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Pairing energy calculations are generally carried out assuming the nucleon wave functions are those of an
harmonic oscillator. The two-body interaction is assumed to be some function of a1, o2 and r;—r;. Since the
coordinates appear only in the form r;—r;, it is convenient to write the two-body wave function in terms of
the relative coordinate, r=r;—rs, and the center-of-mass coordinate, 2R =r;+r,. The eigenfunction in the
new coordinates can be determined by noting that if the two particles are in the same oscillator level, then
¢(r1,rz), which is an eigenfunction of H;+H, is also an eigenfunction of H; alone. Transforming H, to
relative and center-of-mass coordinates implies that the operator p-P-4mkr-R (where m is the mass of the
particle and % is the spring constant of the oscillator) must give zero when operating on the wave function.
This condition plus certain requirements arising from the radial form of the oscillator eigenfunctions is suffi-
cient to determine the wave function in the new coordinate system.

INTRODUCTION

PECTROSCOPIC calculations are generally carried
out by expanding the two-body interaction in
terms of Legendre polynomials.! The angular integra-
tions are then easily performed and the remaining radial
integrals can be done either analytically or numerically,
depending on their complexity. In nuclear physics a
reasonable approximation to the wave functions in-
volved is provided by the harmonic oscillator potential.
Talmi? has pointed out that for this potential the two-
particle wave function ¢(r;)x(rs) can be written as a
finite sum of products of oscillator wave functions of the
form ¢ (r)¥(R), where r is the relative coordinate,
r=r;—1r,, and R is the center-of-mass coordinate, of the
two particles, 2R=r,+r,. Since the two-body inter-
actionisa function of (r;—r,), writing the wave function
in terms of r and R circumvents the need for expanding
the potential in terms of its Slater integrals. In fact,
since ¥/(r) is a polynomial in r multiplied by an angular
factor (which integrates out) one sees that the calcula-
tion of nuclear pairing energies becomes the problem of
calculating “moments” of the two-body interaction
weighted by appropriate expansion coefficients. Several
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authors® have dealt with the problem of calculating
these expansion (or Talmi) coefficients. Generally the
procedure for finding them depends on tedious algebra
and, moreover, is based on the assumption that the
nuclear wave function commutes with the two-body
interaction.

In this note we give an operator which allows one to
write down explicitly the form of the two-body wave
function in terms of r and R provided both nucleons are
in the same oscillator level. Once this is done one can
calculate the Talmi coefficients and, further, can easily
treat the case that the two-body interaction has a
velocity-dependent part.

THEORY

If we write the oscillator Hamiltonian for a single
particle as

Hy= (ps*/2m)+3kr?, (M

then a solution corresponding to energy E= (%%k/m)t
X (2n+14%) is given by

Y=Xn1(r) ¥ ™ (01,61), (2)

where the normalized form of the radial wave function is

n (—=1)k2kn!(204-1) 1 (ar?)*

]7 exp(—ar¥/2)rt 3 ) 3)
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with a= (mk/h?)t and ¥ ;™(01,¢1) the usual spherical harmonic. Our notation is such that the lowest state of any I
is denoted with #=0, namely (0/). Also (2/41)!!=1X3X5X - - X (2/+1).

Using Eq. (2) one easily writes down the eigenfunction for two particles moving in the same oscillator potential
and coupling their spins to a resultant J, with 2 component M. If one of the particles has quantum numbers #, /

* Work performed under the auspices of the U. S. Atomic Energy Commission.
t An abstract of this work was originally reported at the 1959 Annual Meeting of the American Physical Society [Bull. Am. Phys.

Soc. 4, 49 (1959)7].
1 Now at the Argonne National Laboratory, Lemont, Illinois.

1 See for example E. U. Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge University Press, London, 1951).

2 1. Talmi, Helv. Phys. Acta 25, 185 (1952).

3 E. H. Kronheimer, Phys. Rev. 90, 1003 (1953); G. E. Tauber and T. Y. Wu, Phys. Rev. 94, 1307 (1954); J. M. Kennedy, Chalk
River (unpublished); W. W. True, Princeton (unpublished); R. Thieberger, Nuclear Phys. 2, 533 (1956/57); K. W. Ford and E. J.
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Konopinski, Nuclear Phys. 9, 218 (1958/59).
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and the other #/, then in j-7 coupling the wave function is

VoM =Xa(r)Xorv (r2) 20 Cop (JM'5 mm') Y™ (1) Y (2), (4)

where C;;(JM'; mm') is the Clebsch-Gordan coefficient which insures that j and 5’ couple to J and Y, denotes a
space-spin eigenfunction in which the orbital angular momentum / and spin angular momentum % are compounded
to give j. In the absence of two-body forces, the energy of the state ¢ ;#" does not depend on J and is given by

E= (1%k/m)}(2n+2n0"+1+1'+3). 5)

Since we wish to write the spatial part of the wave function in terms of r and R, it is convenient to work in the
L-S coupling scheme. In this representation ¢ ;' given by Eq. (4) becomes

YoM =X (r)Xnr v (72)Z'YLS > Crs(JM'; MM,)Y 1 MX gMs, (6)

MM,

where X s¥ is the spin eigenfunction of the two particles, S taking on the values 0 or 1, ¥ 1 is the orbital angular
momentum eigengunction obtained from combining / and 7, namely,

VM= 3 Cuw(LM;mm )V 1)V ™ (2). (7)

