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It is shown that a resonance of suitable position and width in the J= 1, I= 1 state of the pion-pion system
can bring the dispersion-theoretic calculation of the isotopic-vector part of the nucleon electromagnetic
structure into agreement with experiment. The calculation of the isotopic-vector part of the nucleon form
factors involves in erst approximation the pion form factor and the matrix element for the production by
two pions of a nucleon-antinucleon pair. For the pion form factor we used a semiphenomenological solution
based on the work of Chew and Mandelstam and involving two parameters related to the position and width
of the resonance. For the ~++ —+ E+S amplitude we used the results of the preceding paper.

(1.1a)

1 f"g,v(t')dt'
Gs"(t) =

t' t—(1.1b)

I. INTRODUCTION

HE basic physical ideas used herein are discussed
in an earlier Letter, ' to which the reader is

referred in lieu of an extensive introduction. The
calculations outlined' therein are carried out in this
paper; namely, the dispersion-relation calculations of
the electromagnetic properties of the nucleon carried
out by Chew et al.' and by Federbush et al. ' are modified
to include the effect of pion-pion scattering. Again we
refer the reader to these papers for basic definitions and
discussions of the dispersion-relation approach to the
nucleon electromagnetic structure. As was done in these
papers, we confine our remarks to the isotopic-vector
part of the nucleon structure, rather than face the
complexity of a three-pion intermediate state. Thus
we are unable to say anything about the charge struc-
ture of the neutron.

, For completeness we reproduce here, in essentially

the same notation as in C, the dispersion relations for

the form factors:

where
g; (t) = —(eF *q'/2E)I';(t), (2.2)

I i(t) = (Iis/P ') L(E'/V2m) f (t) —f+(t) $, (2.3a)

I' s(t) = (1/2P ')Lf+(t) —(m/V2) f (t)]. (2.3b)

II. RELATION TO THE PROCESS e+m —+N+N AND
TO THE PION FORM FACTOR

In the preceding paper' partial-wave dispersion
relations were derived from the Mandelstam represen-
tations for the process z.+z ~X+X. The amplitudes

f~~(t) defined by Eqs. , (3.15) and (3.16) of P and
related to S-matrix elements of given nucleon and
antinucleon helicities were found to possess simple
analytic properties in the complex t plane. In order to
relate the two-pion intermediate-state contribution to
the nucleon form factors to these helicity amplitudes in
the J= 1 state, let us state their relation to the
customary 5- and D wave amplitud-es. Using Eq. (B5)
of Jacob and Wickr and Eqs. (3.8), (3.13), and (3.14)
of P, one finds'

f+=&(3/2Pqs)'*$(Ps &2PD)/3], — (2.1a)

f = (3/2Pqs) '$(V2PS+t3D)/3], (2.1b)

where f+——f+I. The relation between ps and pD and
the spectral functions g, v is given by Eqs. (3.18) and
(3.19) of F. Substituting Eqs. (2.1) into these formulas,
one finds

In Sec. VI of P a method of approximate solution for

f+(t) was given. For the problem at hand it is more
convenient to apply this method to the functions
I', (t) defined above, which have the same singularities
in the complex t plane —namely, one branch cut from
—~ to a, where a=4ti'(1 —y, '/4ris') and another branch
cut from 4tis to ~. The division by P ' does not intro-
duce a pole, since the factors in brackets in Eqs. (2.3)
vanish to order p' at p=0. This fact can be seen form
Eqs. (3.15) and (3.16) of P, which imply (remembering

where t = —(P' —P)'= (Ps' —Ps)' —(p' —y)s, the square of

the energy-momentum-transfer four vector.
In Sec. II our method is stated in detail. In Sec. III

the results of our calculation are presented, and in

Sec. IV these results are discussed.

~ This work done under the auspices of the U. S. Atomic
Energy Commission.

$ A visitor from the Argentine Army.
f. Present Address: Argentine Embassy, Washington, D. C.
'W. R. Frazer and J. R. Fulco, Phys. Rev. Letters 2, 365

(1959). Hereafter called L. ' W. R. Frazer and J. R. Fulco, preceding paper [Phys. Rev.
' G. F. Chew, R. Karplus, S. Gasiorowicz, and F. Zachariasen, 117, 1603 (1960)g. Hereafter called P.

