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The problems of pion-nucleon and nucleon-nucleon scattering and nucleon electromagnetic structure
involve the matrix element for two pions producing a nucleon-antinucleon pair. By use of the Mandelstam
representation we are able to write dispersion relations for the partial-wave scattering amplitudes of this
process. In the low-energy range these dispersion relations can be transformed into integral equations whose
kernels are simply related to pion-nucleon and pion-pion scattering amplitudes.

I. INTRODUCTION

METHOD for calculating the behavior of sys-
tems of strongly interacting particles has been

developed recently by Chew and Mandelstam, ' and has
been applied by them to the problem of pion-pion
scattering. Their procedure is based on Mandelstam's
generalization of dispersion relations, ' which prescribes
a method of analytic continuation of scattering ampli-
tudes into the complex plane as a function of both the
energy and momentum-transfer variables. This simul-
taneous extension of both variables into the complex
plane permits one to write dispersion relations for
partial-wave amplitudes. Applying the unitarity con-
dition and using the "effective-range" approximation-
i.e., determining the behavior of an analytic function by
considering only near-by singularities —one can trans-
form these partial-wave dispersion relations into a
system of integral equations.

We have applied this method to the calculation of the
matrix element for the production of a nucleon-anti-
nucleon pair by two pions. This matrix element enters
into many of the problems of strong interactions, such
as pion-nucleon scattering and photoproduction, the
nucleon-nucleon interaction, and the nucleon electro-
magnetic structure. In pion-nucleon scattering the
structure of the Mandelstam representation forces one
to consider simultaneously the three processes shown in
I"ig. 1. In the nucleon-nucleon interaction problem,
knowledge of the process 2r+2r~E+E will permit
calculation of the two-pion exchange contribution. In S+3+(=22I22+ 2pi2. (2.2)

the nucleon electromagnetic structure this process in the
state of total angular momentum one, together with the
pion form factor, dominates the isotopic vector prop-
erties. This application will be discussed in the follow-

ing paper.
In Sec. II the kinematics and isotopic spin analysis

are treated. The partial-wave decomposition is carried
out in Sec. III. We follow there the work of Jacob and
Wick, 4 in terms of helicity states rather than orbital
angular momenta. In Sec. IV the Mandelstam repre-
sentation and its properties are described, and in Sec. V
they are used to study the structure of the singularities
of the partial-wave amplitudes. In Sec. VI the dispersion
relations are transformed into integral equations and a
method of approximate solution in the low-energy
(unphysical) region is given.

II. KINEMATICS

Let the four-vector momenta of the pions be gl and q2,
and those of the antinucleon and nucleon be Pi and P2,
respectively LFig. 1(a)].Define the variables'

(qi+q2)'=4—(q'+p') =4(P'+~2), (2 1a)

s= —(pi —qi)'= —p' —q'+2pq cosg, (2.1b)

3= —(pi —q2)'= —p' —q' —2pq coso, (2.1c)

where q and p are the magnitudes of the pion and
nucleon momenta, and cos8= p2 q2/Pq, all in the
barycentric system. Momentum conservation leads to
the relation
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Fn. 1.The three channels of the two-nucleon, two-pion problem.

The Lorentz invariants defined by Eqs. (2.1a, b, c) are
just the squares of the energies in the barycentric system
of the corresponding process in Fig. 1(a), (b), (c). The
structure of the Mandelstam representation' forces us to
consider these three processes simultaneously.

The 8 matrix for the process 2r+2r ~ E+E can be
written

SfI= (22I) $6 (pl+p2 ql q2) r fbi
(4+I+2oi lai2)*This work was performed under the auspices of the U. S.

Atomic Energy Commission.
t A visitor from the Argentine Army.
' G. F. Chew and S. Mandelstam, University of Californi

Radiation Laboratory Report UCRL-8728, April 15, 1959 (un
published).' S. Mandelstam, Phys. Rev. 112, 1344 (1958) and Phys. Re
115, 1741 and 1752 (1959).

2 W. R. Frazer and J.R. Fulco, Phys. Rev. Letters 2, 365 (1959).
a 4 M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959}.