Here L=J, J=1, and 7.5, which are (97) symbols,* are the j—j to LS transformation coefficients, and have the

values®
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The first equation holds for all 7, 7/, 7, and /’. The same
is true of the second except that when j= l——% and
7'=1'"—4% the equation must be multiplied by minus one.
On the other hand, the last two equations, aside from
the phase factors both inside and outside the radical
sign, hold only for j=I+3%, 7/=0I'+%. To obtain the
analogous equations when j=I—% (j'=/"—3%), one re-
places I by — (I+1) [ by — (/4 1)] in each of the four
factors in the numerator of the expressions.
The problem now is to express

LM =X 1 (r1) X v (r2) Y 1M(1,2)
in terms of the relative coordinate
r=r1,—"19 9)
and the center-of-mass coordinate

R=%(r1+r2). (10)

4See for example A. R. Edmonds, Angular Momentum in
Quantum Mechanics (Princeton University Press, Princeton,
1957).
° 5 G. Racah, Physica 16, 651 (1950); M. H. L. Pryce, Proc.
Phys. Soc. (L ondon) A65, 773 (1952); Arima, Horie, and Tanabe,
Progr. Theoret. Phys. (Kyoto) 11, 143 (1954)

(= 1)i~= 1V (U TH2) (I~ V+T) (U= 1+T) GV + T+ 1) 78
) 2(2+1) (21 +1)7 (2T +1) ] '

To do this we first note that if Egs. (9) and (10) define
our new coordinate system, then the canonical momenta
conjugate to these are given by

p=3(p1—Dp2), (11)
P=p;+p.. (12)

Using Egs. (9), (10), (11), and (12), we see that the
total Hamiltonian of the two particles, H=H,+H, is
again separable into the sum of two harmonic oscillators.
Further we have the restriction that the eigenfunction
represents a state whose energy is given by Eq. (5).
Thus if (%1,l:) refer to the quantum numbers associated
with the relative motion and (1.,l2) those for the center
of mass, it follows that

21’L+ 2%,+l+l,= 2n]+2%2+l1+lz.

For simplicity we shall abbreviate the combination

(13)

Rnyy (1’) Rnaly (R) Z Cuiy (LM, mﬂﬂz) Viym (0) lemz(@)

mimg
={Un1l1cu,n212} LM. (14)
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It has to be borne in mind that in the radial wave
function Rn111(7) for the relative motion, the @ occurring
in Eq. (3) has to be replaced by a/2; for Rns12(R), @ has
to be replaced by 2«a. In the new coordinate system
¢.M may then be written as

dLM= 3

nilinglz

a(nily; malo) {UnitiUnato} £ar. (15)

The summation is restricted by Eq. (13).

We now have to determine the expansion coefficients
a(nily; nals). Let us consider two-particle wave functions
which arise when both particles are in the same oscil-
lator level (i.e., when both particles have the same
energy although not necessarily the same radial and
angular quantum numbers). This wave function must be
antisymmetric to the exchange of the two particles.
From this it follows that for isotopic spin one and spin
zero as well as for 7=0, S=1, ¢, can contain only
even values of /; (and hence /;). In the case =1, S=1
or T=0, S=0, only odd /; and /, occur. Further, the
space reflection r, — —r; multiplies the wave function
by (—1)¥. Since under this transformation r— 2R so
R — r/2, it follows that

a(nily; nale) = (— 1) a(naly; mily), (16)

« LiL2
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the factor (—1)% arising from the interchange of /; and
I, in the Clebsch-Gordan coefficient.

An important restriction on the expansion coefficients
in Eq. (15) is obtained by observing that ¢ ™, an
eigenfunction of H,+H,, is also an eigenfunction of H;
alone, and has energy E/2. To see the implication of
this, let us transform H; to relative and center-of-mass
coordinates.

pe 2 p-P
HI=%[———+kR2+?—+ikr2]+—~+%kr'R. (17)

4m m 2m

However, expressed in the new coordinate system the
wave function is an eigenfunction of the term in brackets
and has eigenvalue E/2. Hence the sum of the last two
terms when operating on the wave function must be
zero. This implies

m\/p
2( ) (_+ skr- R)¢LM=E+¢LM=O, (18)
hk

where the multiplicative factor has been introduced for
later convenience. The effect of this operator on a
typical term in the wave function is easily calculated by
the standard Racah techniques® and gives

1 Jd I I1+1 a9 I la+1
E{UniiWUnole} Lar=—— 2 ——=0Ly, h+1+ 01y, l1-1)(~———~~6L2, o1+ Lo, lz~l)—a27’R}
R R

ar r ¥

dR

X (= 1) L= (2 4-1) (2y41) JC112(L10; 00)C 122( L0 ; 00)

X W(l}Lllsz; 1L) Z CL1L2(LM; Mle) I/lei‘[l (0) YL2M2(®),

(19)

MiMg

where the WW’s are the Racah coefficients.® By use of the form of the radial wave function, Eq. (3), together with
the appropriate modification of a discussed previously, and the simple form of the Clebsch-Gordan coefficient

when all the m’s are zero,® this equation becomes

E {UnitfUnsto} Lyr= (— 1) FHH L[ (209 (2014 2014-3) JH{Uns, 41 Uno—1, to+1} £ar
(200 2ot 2054 3) T{ U1, 1+1Uns, 1341} 2.0 ) (1) (at-1)
XW (i, L t1, by 15 1, L)+ QLry(re+1) H{Uni—1, u+1WUng+1, ta—1} 2
[ @h200+3) (2ot 209+ 1) T Una, 111U, 131} 120 )[Ta (A1) T2