Phys. Rev. 110, 265 (1958).Hereafter called C. s S. Mandelstam, Phys. Rev. 112, 1344 (1958) and Phys. Rev.
3P. Federbush, M. L. Goldberger, and S. B. Treiman, Phys. 115, 1741 and 1752 (1959}.

Rev. 112, 642 (1958). Hereafter called F. 7 M. Jacob and G. C. Wick, Ann. Phys. ?, 404 (1959).
' It has been called to our attention that similar physical ideas We use the same notation as in P. The mass of the pion is set

are contained in W. G. Holladay, Phys. Rev. 101, 1198 (1956). equal to unity.
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nates the integral in Eq. (2.5). Therefore the anomalous
moment receives a dominant contribution from a region
in which we can calculate the weight function ImI'2
quite accurately. Since F =1 at 3=0, the large peak in
ImI'2 permits the approximation, accurate to about
10'Po, of setting F =1 under the integral sign in Eq.
(2.5) for rs. In this approximation we have simply

as'(t) = IF-(t) I'Les'(t)]o,
FIG. 1.The spectral function Imp& (t), occurring in Eq. (2.5), for

the nucleon charge structure. The contributions of both the pole
term and the (3,3) resonance (rescattering correction) are shown.

F.(t)
t

dt' ImI';(t')
r, (t) =

„(t'—t)F.(t')
(2.5)

The quantity Imr;(t) is given in terms of pion-
nucleon scattering by Eqs. (2.3) and by Eqs. (5.7) and
(5.8) of P. In the region 0(t(a, the only contribution
comes froDII. the single-nucleon poles in pion-nucleon
scattering:

LImrt(t)]~ ——(m/2P 'q )(2prf'msPsp' 1—
—(P-'/m') (sp' —1)]), (2 6a)

Imrs(t)]&= —(1/4P sq )2wf' m(3ssps 1), (2.6b)

that at p =0, A q and B~ vanish as p~)

f (4m')/mJ= f (t)/p (J+ )] +O(p') ( .4)

In addition to having the same singularities as the
functions f~(t), the I', (t) have the same phase. In
constructing the solution for f+~ given in P, we con-
jectured that in the region 4p, '& t& 16@'the phase of these
amplitudes is equal to the pion-pion scattering phase
shift in the corresponding angular-momentum and
isotopic-spin state. For the amplitudes f+ that enter
into the nucleon electromagnetic structure problem this
phase condition is as well founded as the dispersion-
relation approach itself. This statement follows from
the reality of the g; s, which is in turn implied by the
reality of the G s.' Now, in the region 4p, '&t&16p' the
only contribution to the weight functions g, comes from
the two-pion intermediate state, so that Eq. (2.2) is
exact. Therefore if g;v is real, then r, (t) must have the
same phase as F (t), which can be proved to be the
pion-pion scattering phase shift in the 1=1,I=1 state
(hereafter designated b)." Then the method described
in L and P allows us to write, in the approximation of
neglecting all but the two-pion intermediate state,

LImrs(t)]. ~——— ds' f(p /q )sa&'-'
167rp q & (~p)'

+br'-& (m/2) (3s'—1)), (2.7b)

where ar and b& are given by Eq. (5.10) of P. As pointed
out in P, the polynomial expansion given in Eq. (5.10)
converges only for t& —26. Ke shall evaluate this term
in the same approximation as is used in C and F; i.e.,
setting all partial cross sections equal to zero except for
the (3,3) state, and approximating the latter by a delta
function

I
see Eq. (16.3) of C]. In this approximation

the corresponding ImI';, which are nonzero from
—~&t& —11, are shown in Fig. 1 and Fig. 2.

The threshold for inelastic processes occurs at

0.2-

where Lgsr(t)]p means the weight function calculated
with pion-pion scattering neglected, as in C and F.

The situation is not so favorable for the charge
structure. The narrow peak in ImI'~ does not dominate;
the more distant contributions are comparable. There-
fore our calculations are not so reliable for the charge
structure as for the anomalous magnetic moment and
its structure.