~ Notation: We use the metric such that p.q=p q —popo. The
Dirac equation reads (iv p+m)ii=0, (fy p m)ii=0 The spi.no—rs.

v. are normalized to uN =1, 8v= —1.The nucleon mass is m, the pion
mass is Ii. The coupling constant g„ is defined so that g„2/42. =14.
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Ap bp A——(+)+,'$rp, r-]A( &,

and similarly for Bp . The Pauli principle requires

(2 6)

A(+)(s, g, t) =&A(+)(e,s, t), (2.7a)

B(+'(s,s, t) = WB(+) (s,s, t) . (2.7b)

Note that, according to Eq. (2.1), s ~ e means
cos8~ —cos8. It is also evident from the symmetry
properties of the (+) amplitudes that they are pro-
portional to the two possible eigenamplitudes of total
isotopic spin. As shown in the Appendix,

A(")= (1/g6)Ao A( ) = sr A'. (2.S)

III. ANGULAR-MOMENTUM DECOMPOSITION

In the barycentric system the diGerential cross section
for or+a -+ f)/+E is

d /«=Z(P/q) I( /2E)( "'/4 ) I', (31)
where P represents a sum over final spin states. The
quantity r, defined by Eq. (2.4), can be written as a
matrix element between Pauli spinors, x, in the form

r(+) = )( t (h (+ IT ' p+ h (+)(r ' q) )(p,
where

where Ej and E2 are the antinucleon and nucleon
energies, co~ and A&2 are the meson energies, and

r~, u(p——,)T(&(p,). (2.4)

The decomposition of T into spin-independent functions
has been carried out by Chew, Goldberger, Low, and
Nambu for pion-nucleon scattering. ' Making the substi-
tution qs~ —

qs, pi-+ —pi, we find for the process
or+or —+ E+N

T= —A+-,'sy (qi —qs)B, (2.5)

where A and 8 are functions of s, 8, and t, and matrices
in isotopic spin space. As in pion-nucleon scattering, the
most general form consistent with charge independence'
1S

with helicity X and an antinucleon with helicity ) . We
have suppressed the superscripts (+) in Eq. (3.5).
Equations (31) and (44) of reference 4 then give

&++=&--=(1/q)Z(~+2) T+ Ps(co») (3 6)

Ts= s(q/P)—:Ss. (3.S)

Our next step is to relate the T~ to the invariant
functions A&+) and B(+'. This can easily be done by
choosing the s axis along p and evaluating Eq. (3.2) for
the helicity states. We find

8++——(ie' m/SwE)(hip+hsq cos8),

7+ = (ie' m/SvrE)hoq sin8,

(3.9)

(3.10)

where the arbitrary phase o., arising from the relation
between Eqs. (3.1) and (3.5), will be adjusted later.
Introducing Eqs. (3.9) and (3.10) into (3.6) and (3.7),
and using the orthogonality properties LEq. (23) of
reference 4], we obtain

ie'~my
T+s(1)= I dx Ps(x)

SwEp

&&$p'hi(x)+pqxhs(x)], (3.11)

se'"mq' (J+1q &

T ~(1)=
~

—

) j~ dxh (x)
SrrE E J

')&, LxPJ (x) Ps/ (x)], (3.12)—

1 J+-,'
F+ = —5 +=—g T ~ sin8Pq'(cos8), (3.7)

q ~ PP+1)]l
where we have used the abbreviation & for ~~. The
scattering amplitudes T+~ for the state of total angular
momentum J are related to the corresponding S-matrix
elements as follows:

hi'"= —(1/r)s)(A")+LB("/(~+E)]P q), (3 3) where x= cos8. Let us now define new amplitudes

hs(+) = (E/m) B(+&. (3.4)

We have denoted by E the nucleon total energy in the
barycentric system; i.e., $=4E'.