XW (b, i1, 1y, Io—

1;1, L)+ @QLus(na+1) { Uni+1, u—1Una—1, lo+1} £ar

+[(2l1+2ﬂ1+1) (212-}—2%2—*‘3)]%{ Unl, 11~1Ung, lg-i—l} LM)[ll(l?—}—l)]%

XW(h, h—

1, b, bt-1; 1, L)+ ([2(na+1) (2200 1)

X{Un1+1 I1— I‘UnQ lg— 1}L,11+[2(n2+1)(211+2n1+1)]7

X {Unl I3— lc[Ln2+l lo— 1}LM)[Z112]7W(11, ll“" 1 lz, lz

Although the Racah coefficients involved in this equa-
tion have a simple form,” we have chosen not to write
them out explicitly since many tables of these functions
exist.®

% G. Racah, Phys. Rev. 62, 438 (1942).

7 See for example Bledenharn Blatt, and Rose, Revs. Modern
Phys. 24, 249 (1952).

§ See for example K. M. Howell, University of Southampton,
Research Report US 58-1, June, 1958 (unpublished); Rotenberg,
Bivins, Metropolis, and Wooten, T'ables of the 3-j and 6-j Coeffi-
cients (Technology Press, Cambridge, 1960).

1;1, L) (20)

Thus we see that the operator E; leads to an inter-
relationship between the various coefficients appearing
in the expansion of the wave function. However, the
wave function is determined uniquely by this operator
only under very special circumstances. One may easily
see this by taking a specific example. Consider the
oscillator shell in which the (0f) and (1p) states are
degenerate. In this case there is only one way to con-
struct a state with L=35 or 6, namely from the (0f)?
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configuration, hence E, gives these states uniquely
(aside from a phase factor). On the other hand the state
with L=4 can be derived from either the configuration
(0f)? or (0f,1p). Since the E; operator arises from
considerations which are independent of the angular
momenta originally making up the state, it is obvious
that alone it cannot differentiate between these two
states. One could, of course, look at the operator
L2+ Ly?, which gives more detailed information about
the structure of the state. However, & moment’s reflec-
tion shows that when this is transformed to relative and
center-of-mass coordinates and allowed to operate on a
typical term in ¢, it can change /; to /322, 0 and /, to
1,42, 0, giving a total of nine terms as compared to four
arising from the E, operator. However, it is possible,
and much simpler, to sort out the ambiguities involved
by considering the form of the radial part of the
oscillator wave functions. We shall therefore treat the
various possible configurations separately, giving addi-
tional interrelationships between the expansion coeffi-
cients which will be sufficient to determine the wave
functions uniquely.

(01)> CONFIGURATION

One can supplement the interrelationships between
the various @’s of Eq. (15) by considering the radial form
of the oscillator wave functions, Eq. (3). For the case in
which both particles have the same / and no radial
nodes, the radial part of the eigenfunction before the
transformation of coordinates is proportional to
ritrat exp(—ar®/2) exp(—ar?/2). In the new coordinate
system a typical term in the expansion of the wave
function must, therefore, have a radial dependence of
the form

exp(—ar?/4) exp(—aR?) 3 b,°RY, (21)
st

2H—2a(2 +3)/2
¢>LM=[ ] exp[ —a(ri®+7:%)/2 ! 22 Cu(LM ;mm')V ™ (01)Y ™ (62).

w21

177

where s-/=2I. This immediately provides us with some
additional restrictions on the expansion coefficients of
Eq. (15). For example, if ¢, is to represent a state
with L =4 compounded from the configuration (0f)?, it
will contain a term of the form

{deo (1’) Roa (R) + bRoo (f) Rig (.R) }
X Z Cos (4M ; mlmz) YVom (6) Y4ml (@)

mm’

(22)

The braces contain terms in RS, 2R% and R*. Equation
(21) tells us that the coefficient of R* must be zero. This
determines the ratio a/b. We can, of course, have more
complicated cases in which the brace contains more than
two terms. However, even in these cases Eq. (21) is
sufficient to determine the relationship between the
coefficients. These relationships are given in Table I and
together with the E,; operator and normalization pro-
vide a complete description, aside from a phase factor,
of the state in question.

For many two-body interactions the phases of the
various components of the wave function, Eq. (6), are
unimportant for diagonal matrix elements (the tensor
interaction of course provides an exception to this rule).
However, the phases are of consequence when off-
diagonal matrix elements of the two-body interaction
are calculated. Although the operators we have con-
structed do not give the phases involved, they are easily
obtained as follows.

Let us consider singlet spin eigenfunctions which are
multiplied by wave functions of isotopic spin one. In
this case ¢, ¥, before the transformation of coordinates,
is given by

(23)

mm!

The limit r; — r, implies that r— 0, R— r;=1;, ® — 0,=0;, & — ¢ps=¢1. If we use the fact that two spherical

harmonics of the same coordinates can be written as®

21+1
LiMy [47r(2L1+ 1)]%

17 lelm' —
we find

lim¢ " —
r1—r2

{ 2 l+20{(2 +3)/2

(204111

sz(L10; OO)C”(LlMl, mm’) YL]MI,

] exp(—aR*)R

(24)

21 ll(LO; 00) YLM(@))A (25)

S —
[4r 2L+

As a function of 7 and R, this limit is the term R?!in the expression

L—2]
a((), 0; —2—, L)Roo(O)G’L(L_u)/z, LY (0) Y M(0).