In the region —9.36&3&0, there is an additional
contribution to ImI"; from elastic pion-nucleon scatter-
ing (often called the rescattering correction):

m r L~')

LImr, (t)].~= ~ ds'
8'Irp q (~v) '— —

X((P /q )sat&-&+brt-&(m/2)I (3ss—1)
'—(P-'/m') (s'—1)]) (2 7a)

where the subscript E indicates that these terms come
from the single-nucleon intermediate state in pion-
nucleon scattering. These terms are plotted in Figs. 1
and 2. Notice that the anomalous-moment weight
function has a large peak close to t=4p', which domi-
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1'D. R. Yennie, M. M. Levy, and D. G. Ravenhall, Revs.
Modern Phys. 29, 144 (1957), Appendix.' See, for example, Appendix II of S. Fubini, Y. Nambu, and
V. Wataghin, Phys. kev. 111, 329 (1958).

Fzo. 2. The spectral function Iml"2(/), occurring in Eq. (2.5),
for the nucleon anomalous magnetic moment. The contributions
of both the pole term and the rescattering corrections are shown.
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I,= —9.36. The exact expression for Iml'; consists of the
two terms given above, plus all the possible inelastic
processes, i.e.,

where the index e runs over all possible intermediate
states in pion-nucleon scattering, and where the various
thresholds t„are given by Eq. (5.3) of P. All these terms
except the single-nucleon pole and elastic terms are
ignored in our treatment, according to the "effective-
range" approximation of neglecting distant singularities.
One might expect a priori that the dominant contri-
bution for small t to the functions I";(/) comes from the
pole term, since its branch cut lies so close to the region
of interest, t&~4p, '. This is indeed the case for the
anomalous magnetic moment and its structure.

Looking back at Eq. (2.5), we see that if we knew
the pion form factor F (/) we would have an explicit
solution for F;(t), and therefore for the isotopic-vector
form factors G,v(t) of the nucleon. If the pion-pion
scattering phase shift b in the J=1, I=1 state were
known, one could calculate an approximate expression
for F (/), valid for small t. The procedure of Sec. VI of P
gives for this quantity

p (~) &ul'(ti (2.9)

where Ni'(/) is defined in terms of 8 by Eq. (6.2) of P
A theoretical treatment of pion-pion scattering by

Chew and Mandelstam, "using the method of partial-
wave dispersion relations, is now in progress. Consider
their Eqs. (V.23) to (V.25) of reference 11 for the
P-wave amplitude 2i(v)/i, where v=4k p,'. Their—
method of solution involves expressing the amplitude
as a ratio of numerator and denominator functions, the
latter being a real analytic function except for the
physical branch cut for v& 0, the former having
singularities only on the negative real axis. Now, since
the pion form factor has the same right-hand branch
cut as A i, and has the same phase on this cut (neglecting
four-pion and higher intermediate states), we can
identify the form factor with the reciprocal of the
denominator function"; i.e.,

F [t(i)j=D,(—1)/D, ("). (2.10

This identification satisfies the physical criterion that
Ii =1 for 8=0.

In the treatment of Chew and Mandelstam the
numerator function is expressed as an expansion in
terms of all angular-momentum states of pion-pion
scattering. The resulting set of coupled nonlinear
integral equations has not yet been solved. We shall
therefore adopt the more approximate and phenomeno-
logical approach outlined in L; namely, we approximate
the eff'ect of the left-hand branch cut by a pole of

"G. F. Chew and S. Mandelstam, Lawrence Radiation Labora-
tory Report UCRL-8728, April, 1959 (unpublished).' G. F. Chew, Lawrence Radiation Laboratory (private
communication, 1959),

appropriate position and residue,

Ei(P) =X/(P+Pp), (2.11)

where ) and vo will be determined by comparison with
experiment. Equations (2.10) and (2.11), together with
Eq. (V.25) of reference 11, give

v,+1—(2/m)r
X (2.12)

i,—v[1—&n(v) ]—i8( p) I'[v'/(i +1)]&

where, for v)0 and p& —1,

and, for —1&v(0,

The constants s„and I' are related to the position and
residue of the pole by the equations

r=x/[)n( —vo) —1$, i,/P=io/&. (2.14)

If v„and I' are positive and not too large, the real
part of the denominator in Eq. (2.12) can vanish,
corresponding to a P-wave resonance in pion-pion
scattering. In this case, v„ is approximately the position
of the resonance and I' is related to its width. We show
in the next section that such resonant solutions do
indeed result in good agreement with the nucleon-
structure experiments.