We could now write partial-wave amplitudes corre-
sponding to each value of the orbital angular momentum
l of the nucleon-antinucleon system; however, as we
shall show later, the amplitudes introduced by Jacob
and Wick4 have simpler analytic properties. Therefore
we shall carry out the partial-wave decomposition by
their method, de6ning

do/«=/(p/q) ~
P()),)),) ~', (3.5)

f+'= (p/q) LE/(pq) ']T+'

f '= (p/q) 9/(pq)'-]T-'

(3.13)

(3.14)

( po m
f+'(() =

I

— —A z+
Ss- ( (Pq)s (25+1)(Pq)s '

Xf(&+1)Bs+r+&Bz i] (, (3.15)

which will be shown in Sec. V to have simple analytic
properties. Using Eqs. (3.3) and (3.4), we finally find

where P(X)),) is the amplitude for production of a nucleon

s to G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambn,
Phys. Rev. 106, 1337 (19S7).

(3.16)(B,r 1BJ+1)y-
(p )' '
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where we have defined 95

1

(As&+& Bs&+&)= t dx Ps(x) (A&+&; 8&+&). (3.17)

The arbitrary phase cr has been adjusted in Eqs. (3.15)
and (3.16) so that f~s are real when A and 8 are real.
Notice that the Pauli principle, as expressed by Eq.
(2.7), implies that for J even,

A ~(—) —g~(+) —0

whereas for J odd
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IV. THE MANDELSTAM REPRESENTATION

We assume that the invariant functions A(+) and
8(+) satisfy the spectral representation proposed by
Mandelstam'
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FIG. 2. Boundary curve of the spectral functions b»(s, t), a13(s,t).
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B&~& (s,S,t) =
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8&+& (s,s,t) = g
2
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+
m2 —S m2 —8 X ~ (~+„~~

bi&+& (s', t)
ds

+—, ds ds
(s' —s) (s' —8)

~00

~ ~( +w)'

bs&+& (s', t)
ds' . (4.6)

bi3&+& (s', t')

(s' —s) (t' —t)

1 &
" t." b23&~i (s', t')

+—,i db' dt' — . (4.1)
~' "&~.i "4.* (3'—8) (t' —t)

a»&+& (x,y) = mais&+& (y,x),

b„&+&(x,y) =W his&+& (y,x),

' (x y) =~~»'" (x y)

b, s&+& (x,y) =Wb»&+& (x,y).

(4.2)

(4.3)

(4.4)

(4 5)

As shown by Mandelstam, one can easily derive from
Eq. (4.1) one-dimensional dispersion relations with
either s, 8, or t held fixed. In order to derive dispersion
relations for partial-wave amplitudes for m+ a ~X+X,
we need the representation which makes explicit the
dependence on the momentum transfer (s) for fixed
energy (t):

Although the variables s, 8, and t are related by Eq.
(2.2), we shall often write them explicitly in order to
show the full symmetry of the representation. The
functions A (+) satisfy a similar representation, excluding
the erst two terms. Ke shall not consider the possibility
of subtraction terms in Eq. (4.1), since we shall use the
representation only to determine the location of singu-
larities in the partial™wave amplitudes. The spectral
functions b;;(+' and a,,' are not independent; it
follows from Eqs. (2.7) that

Then Eq. (4.1) shows

1 &

" brs&+& (s', t')
b,&+&(s', t) =- dt'

~ ~4„' t' —t

1 ~" his&+& (s',s')

m "& +„&* s'+s'+t 2m' 2ti'— —

bs&+& (s', t) =—
(+) (s' t')

~J4 2

b &+&(s',s')pQO

ds' . (4.8)
x ~ &~~)' s +s +t 2m —2p—

Using Eq. (4.3), one finds

b, &+&(s',t) = Wb, &+&(s',t). (49)
Relations similar to Eqs. (4.6-4.9) hold for A&+&, but
without the pole terms and with the W inverted.

The spectral functions b;, , a;; are nonzero in regions
whose boundaries have been calculated by Mandelstam. 2

For completeness we reproduce his results here. The
spectral functions 6» and a» are bounded by the
following two curves (see Fig. 2):
I. (t—4p') Ls—(m+2&u)']Ls —(m —2&i)']

—16&u4 (s+3m' —3&u') =0 (4.10a)

II. (t—16ti') Ls—(m+t&)']Ls —(m —t&)']
—64ti4s=0. (4.10b)
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V. ANALYTIC PROPERTIES OF THE
PARTIAL-WAVE AMPLITUDES