This not only gives the phase of the wave function, (— 1) *Z%/2  but also provides an algebraic check since it gives the
numerical value of one of the coefficients in the wave function.

9 See for example J. M. Blatt and V. I'. Weisskopf, Theoretical Nuclear Plysics (John Wiley and Sons, New: York, 1952).
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TaBLE I. The expansion coefficients of the wave function, Eq. (15), are limited by the radial form of the oscillator wave functions.
These restrictions are listed for several given oscillator levels.

Term in expansion Configuration Restrictions arising from form of oscillator wave functions
aR11;Rozz+bRoi; R1ie 01y ; ’211+3]9
=— a
| 27,+3
aR21;Rota+dR11, R 112 () [2 (211+5):|* [(2l1+3) (2ll+5)]9
+CROI1(R212 b=— a: ¢=|———m-onu——1a
L 20,43 (212+§)(212+5)
{0, 10—2)} [(20+3) (201+5)Ta+[2 (21:+3) (202+3) 10+ [ (212+3) (212+5) T =0
aR31;Rotat-bR21, R 1zs (022 '3(21,-{-7)]9 [3 (211-{—5)(211-]—7)]* QL4721
“+cR11R2t2+dRoy; B3 b=—| — a; c= —\la; d= —[———————————] a
| 2043 (212+43) (20:45) @u+D!UL+!
{0, 1¢0—2)} [3L+5)2h+T7)Ta+2[ (20h+5) (2a+3) 10+ (202+3) (2h2+5) Tt =0
[ @h+n! ]9 [(211+5)!!(2l2+3)!!]9
e+ b
3L+ QL4112+
QL3125 QL+7)1
B e
Q@hL+D)1Q2L+1)1 32+1)1
{0, 2(1—4)} or
{1(0—2)}2 I=0
aRa1;Rot+bR31,R11s 012 21,497 620, +7)(2L+9) 7}
+cR21;R2is+dR11;R3ee b=—2 a; c=|— a;
+€R011(R412 205,43 (212"‘3)(21;',—5)
[(211+9)!!(2l2+1)!!]* [(le+9)12(212+1)!!r
=g T T g e= o
@4 +3)11(2FT! ¢ (2 1)1 (2049)1! ¢
{07, 1(0—2)} IT=[(20+3) (21 +5)Jrc+[6 (211+3) (202+7) Pd+[6 (202+7) (212+9) Jre=0
T =[3(20:+3) (2L +7)J0-+2[2 (21 +5) (2l+5) Tre+[3 (212+5) 2l +7) J1d =0
IV=[6(2+9)(2lL+7)Jta+[6(20+7) (21243) 20+ (2l2+3) (204 5) Jtc=0
{07; 2(—4)} or [2(2024-5) P11+ [20,+ 3 IT=0
{1¢-2)} [(202+3) FIT+-[2 (2 +5) V=0
{10¢-2), 20—4)} [ (2024 3) (2024 5) FIT+[2 (22, 43) (204 3) PIIT+[ (211 +3) (2 +5) FIV=0
aR51;Ro1+bR41;, R1ze (012 5QL+11)7¢ 1020, 49) (20, +11)72
+cR3yR2ie+dR2y, R3ie b=— ——Vla; c= — | a;
+eR11;Raie+ fRot; Rs10 20,43 (2054-3) (212+5)

{0, 10—2)}

{0/, 2(]—4)} or
{1(0—2))*

{10-2), 20—4)}

{20-4)¥

d=_[10(2h+11)u<212+1)ur _

2h+3)11(2+T)!!
Q1)1 2 DI

=_[(211+1)n(212+11)u]a

V=[10(2l+9) (2l +11)ta+2[2 (2149) 22+3) Jid-+[ (2la+3) (2la+5) Je=0
VI=[2(2+7)(20+9)10+2[ (2+7) (202+5) Jic+[ (212+5) 21+ 7)Jd =0
VII=[(2h+5)@h+7)Te+20 (2h+5) (et 7) Pd+[2 (21t 7) (212+9) TPe=0
VIIL=[ (2+3) (2 +5) Fd-+2[2 (2h+3) (21:49) Tre-+[10(22+9)(202+11) i =0

L@h+7)FV+[(21:43) FVI=0
L (204-5)HVIH-[(2:+4-5)FVII=0
L(2h+3)HVIIH-[ (24 7)FVIII=0

[ @l+5) 204 T) V420 (21 +5) 2a+3) BVIH[ (2243) (2a+5) FVII=0
L (2h+3) (20 +5) FVI-2[ (21 +3) (2a+5) FVIT+[ (2a+5) (2247) PVIII=0

@L+7)1 @L+5)11Q2L+3)T
V+3 VI
@h+1)1 QL)1
(2143) 2at-5) 11T Q@LA+T)UT :
3| ———— | VII+ VIII=0
(2111 (2-1)11

[5(2zl+11)u<zzz+1)u]é
| arnaton |°




HARMONIC OSCILLATOR WAVE FUNCTIONS 179

Only odd values of L occur in the ¢ multiplying the triplet spin eigenfunction. One cannot immediately go to
the limit 7;=17,, since the wave function always contains a term ~7Y,7(f). In this case it is convenient to expand
7Y ™(61) in a Taylor series about the point 7, 62, ¢ so that

