearrangement terms only, although higher order
terms also contribute appreciably. A typical term of
third order, for example, is shown in Fig. 5(a) together
with its appearance in Fig. 5(b) as an insertion into the
second order ground-state diagram. This term can be
viewed as a correction for the depletion of the Fermi
gas as a result of interactions, the particle with mo-
mentum s in Fig. 5(a) interacting not with the unper-

A. Real excitation: The particle E-matrix energy is
complex; the particle rearrangement energy is real; the
hole E-matrix energy is real; the hole rearrangement
energy is complex.

B. Virtual excitations as ground state insertions: The
particle E-matrix goes oG-energy-shell and becomes
real; the particle rearrangement energy is unaGected;
the hole E-matrix energy is unaGected; the hole

(o) (b)

FIG. 5. Third order rearrangement energy diagram (a) and its
insertion into a ground-state diagram (b).
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Fzo. 6. Rearrangement energy as a function of momentum, for
real and virtual particle and hole excitations.

turbed Fermi gas but instead with particles and holes
excited by the interaction. An exactly equivalent
description, which will turn out to be more useful in
the next section, is that the effective mass of the bound
particles is altered by the presence of an excitation.
The effective mass change then in turn causes a change
in the bound-particle binding.

Restricting ourselves to the second order rearrange-
ment eGects, we have evaluated their magnitude and
energy dependence using a Yukawa interaction of
meson Compton wavelength range. We have also for
simplicity normalized the rearrangement energy for the
excitation of a real hole at the Fermi surface to the
computed value of 12.5 Mev as determined by Brueck-
ner and Gamrnel. ' To determine the rearrangement
energy of the virtual holes, we have set the mean
excitation energy of Eq. (1) equal to the full excitation
energy of the Fermi gas, i.e.,

This is probably an underestimate since, due to the
great strength of the interactions, the typical excitation
is considerably greater than the energy spread of the
Fermi gas.

In this approximation, the rearrangement energy
appearing in Eq. (3) is

(5)

surface and 5.3 in the lowest state. The virtual rear-
rangement energy also becomes nearly constant at
about 7 Mev, changing by only about 10% from the
Fermi surface to the lowest state.

The correction to the energy spectrum arising from
the rearrangement effects is given in Fig. 7, taking for
the uncorrected spectrum that obtained by Brueckner
and Gammel. 4 Their results are given for propagation
which above the Fermi momentum is off-the-energy
shell by the amount given in Eq. (3), i.e., the full
excitation energy of the Fermi gas. The appearance of
a marked gap at the Fermi surface in the virtual
spectrum is apparent. We also note that the rearrange-
ment eGects are rather smaller than the other oG-
energy-shell eGects. The effect on the ground-state
energy of these shifts in the E-matrix energies has been
shown by Brueckner and Gamme14 to be somewhat
less than 1 Mev, so that the smaller rearrangernent
effects must certainly give a shift in the ground-state
energy of no more than a fraction of a Mev. These
corrections are of at least fourth order in the linked
cluster expansion for the energy, and their magnitude
thus is consistent with the estimates of convergence of
the linked cluster series, which in third order gives a
few tenths of a Mev correction.

To conclude this section, we summarize our results
which are that (a) the virtual particle and hole energies
are real due to the effects of oG-energy-shell propaga-
tion, and (b) that rearrangement effects in the virtual
excitation spectrum can be neglected within the accu-
racy of the E-matrix approximation, which determines
the ground-state energy with an error of less than a
Mev.

III. NONPERTURBATION THEORY OF HOLE
AND PARTICLE ENERGIES

As we have seen within the framework of perturbation
theory in the preceding section and as also has been
shown in other work on the nuclear rnatter problem, ' '
a good approximation to the ground-state energy can
be obtained in the E-matrix approximation. The total
energy in this approximation is

kI total 2 +t +2 ri +i+j (+&jij aj ji)t , (6)
2M

We use the effective-mass approximation for the
energies, i.e.,

E,=p,2/2jM*+constant.

The evaluation of Eq. (5) is carried out in Appendix A.
The result is given in Fig. 6, for on-energy-shell and
o6'-energy-shell propagation. In the former case, we
give only the real part of the energy, defined by taking
the principal part of the singular integral involved.
For the hole states, the off-energy-shell rearrangement
energy is reduced by a factor of about 2.8 at the Fermi

with the E-matrix defined by the equation

In Eq. (6) and Eq. (7), e, is the expectation value of
the number operator for the state i, and is equal to one
for an occupied state and 0 for an empty state. The
e6ect of the appearance of the number operators in

' H. A. Bethe, Phys. Rev. 103, 1353 (1956).
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total energy) at the Fermi surface to the definition of
energy given by Hugenholtz and Van Hove. We shall
now show that, using the definition of Eq. (9), we find
new terms in the single-particle energy not included in
the previous definition of Eq. (8). These terms corre-
spond in the leading orders to the corrections discussed
in Sec. II. More generally, additional terms appear as
an infinite series of corrections which must be termi-
nated to give a closed expression.