Let us now use the analytic properties of the invariant
functions A (+) (s,B,t) and B(+)(s,s, t), as given in Sec. IV,
to make an analytic continuation into the complex t
plane of the partial-wave amplitudes f+s(t) defined by
Eqs. (3.15) and (3.16).In order to do this let us consider,
for example, the term Az/(pq)s. Using Eqs. (3.17),
(4.6), and (4.9), we find

where

AJ(t) 1
ds' a, (s', t)Is (s', t),

(pq)' ~ "(-+.)
(5.1)

~1 1I,(s', t) =
~~ dx I' (x) ~~

(pq)s & i (s'+p'+q' 2pqx—
(—1)'

+ . . . I (5 2)s'+ p'+q'+2pqx)

By inspection of these two equations and Eq. (4.7),
it is a straightforward task to determine the nature and
location of the singularities of As/(pq) ~. The vanishing
of the denominator of the first term in Eq. (4.7) pro-
duces a series of branch cuts on the positive real t axis
associated with the thresholds of the possible inter-
mediate states between two pions and a nucleon-anti-
nucleon pair. The lowest occurs at t = (2p)', the next at
t= (4p)', and so on. The threshold of the physical region
comes at t= (2m)'. The apparent singularity from the
vanishing of the second denominator in Eq. (4.7) was
introduced artificially through the separation into par-
tial fractions of one of the terms in Eq. (4.1). This
singularity can easily be seen to vanish after the
integration in Eq. (5.1) is performed.

The other two sets of branch cuts, arising from the
vanishing of the denominators in Eq. (5.2), are coinci-
dent and lie on the negative real axis. It can easily be
shown that the branch cuts extend from t= —~ to

The bounding curves for b23 and a23 can be obtained
from these equations by changing s to B. The spectral
functions b» and a» are bounded by7'

[B (m+—2ts)'][B—(m —2ts) s][s—(m+ p) s)

&([s—(m —p,) j—16SBm'ts'

+16t's(m' p—,')'(s+B m—' 2—p') = 0s (4.11)

and by a second curve obtained by interchanging s and
B Fr.om Eqs. (4.10) and (4.11) it is evident that the
regions in which the spectral functions are nonzero are
asymptotically bounded by the lower limits of integra-
tion in Eq. (4.1).

1 t" Imps(t')dt' 1 (
" Imf~~(t')dt'

f+'(t) = ' -+-', (5.4)
t' t ie s—r "—4om t' —t—ie

where a=4ps(1 —tss/4m').
For J=O, f '(t) =0, from Eq. (3.16). This is obvious

physically from the fact that f ~ refers to states in
which the projection of J along y is unity. Moreover, the
quantity f+o/P' remains finite at P=O and has the
necessary asymptotic behavior as t ~ .

Our next task is to evaluate Im f~s(t) on the left-hand
branch cut (—oo &t&a). In this region ai(s', t) and

bi (s', t) are real [Eq. (4.7)j, and we find, from Eq. (5.1),

As(t)
Im

(pq)' "(-+.)'
()

ds' ai(s',t), (5.5)
(p-q-)"'

where

Since s' is the energy variable for pion-nucleon scat-
tering, Eq. (5.3) means that there will be a branch point
in t arising from each threshold for the states which can
be produced by a pion and a nucleon. Therefore the first
branch point, lying at t=0, corresponds to the lower
limit of integration in Eq. (5.1). The second, corre-
sponding to the threshold for pion production, occurs at
t= —10p,'

It should further be noticed that Iq(s', t) contains no
singularities other than those arising from vanishing
denominators in the Mandelstam representation. Since
it can easily be shown that the integral in Eq. (5.2)
vanishes at p =0 or q

=0 as (pq) ~, no pole is introduced
by dividing by this factor. Finally, since only even
powers of pq are present in Iq(s', t), no branch points
arising from kinematical factors occur.

Similar considerations hold for the terms proportional
to Bs in f+~. However, the pole terms in Eq. (4.6)
produce an additional branch point at t =4ts'(1 —p'/4m') .
Thus we can conclude that the functions f~~(t) are
analytic in the complex t plane except for branch cuts on
the real axis extending from —~ to 4p, '(1—ts'/4m') and
from 4p' to ~.We remark here that the amplitudes fzs
corresponding to definite helicities are clearly more con-
venient than the usual amplitudes corresponding to
definite orbital angular momenta, since the latter con-
tain additional singularities of a purely kinematical
origin (such as factors of E).