Y (0)~ro'Y ™ (02)+ (ri—12) - (Wri Y ™)re+3 20 (11— 72)s(r1—72) s (Vo V'V ™)
st

;i
—] 2 (=0)™Cu(l—1, M;m—m) V1™ (0) ¥ 11 (62)
321-1)1 mum

L [A- )@= @)
e [ 30

=rzlYlm(02)——1’7'21_1(2l+1)|:

] S o voallm; mom) Vem(6)V osm(8:), (26)

where we have made use of the fact that the m,th component of r;—r, may be written as a function of the relative
coordinates only and is proportional to ¥ ;™. Although they are unnecessary at present, we have also retained
terms of order 7? since we shall need them when we consider two particles in states with different angular mo-
mentum. The first term in Eq. (26), of course, gives no contribution when substituted into Eq. (23) since it is
impossible to combine ¥ ;»(05) Y ™ (f2) to total angular momentum L, when L is odd. The second term, however,

does not vanish so that

12+1)(2—1)
lim ¢ — (2z+1)[—~5—_«J

yielding a phase (—1)3@HI+D,
(11)? CONFIGURATION

When both wave functions making up ¢ have the
same/and oneradial node it follows that the polynomial,
Eq. (21), occurring in a typical term must have

2A<Ls+1<L21+4.

For terms similar to Eq. (22), this imposes certain
restrictions on the expansion coefficients. These are
listed in Table I under the heading (1,7—2)2. The
reason for the change in notation from the text is that
we have written in this table all the possible configura-
tions arising from a particular oscillator shell. Since the
ratios of the coefficients do not explicitly depend on /,
the same formulas hold independently of the angular
momenta of the original states making up the wave
function.

Equations (25) and (27), which determine the phase
of the wave function, are merely multiplied by

2+3 2aR? )2
2 2a+3/°

which gives both phase and numerical value of one
coefficient.

There is an additional simple relationship between the
expansion coefficients for the (17)? configuration which
may be seen as follows. One can construct the wave
function ¢r¥ for (17)? from a knowledge of the ¢ ¥
arising from (0/)2 by merely multiplying the latter

Ciy1(L0; 00)W (1, 1—1, L, L; 1, 1)

XrR*-1 Z Cw(LM;mlmz)Yl'"‘(O)YLmz(@),

mimg

@7

quantity by
2014-3 (1 2ar,? ) ( 2ar22)
- 1— .
2 214-3 2143
On transforming to relative and center-of-mass coordi-
nates, we find

B (1)) 2l+3|1 2 R
i _— b14
- 2 20+3 T g3y

XL(R 417+ (r-R)7] }W{ 07} (28)

The (r-R)? term is the only one which operates on the
angular part of ¢ {(0l)?} and this leads to the rule
that if any term in ¢.¥{(1/)?} has an angular depend-
ence that conservation of energy forbids in the wave
function ¢ M{(0/)?}, then that term must be multiplied
by a polynomial, Eq. (21), of degree

s+1=20+4.

For example, the (0d)? configuration coupling to spin
L=4 has a term

Ruo (7’) (304(R) Yoo Y4M,

whereas the (1d)? configuration coupling to the same
spin contains a term

[dez (f) (Ro4 (R) + bRoz (7) @14 (R)]
X Z C24(4M; mm’) ngY[”l'

mm’
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The latter term arises from (r-R)? operating on the
original wave function and hence the interrelationship
between @ and b must be the same as for a state with no
radial nodes.

Finally the state ¢ ,*{ (1/)?} must be orthogonal to the
state ¢ Y{ (0, I4-2)?}. This requirement provides either
an additional relationship between the expansion coefh-
cients or can serve as an algebraic check.

(21)* CONFIGURATION

Again in this case the fact that the polynomial, Eq.
(21), multiplying a typical term in the wave function is
limited to be of degree

A< s+1< 248,

provides certain interrelationships between the ex-
pansion coefficients which are given in Table I.

The “phase equations,” Eqs. (25) and (27), are
merely multiplied by

(2143) (21+5) (1
8

404R2J 40’R* )2
213 (243245

The analog of Eq. (28) leads to the rule that any
term in ¢ M{(2])?} that has an angular dependence
that cannot by conservation of energy occur in the
wave function ¢r”{(1/)?} must arise from the factor
(r-R)*¢M{(00)?} and hence the function of » and R
multiplying it must obey the same requirements as if a
nodeless wave function were being constructed. For
example in (2d)? coupling to L=4, the coefficients ¢ and
b in the term

[aR14(r) Ros(R)+bRos(r) Ris(R) ]
X Y. Cus(4M ; mm') Y ¥V gm’

mm/

orM=274 3 Cor (LM ; mm){ fri(r1)gn v (ro)ri'reV V()Y 1™ (2) 2 gor 1 (11) fri(ra)riV ¥ o' (1) V2 (2)},

mm’
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must satisfy same conditions as for the nodeless wave
function.

{0, 1(1—2)} CONFIGURATION

So far we have dealt with the cases in which both
particles are in states with the same orbital angular
momentum. We now turn our attention to configura-
tions in which the particles have different ’s but still lie
in the same oscillator level.

Again the fact that the coefficient of any ¥ ;Y in
the transformed wave furiction must be a polynomial of
degree not less than 2/— 2 imposes certain restrictions on
the coefficients, which are given in Table I.