To proceed, we carry out the differentiation indicated
in Eq. (9). The result is

B
E.&~& =E.+ ', Q e-,e, (K;;„; E;,,;,),— (11)

BSix
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FIG. 7. Rearrangement corrections to virtual excitation spec-
trum. The solid curve gives the self-consistent spectrum calculated
by Brueckner and Gammel in the E-matrix approximation.
The dashed curve shows the rearrangement correction.

Eq. (6) and Eq. (7) is to restrict the sums to states in
the Fermi gas or above, respectively.

The single-particle energies as customarily defined
in the existing applications of the theory to nuclear
matter and liquid He' are (ignoring the complications
of off-energy-shell propagation)

E,= 7iim/2M+ Q; e, (K;;;; K;,, ;—,) , (8)

This definition, as we have shown in the perturbation
approximation of the preceding section, is a sufIiciently
accurate definition of the virtual particles and hole
energies which are required in Eq. (7) to evaluate the
E-matrix. The definition leads, however, to violation
of the expected equality

E.&'~ = BE,...i/Be. . (10)

This clearly is the energy required to remove a particle
from the system, leaving a hole in the state e, and so is
equivalent (within the K-matrix approximation for the

We now seek a more exact definition, based on Eq. (6),
for the energies of real excitations. As we have shown
in Sec. II, these will in general be somewhat shifted
from the energies as defined in Eq. (8).

Instead of Eq. (8), we now adopt the following
physically reasonable definition of the real single-
particle energies. We regard the energy E&,t,,& as a
function of the occupations numbers e;, and define the
energy of a particle in state n as

with E as defined in Eq. (8). The rearrangement
effects appear in the last term of Eq. (11).To evaluate
this term, we use the definition of the E-matrix in
Eq. (7), and find

BE;;„, B (1—e )(1—e.)
P &fj,mn Kmnij ~ , (12)

Be m Be E +E, E E„— —

This equation is of a form often encountered in scat-
tering theory, and is readily solved with the result

BE;j;j
=PK„, .'

mn

where

(1—e )(1—e„) E„„,;, (13)
Be.E,+E, E E„——

That Eq. (13) is the solution of Eq. (12) can be seen
most easily by substituting Eqs. (13) and (14) into
Eq. (12).

Carrying out the indicated differentiation in Eq.
(12) gives

BE,j;j (1—e )
2 P Eij,ma Ema, ij

m E+E, E E——

(1—e )(1—e„)—PK;:,
mn (g~,+E, E —E„)2—

(E;+E; E E„) E „,;;. (1—5)—
Bs

The first term in Eq. (15) arises from the change in the
exclusion eQ'ect as the state n is emptied, a new inter-
mediate state transition becoming available. This term,
which is second order in the reaction matrix, corre-
sponds in the perturbation approximation to the second
order rearrangement term already considered in Sec. II.
The second term in Eq. (15) comes from the change
in the self-consistent spectrum or, equivalently, in the
effective mass, as a particle is removed from state o..
To evaluate the derivative we use Eq. (8) for E . The

(1—ng) (1—ei)
Kijmn &ij, , mn+2 &ij,ki K pi, „„'. (14)

E;+E, Ei, Ei——
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result is

BL&,',
&iaia , Ka,ai+2 ized (Kj,ij &ij,ji) ~ (16)

Be Be

More generally, if the rearrangement effects had been
included in the virtual hole and particle energies, Eq.
(16) would also include the second derivatives of the
E-matrix with respect to the number operators. The
equation for the second derivative then would lead to
an equation involving the third derivative. The first
derivative is related to the rearrangernent energy due
to single-particle excitation and can be pictured as the
diagrams in Figs. 1—5. The higher derivatives are
similarly related to the rearrangement energy for
multiple particle removal. The coupled nature of this
succession of equations makes it impossible to utilize
exactly the definition of particle energy in Eq. (10) and
consequently the relationship between E(k p) and
EA„(1/1V)E,...——i cannot be exactly satisfied if we start
from the E-matrix approximation.

To reduce the problem to manageable size, we make
the approximation of neglecting the rearrangement
energy of more than one particle. The justification for
this approximation lies in the rapid convergence of the
E-matrix method. Previous work4 has shown that the
one-particle rearrangement energy shifts the single-
particle energy at the Fermi surface by about. 20'Pii.
Similarly, the two-particle rearrangement energy may
be expected to shift the single-particle energy by the
order of a few percent. The neglect of the two-particle
(and higher) rearrangement energies is also equivalent
to the assumption that these energies do not depend
on the momentum of the particles involved, since in
this case the rearrangement terms cancel when energy
differences are computed.

We now rewrite Eq. (16), dropping all but the leading
terms, as

rtEi/rlzza=lt ia, ia Ilia, aiy

and find for Eq. (14)

which the intermediate state energy is the same as the
initial energy. In Eq. (18) this would mean that the
energies Ei+E, and E +E„may be equal, which was
not possible in previously evaluating the single-particle
energy. The occurrence of this singularity is, of course,
related to the finite lifetime of the real hole and particle
states, so that the singularity should be defined by the
addition of a small positive pure imaginary term to the
energy denominator.