III. RESULTS

The integration of Eqs. (2.5) and (1.1) has been
performed with the aid of an IBM-650 computer. The
results are given in this section. It can be seen from Kq.
(2.3) and the limitations imposed by unitarity on the
functions f~(t) that these integrals should converge if
the pion form factor given by Eq. (2.12) is used.
However, the polynomial expansion we have made in
treating the rescattering correction, and our approxi-
mate solution, Eq. (2.5), both violate the unitarity
restrictions. This is, of course, because our treatment
is supposed to be valid only at low energies. Therefore
we cut off all integrations and regard as reliable only
that portion of our results which turns out to be
insensitive to the position of the cutoff.

A. The Nucleon Anomalous Magnetic Moment

Let us first consider the dominant contribution to the
anomalous magnetic moment, which comes from the
pole term, Eq. (2.6), as a function of the two parameters
v„and I'. Over the range of these parameters that we
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FIG. 3. The isotopic-vector anomalous magnetic moment
structure as a function of the position of the resonance. The width
is held 6xed at a value 7=0.4, which produces agreement with
the observed moment. Experimental points marked "2"are those
at which two measurements have been made, in order to determine
Ii& and F2 separately. The errors shown include the uncertainty
in the ratio Fz/Fz. The curve labeled F =1 is the prediction of
the dispersion relations in the case of no pion-pion scattering.

TABLE I.Pole and rescattering contributions to py as functions
of cutoff (expressed in pion mass units).

considered, it turns out that the anomalous moment
fzv depends only on I', whereas the radius (rs')v of the
anomalous-moment distribution is controlled by v„.
A value of I'= 0.4 gives p, v ——1.83e/2zzz, in agreement with
experiment. Raising F to 0.5 decreases pp to 1.34. For
I'=0.4 the dependence of the form factor Fsv(f) on z „
is shown in Fig. 3. For comparison, the prediction of the
dispersion relations in the case of no pion-pion scattering
is also shown. The heavy curve, which fits the experi-
mental points best, has v„=1.5 and corresponds to
(rss)v ——0.55 (rms radius 1.05&(10 " cm), somewhat
higher than that obtained with the models of Hofstadter
et al." The resonance positions v„=2.5, 2.0, and 1.0,
which give reasonable Gts to the data, give rms radii
of 0.91, 0.97, and 1.13&(10 "cm, respectively.

In all the above results, the cutoff on the integration
in Eq. (2.5) over the left-hand branch cut was set
near t,= —26, the point beyond which the polynomial
expansion in Eq. (2.7) fails to converge. The value of
the rms radius and of Fsv(f) are practically independent
of the cutoff position, which we allowed to vary over
the wide range —4m'~&t&&—8. Moreover, this extreme

variation in the cutoff produced a deviation in py of
less than 25% from the value fzv=1.83 (see Table I).
None of the quantities calculated shows any appreciable
sensitivity to a variation of the cutoff of the integration
in Eq. (1.1) over the range zzz'&~t&~ 16m'. Furthermore,
over 80% of the calculated fzz comes from below the
threshold at t= 16 of the lowest neglected intermediate
state.

The contribution of the (3,3) resonance in pion-
nucleon scattering to py, shown in Table I, is negligible
for a cutoff around the point I,= —26. This contribution
becomes appreciable only when the cutoff is moved
extremely far out into the region of divergence of the
Legendre polynomial expansion. The large rescattering
corrections obtained in F can now be seen (as was
already surmised in F) to arise from this divergent
expansion. Whereas more sophisticated methods of
analytic continuation of the pion-nucleon scattering
amplitude than we have used will be necessary to
evaluate the rescattering corrections precisely, our
method indicates that they are not large.