The phase of the wave function is algebraically some-
what more complicated to find in this case. This is
readily seen by noting that it is now possible to con-
struct a symmetric eigenfunction corresponding to an
odd value of L (a situation which cannot arise in any of
the previously considered configurations). As a function
of relative and center-of-mass variables, the symmetric
eigenfunction, Eq. (15), contains only even values of /;
and /,. When L is even it is always possible to have a
term in which /;=0, /o= L. However, for odd L this is
not possible and /; must be at least two. Thus to find the
phase of the wave function for symmetric eigenfunc-
tions with odd L, we must retain terms of order 72 in
Eq. (26). Since this is the case, it is more convenient to
consider the limiting process not for ¢, but for

e1M=¢1M/exp[ —a(ri’+r:?)/2]
' =¢M/exp(—art/4) exp(—aR?).
Many of the “phase equations” are only trivially
altered when we study ' configurations other than
{0/, 1(!—2)}. Thus we shall consider the more general
configuration {#l,n’l'} and then specialize. In this case,
oM before the transformation of coordinates may be
written as

(29)

where fn; and g, may be obtained immediately from Eq. (3) and the + and — signs go with symmetric and

antisymmetric wave functions, respectively.

Let us first consider the symmetric wave function. For L even, we may proceed directly to the limit as before and

obtain for the {0/, 1(/—2)} configuration
2H—la(2l+l)/2|— 2[__3
w(20—3) 1l 4r(2L+1)

which gives the phase (—1)¥2HI-2,

lll’n g&’LM s
11T

] Cl_ FQ(LO; OO)R”"?( 1—

2aR?

)nM(@) (30)

21—-1

To find the phase of the symmetric wave function with odd L it is convenient to expand all functions of r;
involved in Eq. (29) about the point r,. When this is done one sees that in general there will be five terms which
can give rise to an 72 dependence of the transformed wave function. Thus

oM — 278 37 Copr (LM s mm" ) fri(ra)gurv (ra){3 20 7 (Vs VitV ) earsV V™ (02) 5 20 157 e(VeVrt VY 0™ s
st

mm’ st

X72'V 7 (02)} g v (r2) - (W fud)rat - (WritV 7™)earaV Vi (02)+ fri(r2) - (Wgnrv)rat - (W V'Y p™ )rors V7 (62)
5 2 1 il(VaVifnd)ragn v (r2)re VY (02) Vo (02)+5 22 757 o(VaVignrt)rafrr(ro)re VY (02) Vo™ (02) 1. (31)
st st
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The first term arises from the expansion of 7,'¥ ;" and ;'Y ;™ about the point 7, and is easily evaluated to give

2RIV (2041) (21 1)
Fur(R)gw(R) , {( )1(5 )] (X [0=1)(20+1) (2= 1)(2=3) FCirs, v (L:0; 00)

XW(I—2,1, Ly, L; 2, 1) =3 [V (' = 1) (2U+1) (21 — 1) (20 — 3) iC yr_s, 1,(L20; 00)
Lz

XW@E=2,0, Lo, L;2,0)} S Cora(LM ; myms) Va1 () V2,72(0). " (32)

mime
The second and third terms are due to the expansion of f,; and g,/ about rs. They are most simply evaluated by

noting that
r- (Vf1bl)r2:P‘1l 1(7‘2)r' r2,

(33)
I‘(Vgnfll)rzanfp(1’2)1"1‘2.
Using this fact, one can show that the first of these two terms gives
21—l +1)2L+1)7
Fnl(R>gn' v (R)72Rl+l’(2l+1)[ ] C[_.l, 14 (LO, 00)
3
XLV(Z, l""l, L, L, 1, l/) Z Cu,(LgO; OO)I/V(Lle, 1L2>C2L2(LM, 11111’}22) Yg"“(()) YL2m2(®), (34)
Lamymg
and the second becomes
rr—-10QiH-1)CL+10)
Guy (R)fnz(R)sz’“'(Zl'—i-l)[ ] Cr-1,:(L0O; 00)
3
XW,V—1,L, L;1,1) Y Cin(L0;00)W (LL12; 1Ly)Core(LM ; myms) Vo™ (6) V™ (0).  (35)

Lomime

The fourth and fifth terms in Eq. (31) give no contribution. This is easily seen as follows. The product ¥ /¥ ™’
gives, according to Eq. (24), a sum of spherical harmonics—each term in the sum having L; even. However, the
summation over 7 and ' implies that L;=L and hence the terms vanish for odd L.

Thus the sum of Egs. (32), (34) and (35) gives the dependence to order 72 of the symmetric wave function when
L is odd and holds quite generally for arbitrary =, /, »’ and l' For the configuration {0, 1(!—2)} one merely sets
//=1—2 and from Eq. (3) obtains

9 1H20(2143)/2
fnlz[ ] ’

(2141

20-1(20—1)a@-D/2 /  2aR?
Env= (1— ),

[ #(20—3)11 ] 201 (36)
Fnl=0,

Gn’ V=

—da 21121 l)a(ﬂ'”/z]%
-1l wa-3)n

For the antisymmetric states the minus sign applies in Eq. (29) and the analog of Eq. (31), which in this case
gives the dependence of the wave function to order 7, is

erM— 274 37 Crp (LM 5 mm ) fur(re)gnr v (re){x- (WrtY ) ears? V' (02) — 1 (Wi Y o™ )raraV 7 (62)}
H{gw vt (Vfud)ra— fuir (Vgu1)r2} s VY (02) Vo' (62).  (37)
Again the first term arises from the expansion of 7,!¥ ;™ and 7,V ¥ ;™" about r,, and its value is given by