En order now to be able to write dispersion relations
for the partial-wave amplitudes we must consider their
asymptotic behavior. The unitarity condition tells us
that Tzs(t) are bounded as t —+ ~. Therefore we see
from Eqs. (3.13) and (3.14) that as t ~ oo, f ~(t) goes
to zero at least as fast as t s, and f+s(t), as t s+&. Guided
by these considerations we write for J/0

t= [4m'ts' —(s' —m' —p,')'j/s'. (5 3)

s' tsVote added sss Proof. We thank Dr. James Ba—ll for suggesting
this formula, which is a correction of Eq. (4.3a) of reference 2.

I.(t) =m'+ts'+2p q t/2, —

p = (m' t/4)'*, q
= (p,

'——t/4),
(5.6)
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Im f~~(t) =- 7rgr'mspP j( ps)

Sir(p q )~

L(t)

+8( t) ~— ds' L(p /q )ai(s', t)

+msbi(s', t) jPJ (s), (5.7)

LJ(~+1)]i
Irnf ~(t)=

Sm(2J+1)(p q )~

X gw, 'lP xi+( s) p—Ps i(sp)]

L(t)

+tl(—t) ) ds'bi(s')t)l PJ+i(s) PJ-i(s)3 ~ (5 8)
(m+tt )

'
where

sp= (m' —g
'—p ')/2g p .

As we have stated previously, the left-hand branch
cut is associated with pion-nucleon scattering. From
Eqs. (4.6) and (4.9) it follows, for t&0,

ai'+& (s', t) = ImA t+& (s', t), (5.9)

and the same for b, . Although in Eqs. (5.7) and (5.8) the
energy variable s is in the physical range for pion-
nucleon scattering, the upper limit L(t) is such that
cosp& —1, where p is the pion-nucleon scattering angle
in the barycentric system. Therefore we must make an
analytic continuation from the physical region. A well-
known method of continuation is to expand ImA (s,t) in
Legendre polynomials':

l
art+& (s,t); bit+& (s,t)j

j (W+m, ; 1)
P LImfi+t+&P&+i'(cosp)

E,+m

(W—m; —1)—Imfi t+'P i i (cosf)$— Q P i (cosf)

$ g
2 p 2

2g p

A relation similar to Eq. (5.5) but including the contri-
bution of the pole terms holds for Bg(t), leading to

function f(cosp) that is analytic inside an ellipse with
foci at —1 and +1 can be expanded in Legendre
polynomials, we must And the position of the nearest
singularity in cos9&. This singularity can be seen to come
from the vanishing of the denominator of the first term
in Eq. (4.7) in the region where b»(s, t) WO. Using Eq.
(4.10) for the boundary curve of this region, we find
that the expansion converges on the left-hand branch
cut as long as t& —26p, '. For comparison we state the
result rigorously proved by Lehmann, ~' that the expan-
sion in Eq. (5.10) converges at least for values of t
greater than —32ti'(2mti+ p,')/3 (2mti —&tis) = —12&u'.

Beyond the region of convergence of the polynomial
expansion more subtle methods of analytic continuation
will be necessary. However, on the basis of the effective
range approximation, which we shall discuss in the next
section, the contribution of Imf+~(t) to the scattering
amplitude for t& —26'' might be considered unim-
portant.

1 t." bg (t')
Ng(t) =— i dt'

x ~4„ t' —t—ie

If this integral does not converge, define instead

(6.1)

VI. THE INTEGRAL EQUATIONS

In reference 3 we have outlined an approximate
method of solution of Eq. (5.4) for the 1=1 state, based
on the effective range approximation and therefore ap-
propriate to the low-energy unphysical region. We shall
now generalize this method to states of arbitrary J.

In order to do this we conjecture that in the region
(2p)'& t& (4ti)' the phase of the amplitudes f~~ defined
by Eqs. (3.15) and (3.16) is equal to the pion-pion
scattering phase shift 8~ in the corresponding angular
momentum and isotopic spin state. This conjecture can
be verified for the J= 1 state if one accepts the validity
of the dispersion-relation treatment of the nucleon
electromagnetic structure, ' where this phase condition
is necessary to maintain the reality of the spectral
functions. "In the general case the reason for imposing
the phase condition on the amplitudes f~~, rather than
T+~ for example, is that these amplitudes have the
property of being real in the region (2ti)'&t& (4p)' for
8g= 0.