The solution to Eq. (11) a,nd Eq. (18) includes the
second and third order terms given in Figs. 1—5 together
with the higher order terms which would arise from a
perturbation expansion of the E-matrices and energy
denominators in these equations. The energies so
obtained will at the Fermi surface satisfy Eq. (9) very
accurately and so, within the basic framework of the
E-matrix approximation, provide the basis of an
improved determination of the properties of the systems.

To apply these methods in the actual solution of the
basic E-matrix equations is of course nontrivial. Even
if the perturbation solution only is needed, the second
and third order terms in the rearrangement energy
can be estimated to give comparable contribution
and can be evaluated only if detailed knowledge of the
diagonal and nondiagonal elements of the E-matrix is
available. Fortunately, the differentiation of the E-
matrix in Eq. (12) can be carried out readily in the
course of the numerical solution of the E-matrix
equation, without using the explicit result of Eq. (18).
This can be done by making a definite shift in the
population of the Fermi gas near the desired momentum
and so determining BE,;,,/Be of Eq. (12) from the
finite shift in the E-matrix. Such differencing is easily
carried out within the framework of the general
numerical method. The derivative so evaluated can
then be used to correct the single-particle energies
according to Eq. (11), and the process repeated to
improve the accuracy of the result. This study is now
being carried out: the results will be reported in a
separate communication.

APPENDIX A. EVALUATION OF THE
REARRANGEMENT ENERGY

I.~Q (s)1

The expression we wish to evaluate is

BEij,ij (1 zzm)
2 2 1&ij,ma &ma, ijBiz„m E,+E, E„E&, — —

(1—zz )(1—zz )g Kj,ma (I~ ia, ia+ 1~ja, ia
ma (Ei+Eq Em E„)——
—IC, —E„,„+exchange terms)E, ;;. (18)

A similar equation holds for the derivative of the
exchange term E',;,„ In the form of Eq. (18), the
correspondence of the last term to the third order term
described in Sec. II and Fig. 5 is now obvious.

In the evaluation of the first term in Eq. (18), a
problem previously encountered arises in the possible
singularity of the energy denominator. If a particle is
removed from the state n, a transition may occur in

EB(p;,+)= Q pkl„l' (A.1)
Ea+Ei E.—Ev—

vl, &, ;& is the Fourier transform of the two-body inter-
action. It depends solely on the momentum transfer
between the vacant state l and the excited state l'.
Thus a natural coordinate to take is

x—= (1zi—pi'). (A.2)

In terms of x, for a Yukawa potential of the form
V(r)= —Vpe "' /r, we 6nd (for units of A=1) p(x)

f(x)/0, with f(x—) = —4zr Vp/(x'+n').
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f'(x)M~
(A.3)E.(p', ~)=E —,«D' —p; x+pi x—M*A t

Eii(p;,6) =constant dx f'(x)
"Iu' —XI ~PI

Replacing the summations of Eq. (A.3) by integrations,
we obtain x y, +M*A xpp+x p;+M*A

ln (A.8)
E (p, ,a) x p;+M*3,

Substituting Eq. (A.2) in Eq. (A.1) and summing The angular integral is now easily evaluated, with the
over the state k yields result (we now drop constants since we intend to

normalize to the value at the Fermi surface)

f'(x)M"
3d.dp,

(2~)'~(y; —.
( p.~ x p, —x p;—M*Z

I+& XI RPI'

The restrictions on the integrations arise from the
conditions that pl, ~pp and pi & p~. To evaluate the
integral over p~, we make use of the rapid convergence
of the integral over x. If x is much smaller than p p, then

pp 2pixy~ —pi ', (A.5)

pl =pF+px) (A.6)

and for this inequality to hold, p must always be
negative. Thus we can rewrite Eq. (A.4) approximately
as

M~
E'&(p;,A) =

~

f'(x)dx
(2~)'~ i.'- i =~.

2'
pPdpi. (A.7)

~ —], ppxp x'pj M 6 ~ pz+pg

where p= cos(pi, x). If x is small, then Eq. (A.5)
together with the condition that p~~ pi; shows that

pi ——p p —0(x).
From Eq. (A.5), to order x, we then find

At the Fermi surface, if 6=0, then

&a (ps, 0) =constant2~)
0

x'f'(x)dx

1+@
)(,

J
dp 1 p 111

0

(A.9)
p

t'2p p)
Zii(pp, 0) =constant —tan '~

2n (nJ
2(xp p

n'+4p p'
(A.10)

If we take the normal nuclear density and the meson
Compton wavelength for the Yukawa range, then

p&/n 2 E—qua.tion (A.10) then fixes the value of the
multiplicative constant.

The evaluation of Eg(p, ,h) for other values of p;
and 5 is now straightforward and will not be given in
detail.

where y'=cos(p, ,x). This integral can be evaluated
analytically and gives