2+ @r+ 1)]

fra(R)gw v (R )[ BRI rRAV=L S Ciny (LM mmy) Y (0) Y Ly (©){[L(20+1) (21—1) ]

mmi Ly

XCr, 1-1(L10; 00)W (I, 1—1, L, L1; 1, ) — (— 1) HI' (20 +1) (2 — 1)Cpr—1(L,0; 00)W (I, U —1, L, L13 1, 1}), (38)
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whereas the second term becomes

[(2z+1)(2z'+1)

3
w i (R)Fni(R)— nl Garyr
6(2L+1) ] {gw v (R)Fai(R)— fri(R)Gw 1 (R)}

XC1p(L0; 00)rRFV+Y 3™ C10(L10; 00)Crza (LM ; mny) V1m(0) Y 4™1(0).  (39)

mm1L1

For the {0/, 1(/—2)} configuration the requisite values of f and g are given by Egs. (36). Substituting these into
Egs. (38) and (39), and using the fact that '=1—2, gives the phase of the wave function and also the numerical
value of some of the coefficients entering into the expansion.

{0l, 2(1—4)} CONFIGURATION

The restrictions on the expansion coefficients [imposed by virtue of the degree of the polynomial, Eq. (21),
multiplying any angular factor] are again listed in Table I.

The phase of the wave function is obtained in a straightforward manner from the equations derived in the
previous section. For symmetric states with even L, the analog of Eq. (30) is

—1.,(21-1)/2 —
Ly e [ @-n

4aR? 40?R"
oL .
- #(2—T7)11l4r (21— 1) (2L+1)

A—5 (2—3)(21—>5)

E
] CI, 1_4(LO; 00)(1— )Rzl"‘iYLM(@). (40)

The signs of the symmetric wave functions with odd L are obtained from Egs. (32), (34), and (35), whereas the
phases of the antisymmetric states are given by (38), and (39). In these equations /' is replaced by /—4, fand F are
given by Egs. (36), and
[21—5(21—3)(21- 5)a<2l—5>/2]% ( 4R 4a’R* )
Ent it = )

A=) -5 (20—3)(21—5)
—8a |’21‘5(21—- 3) (2l—5)a(zl"5)/2r(1 2aR? )
21—s5l (2—=7)1! 20-3/"

Guy=

{14, 2(1—2)} CONFIGURATION

Table I lists the restrictions on the coefficients imposed by the degree of the polynomial, Eq. (21). For reasons
discussed previously, in the table the relationships are listed for the configuration {1(/—2), 2(/—4)}.

The phase of the wave functions is determined easily from the previous equations. For symmetric wave functions
with even L, :

2-la@HDIRED (21 1) (2043) (20—3)
lim o™ —
fioors A=)l 4r@r41)

] Cz, -2 (LO, 00)

ZaRZ) ( 4aR? [ 402R*
1—

XRZZ-2(1_ |
2043 2A—1 (2—1)(20+1)

)YLM(®),

with a phase (—1)3@HL-2),
For the phases of the remaining wave functions, Eqgs. (32), (34), (35), (38), and (39) are applicable with I'=/—2,

and
2HI(243)a@HIE 1 2aR?
= | (3)
! (211! 20+3

(2@ 1)@ DR daR? 4aRE
g’”'*[ (20— 3)!! ] ( -1 @-n@+n/’
— 4 ’2H~1(21+3)a(2l+3)/2 ]
Tardl ma@rn ]
—8a[2-3(20—1)(20+1)a VY f  2aR?
2—1l A(2—3)!1 J (1_2l+1)'

F,
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DISCUSSION

In the preceding section we have given prescriptions
for setting up the wave function for two particles in the
same oscillator level in terms of the relative and center-
of-mass coordinates. The equations derived carry one as
far as the 126 shell. One could, of course, go further but
at present there seems no need for this.

When one deals with two particles in different oscil-
lator levels (for example in the region of 4Zrs® where
odd-parity states with J=4 or 5 lie fairly low and arise
from combining a p; and a gy, particle), the anti-
symmetrized wave function is not an eigenfunction of
H, alone and hence one does not have the convenient
E, operator to work with. In this case one could con-
struct the operator L2+ Ls?, where L2 is the square of
the orbital angular momentum operator. However, as
pointed out earlier, it is somewhat tedious to apply this
operator when it is expressed in terms of relative and
center-of-mass coordinates. Alternatively one could
apply the method we have used to obtain the phases of
the wave function—namely, expand in a Taylor’s series
any function of 7; about the point 7.. However, if one
carries out this procedure it is important to note that
after the expansion it is, of course, only allowable to
replace 7, by R when one is interested in the behavior of
the wave function as  — 0. If it is desired to retain all
powers of 7, one has to replace 7, by R—7/2 and carry
through some additional Racah algebra.

APPENDIX. SOME SPECIAL EXAMPLES

Some simple and almost trivial examples may help to
clarify the method. In order to abbreviate the writing,
we shall introduce the notation

Mnlm= Yzm(0,¢)an(7). (A-l)

1. Two nucleons with n=0, =1 are coupled to spin 2.
—Since the eigenfunction is symmetric in an exchange
of the two nucleons, only even values of / can occur in
the expansion of the function in terms of R and 7. There
are only two such terms and we obtain

1
o1’ (1 uor” (2) =—Ls02* (R) 1o’ (r) — tto® (R) 0 (r) J. (A-2)
V2

That the coefficients of the two terms differ merely in
sign follows from Eq. (16). It is easily checked that the
phase is also given correctly and agrees with the value
imposed by Eq. (25).