TABLE II.Variation of calculated nucleonic charge and rms charge
radius with cutoff (expressed in pion mass units).

Calculated nucleonic charge,
Gzv(0)/e (should equal z)

Normalized
to calcu- Normalized

Left-hand lated charge to observed
cutoff (z ') char8e (z ')

From
pole
term

Rescattering
correction

—8—32—100—4m'

0.58
0.54
0.51
0.50

0.17
0.40
0.91
1.34

0.15
0.37
0.89
1.34

~ ~ ~

0.35
0.65
0.66

B. The Nucleon Charge Structure

The interpretation of our results for the charge
structure is less straightforward. If one calculates
G,v(f) from the subtracted form of the dispersion
relation, Eq. (1.1a), the result varies wildly with
change in the position of the cutoff on the integral in
Eq. (2.5), and is therefore unreliable. However, Chew
has raised the possibility of using the unsubtracted form
of the dispersion relation, "

Left-hand
cutoG

Pole contribution Rescattering
to py correction to py

{in units of e/2zzz) (in units of e/2zzz)

1 f "g, (t')dt'
Grv(t) =—

~~

m ~4„& t' —t
(3.1)

—8—32—100—4m2

1.34
1.83
2.20
1.84

~ ~ ~

—0.05
0.39
0.60

"We are indebted to Dr. S. D. Drell and Dr. F. Bumiller for
providing us with a graph from which the experimental points in
Figs. 3 and 4 are taken. For a review of the experiments see R.
Hofstadter, F. Bumiller, and M. R. Yearian, Revs. Modern
Phys. 80, 482 (1958).

Whereas unitarity has guaranteed the convergence of all
the integrals we have calculated up to this point, it
gives us no such assurance for Eq. (3.1).If nevertheless
one assumes that this integral does have meaning,
one can calculate the nucleonic charge in terms of the
spectral functions. If we then calculate Gtv(f) from
Eq. (3.1) and normalize to the cafczzlated rather than

~4 Geoffrey F. Chew, University of California Radiation Labora-
tory Report UCRL-8194, February, 1958 (unpublished).
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to the observed charge, we 6nd that the nucleon charge
structure is practically independent of the cutoR, since
the shape of gtv(t) is determined almost entirely by
F.P)

Whereas the integral in Eq. (2.5) over the left-hand
branch cut receives important contributions from
distant regions and is unreliably calculated, the integral
in Eq. (3.1) is dominated by the low-energy region
because of the factor ~IF ~' in giv. Therefore the un-

reliability of the left-hand integration is rejected
primarily in the normalization of g&~ and not in the
calculated charge radius.

We find that to within 5%, Fi~(i)=Fsv(/), a con-
clusion which agrees with experiment within the large
uncertainties involved. The variation of the rms charge
radius with the left-hand cuto8 is shown in Table II for
the calculations with subtracted and unsubtracted
dispersion relations. Also shown are the calculated

I.o l. -

b)i
.Li,
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30—
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20—

IO

0
l2 20 28

t, in units of p2

follows that
Fi"=Fsr (b 1). — (3.2)

It is known experimentally that at t= —9 and 3= —19,
b= 1.2~0.2 "

Fzo. 5. The square of the magnitude of the pion form factor
for t)~4, for I'=0.4 and for three positions of the resonance.
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C. The Pion Form Factor and Pion-Pion Scattering

The parameters v„=1.5 and F=0.4, which give the
best 6t to the isotopic-vector anomalous magnetic
moment and its structure, imply a pion electromagnetic
form factor as shown in Figs. 5 and 6, calculated from
Eq. (2.12). From Eq. (2.12) one can calculate the
expression for the pion radius, valid in the approxi-
rnation vo))1,

0.2
0

I

l6
I

24

—t {in units of p. }

I

32 1—(g/3~)r
(r') =

2 .„+1—(2/~) r
(3.3)

FIG. 4. A comparison of the calculated isotopic vector form
factors LFF(t) =FP(t)7 for 7=0.4 with the experimental proton
form factors, under the assumption (see text) that Fp(t) =Fp(t).
This comparison is probably meaningful only for small values of t.

l.5

nucleonic charge and the rescattering correction thereto.
As in the case of the anomalous-moment structure, the
rescattering corrections do not have a large eGect on
the charge structure if one normalizes to the calculated
charge.