Use of the phase condition permits the construction
ofasolutionfor f~s. Consider the quantity f+~(t)e "~t'&,

where

where

and
W'=s E,= (W'+m' —ti')/2W

k'= 8,'—m', cosp = 1+t/2k'.

The region of convergence of this Legendre polynomial
expansion can be determined from Eq. (4.7). Since a

(6.2)

'b H. Lehmann, Nuovo cimento 10, 579 (1958).' G. F. Chew, R. Karplus, S. Gasiorowicz, and F. Zachariasen,
Phys. Rev. 110, 265 (1958).'P. Federbush, M. L. Goldberger, and S. B. Treiman, Phys.
Rev. 112, 642 (1958).' The precise relation between the spectral functions and the
amplitudes f&'(t) will be given in the following paper.
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Now we can write a dispersion relation for f+~(t) e "~t",
provided the function approaches zero suKciently
rapidly. Since this function is real in the region (2p)'&t
& (4p)', the dispersion relation is

1 t" e "&i" Imf~ (t')
f+ (t)e—"~ ' =—

~

dt'—
3 —3—2e

1 " Im[f (t') p
—""'j

dt' —. (6.3)
t' t i—e—

As a first effective-range approximation to f+~(t) for
small t in the region t&4p' we can neglect the second
integral on the right-hand side of Eq. (6.3) by virtue of
the size of its denominator. Moreover, we expect the
phase condition to be approximately satisfied for values
of 3 considerably above the next threshold at 16@'.This
has been found by Capps to be true for photoproduc-
tion. "That being the case, the numerator in the second
term of Eq. (6.3) will be small in a region extending
considerably beyond the lower limit of, integration, thus
giving further justification to our approximation.

Equation (6.3) is in general a very complex set of
coupled integral equations since the imaginary part on
the left-hand cut is related through Eqs. (5.7) and (5.8)
to pion-nucleon scattering, which in turn involves the
process ~+ir —+ E+g. However, as a first approach to
the problem one can use experimental information about
pion-nucleon scattering, so that Imf~~(t) becomes a
known function within the region of convergence of the
Legendre polynomial expansion. We can again use the
effective-range approach, hoping that the contribution
beyond this region is small and therefore cutting oG the
first integral in Eq. (6.3) a,t t= —26ti'. Thus, if the pion-
pion phase shift B~ is known, Eq. (6.3) gives an explicit
solution. "

We have applied this method of solution to the J= j.
state, which enters in the nucleon electromagnetic
structure problem. Results will be given in the following
paper.

n R. H. Capps, Phys. Rev. Letters 2, 475 (1959)."It is shown in the following paper that linear combinations of
f~~ and f ~ exist (namely those which enter into the nucleon
structure problem) that have improved asymptotic behavior.
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APPENDIX: ISOTOPIC SPIN PROJECTION
OPERATORS

The isotopic spin decomposition of the invariant func-
tions 2 and 8 can be written, assuming charge inde-
pendence, as

I=0,1
(A.1)

where j = rt, P; k=n, p; and u, P= 1, 2, 3 are the isotopic
spin indices of the pions; and the projection operator 8
is defined as

(A.2)

The symbols (e) and (m) denote normalized nucleon-
antinucleon and two-pion states, respectively. Then we
write

(jk~a'~pn)=&, tap 'xi,

From Eq. (A.2) one can easily show

(A.3)

(A.4)

where the trace is taken in the nucleon isotopic spinor
space, and where

satisfy Eq. (A.4). This method has the advantage of
avoiding the use of explicit representations for the
isotopic spin eigenstates.

The I', which are the normalized isotopic-spin projec-
tion operators for the pion-pion scattering, are given
implicitly by Eqs. (II.8) and (II.4) of reference 1.

One can easily verify that the operators

ap.' ——(1/+6)bp. , Sp.' ,'[rp, r ], ———