If there exists an interaction potential V (r;—r,)
=V (r) between the nucleons, the energy of the state
with L=2 can readily be expressed in terms of the
moments 7, of the potential, where

I,,=fx”V(a‘§‘x) exp(—a?/2)x%dx, (x=abr). (A-3)

It is easily seen, by integrating the square of the wave

183

function times V(r) over R and the angles, that only
two moments /o and I, contribute.

Let us note that for 7 (in which « is replaced by a/2)
the normalization coefficient for the radial part of the
eigenfunction with =0 and any [ is

20? all?
(— —, (A-4)
= /J [QHD)1]
and for R (where « is replaced by 2a) is
2H—2 12
Y,
20/ [+

It is convenient to use, instead of the moments, the
“normalized moments” which are merely the 7, of Eq.
(A-3) multiplied by the square of Eq. (A-4). The factor
at? cancels because Iy, is defined in terms of x rather
than 7. The expressions

2\} 1
()
w/ (2v+1D!

have the property that their value is unity if the po-
tential of interaction is unity. Since the total eigen-
function has to be normalized, one obtains an immediate
check on the expression of the interaction energy in
terms of the moments, namely, that the sum of the
coefficients of the K’s must add up to unity.

In the trivial case (0p).? one obtains

=3(Kot+Ky).

2. Two nucleons with 1=1, n=0 coupling their spins
to zero.—The situation in this case is a little less trivial.
Again only two terms enter into the expansion, and the
ratio of the coefficients can be taken from Eq. (16).
Thus

(A-6)

(A-T)

\/% %(— Dmuo™(1)uer™(2)

=—%[%10"(1@)”00"(7)—MOO"(R)%m“(?)]- (A-8)

The phase is also given correctly since in the limit » — O,
both sides become proportional to +R2. This sign is in
agreement with Eq. (25).

The normalized eigenfunctions #; have the form

w1’ (r) = (4m) 73 (20/m)?

X673 (3—ar?) exp(—ar?/4), (A-9a)
w1 (R) = (4m)~*(a?/2m)?
X 4(6)~}(3— 4aR?) exp(—aR?). (A-9b)

The normalization coefficient of #,°(R) is 2V2 times that
of #®(7) [Eq. (A-5)]. Thus it follows that Eq. (A-8)
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indeed contains only terms proportional to #* and R?, in
agreement with Table I.

The expression for the energy of the state with L==0
is somewhat more complicated. On squaring the wave

function (A-9a), one obtains

1 7203\ 1} 1 1
_(*) {%——~3x2+~——§;x4 , (A-10)
47\ 7 C 3N St
so that
E=3{Ko(1+5) —3K,+3K]
=1[5K¢—6K,+5K 4], (A-11)

where again the sum of the coefficients of the K’s gives
unity.

3. Two nucleons with n=0, =2 coupling their spins
to L=4.—Here the expansion in terms of  and R has
the form

uo22(1)u022 (2) = (l’l/t()44 (R) uooo (7‘) + bM022 (R) %022 (1’)

+auo® (R)ues (r), (A-12)

where we have made use of Eq. (16) by equating the
coefficients of #os*(R)200°(7) and woe® (R)#04* (7).

To determine the ratio a/b we operate on this wave
function with E,. This yields the restriction

V2a+V3b=0. (A-13)

Since the function must be normalized, this implies that
a==+V3/2V2,
b="F%. (A-14)

The proper sign is obtained from Eq. (25) which tells
us that @ must be positive. Thus Eq. (A-12) becomes

1
u-ozz(l)u022.(2) ;/‘2[\/3“044 (R)uod"(r)

—\/714022 (R)Mozz (7’)

+\/3u00°(R)u044(r)]. (A-lS)
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Since the coupling is still rather simple, one can arrive
at the above result without using Racah algebra. Let us
consider the case 7;=r;=R, which implies r=0. At this
point only the first term auo(R)uo®(r) in Eq.
(A-12) is different from zero and is proportional to
sin*@e*®R* exp(—aR?). The left-hand side of the equa-
tion depends on @, ®, and R in the same way. Thus, as
determined from the ratio of the normalization coeffi-
cients,

2=(25/3)a* so a=(3/8)%

Since the eigenfunction has to be normalized, the total
expression can only be that given by Eq. (A-15), except
that the sign of the middle term is undetermined.

That the second term has to be negative can be seen
by evaluating the left-hand side of Eq. (A-12) at 6;=0,
62=m/2, at which point the product functionis zero. In
terms of R and 7 this means that the two azimuthal
angles are equal and the other two angles are both equal
to /2. At this point, then, the intrinsic sign of all three
terms is the same. Since the terms must add up to zero,
the coefficient of the center term must be negative.

The energy of the state with L=4 is then trivially
obtained in terms of the moments as

It is interesting to note that, in all of the energy
expressions considered here, the coefficients of K, and
K .ax have always been the same. This is quite generally
true provided we are calculating pairing energies arising
from states with no radial nodes. On the other hand, if
we were to calculate interaction energies arising from
states with radial nodes, the above equality would fail.

Note added in proof.—After this paper was submitted
for publication we received preprints from two other
groups who have studied this problem [ M. Moshinsky,
Nuclear Phys. 13, 104 (1939); A. Arima and T. Tera-
sawa, Progr. Theoret. Phys. (Kyoto) 23, No. 1 (1960)].
Both of these papers derive recursion relationships be-
tween the expansion coefficients a(n1l1; n2ls), by using
properties of the Hermite polynomials. .