If one accepts the result that Fi~(t)=Fs~(t) and
uses the fact that the neutron charge radius has been
shown experimentally to be extremely small, one can
conclude that Fi"(/) =Fs"(t) for small t. The resulting
comparison with experiment is shown in Fig. 4. Higher
values of v„are favored by this comparison than by
Fig. 3, but the theoretical situation is not as clear.

On the other hand, the result Fi~(t) =Fs~(/) can be
combined with experimental information to set a
limitation on the charge form factor of the neutron.
We assume Gs (/)=0, or Gs"(/)= —Gs"(/), since Gs (0)
= —0.06 e/2m, and define Fi"(3)/Fsr (3) = b(i'). Then it

I.O

b.5

0
-32

I

-24
I I I I

—l6 —8
t, in units of p2

I

0 4

"R.Hofstadter, Stanford University (private communication,
1959).

Fzo. 6. The pion form factor in the region in which it is measur-
able in principle by electron-pion scattering experiments, for the
parameters v, =1.5 and F=0.4 that give the best 6t to the
anomalous-moment structure.
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For all values of the parameters investigated, this

approximation is an excellent one; i.e., for v„=1.5 and
r =0.4 pp=652. The pion radius corresponding to these
parameters is (r ')=0.44.

Since the pion form factor is closely related to the
pion-pion scattering amplitude in the J=1, I=1 state
l

see Eqs. (10) and (11) of Lj, one can calculate the
cross section which would be implied by the above
results if there were no scattering in other states. The
total cross section for m+ —m scattering calculated
under these hypotheses is shown in Fig. 7.

FIG. 7. The total cross section for ~+—'If scattering which would
correspond to I'=0.4 and two values of v, if there were no scatter-
ing in states other than J=1, I= 1.

IV. CONCLUSIONS

We conclude that a resonance in the J= 1, I= 1 state
of pion-pion scattering characterized by the position
v, =t..5 and the width 7=0.4 would give complete
agreement with experiment for the isotopic-vector
anomalous magnetic moment and its structure, and,
with some ambiguity, for the proton charge structure.
The position and width of the resonance are not very
precisely determined; furthermore, the contributions of
higher-mass intermediate states we have neglected will
certainly have some effect on the parameters. It is,
however, di%cult to imagine a mechanism other than
the proposed resonance that would resolve the dis-
crepancies which existed between dispersion theory and
experiment. "
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Cross sections for electron-neutrino and electron-antineutrino scattering are given as a function of recoil
electron energy, averaged over a reactor spectrum of antineutrinos.

' 'F it ultimately becomes feasible to observe elastic
& - electron-neutrino and electron-antineutrino scatter-
ing, the observation must depend on the ionization
produced by the recoil electron, The following note esti-
mates relevant cross sections and energy distributions. '

The conventional assumption of a universal Fermi
interaction with lepton conservation and two-com-

*Present address: Australian National University, Canberra,
A.C.T., Australia.

f Assisted by the Air Force Office of Scientific Research.
$ Alfred P. Sloan Research Foundation Fellow.
'Only elastic scattering is considered; the inelastic process

8+e —+ IJ,+P has a threshold of order p2/2m=10 Bev, and it is
dificult to imagine sources for such energetic neutrinos and anti-
neutrinos with measurable intensity.

ponent neutrinos would yield a neutrino-electron
interaction of the form

&=g(4.7.(1 7e)4'.) (4'.7.(1 7—S)4")—
=a(0.7.(1—7 )4.e){4.7.(1—7 )4.e) (1b)

f(4' 7.(1 7)4'.) &—0'.7(1+7—)0'.)(1-)-
Fierz transposition leads from Eq. (1a) to (1b); and
Eq. (1c) is appropriate to antineutrino-electron scatter-
ing, as would be induced by the Aux from a reactor. The
cross section from Eq. (1c) for an electron at rest is

da. = (8/Ir) (gm)'cV '(1V+1—E) (E—1)dE, (2)


