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This paper is a contribution to the discussion of the question: to what extent does the scattering matrix
determine the Hamiltonian? The Hamiltonians considered are nonrelativistic, but in extension of previous
studies, “‘nonlocal” potentials and many-body potentials are allowed. A large class of unitary transforma-
tions is found which produce Hamiltonians leading to the same S matrix. In the last section, it is shown
that this equivalence is only a special consequence of the general axiomatic formulation of scattering in

field theory.

I. INTRODUCTION

HE extent to which the scattering matrix deter-
mines the Hamiltonians has been the subject of
many studies.™* These are limited to the case in which
the interaction is a potential, i.e., commutes with the
position operator. However, there are no good reasons,
either from prime principles® or from phenomenological
analysis® to exclude “nonlocal” interactions which may
be, for instance, integral operators in coordinate repre-
sentation. There is some interest, then, in considering
in a more general manner the extent to which the
Hamiltonian is left indeterminate by a given scattering
matrix. The subject of this paper is both wider and
narrower than those of preceding studies; we exclude
bound states, but we consider scattering by any number
of nonrelativistic scalar particles, the interaction opera-
tor being composed of many-body operators, not neces-
sarily diagonal in x representation. A class of Hamil-
tonians, equivalent in the sense that they lead to the
same S operator, can be defined by a class of unitary
operators which transform a given Hamiltonian. This
class is so wide that one is tempted to say that “any
reasonable” unitary transformation leaves a given
Hamiltonian within its equivalence class.

This result may be practically useful because it pro-
vides a large class of unitary transformations by which
a given Hamiltonian can be put into a more tractable
form without the necessity of ‘“reinterpreting” the
transformed wave function.

It is natural to wonder about the physical reason for
the equivalence of apparently very dissimilar Hamil-
tonians. If the problem is considered in the formalism
of second quantization, the results become under-
standable by adopting the view that the “basic” field
operators have no observable meaning.
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In Sec. III, a slightly revised form of Haag’s postu-
lates for the physical interpretation? of field theory is
formulated. From this point of view, the equivalent
Hamiltonians appear as expressions of the same energy
operator in terms of different physical-particle creation
operators.

II. EQUIVALENT HAMILTONIANS

We consider a nonrelativistic theory of scalar bosons,
interacting through two- or many-body potentials.
There are no bound states. The theory is assumed to be
invariant under space rotation, translation in time and
space, and reflections in time and space. There exists a
nondegenerate vacuum state which is invariant under
all symmetry operations, and a single subspace of one-
particle states.

The usual creation and destruction operators a(k),
at(k) are used, and the Hamiltonian H commutes with
the number operator

N= f (B a(k)EE. 2.1)

Space vectors are denoted by italics except where a
confusion with four-vectors is possible.
The Hamiltonian is of the form

H=H+V= f ot (B) () 2m)a (D) BE+V,  (2.2)

where the operator ¥ annuls the vacuum and all one-
particle states. We assume the existence of wave
operators

exp(tHY) exp(—iHo) > Qx (— £ o), (2.3)

where the arrow stands for strong convergence.® Since

we have excluded bound states, the wave operators are
unitary.?

7 R. Haag, Phys. Rev. 112, 669 (1958).

8 The existence of the strong limit was proved for some Hamil-
tonians by J. M. Cook, J. Math. and Phys. 36, 82 (1957), and
M. N. Hack, Nuovo cimento 9, 731 (1958).

( 9M). Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 1142
1954).
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EQUIVALENT HAMILTONIANS IN SCATTERING THEORY

The scattering operator is defined by

exp(¢Ht) exp(—2iHt)
Xexp(iHot) > S=Q_1Q, (— ). (2.4)

Clearly, the vacuum o and the one-particle states y®

are eigenfunctions of the S operator with eigenvalue 1:

Sto=v0; (2.5)

We consider those Hamiltonians H’ which may be ob-
tained from H by a unitary transformation

H'=UHUt, UU=UU=1,

Sy® =y,

(2.6)

and we ask for the class of equivalent Hamiltonians
H’, i.e., those which lead to the same S operator

exp(tHt) exp(—2:H't)

Xexp(iHot) = 8'=S (t— ), (2.7)

and have the same action on the subspace which con-
sists of the vacuum and one-particle states.
If Eq. (2.6) is used in Eq. (2.7), one obtains

exp(tHot) U exp(—iH ) exp(iH o) exp(—2:H)

Xexp(iHot) exp(—iHo) Ut exp(iHot) — S'.  (2.8)

Since the product of the 4th to 6th factors converges
strongly to S by Eq. (2.4), it is consistent to assume
that the separate strong limits

exp(tHot)U exp(—iHot) — Uy, (I — =)

2.
exp(—iHo) Ut exp(sHot) — U_t, ({ — ) (2.9)

exist.

We are going to assign further properties to the
operator U and show that this particular class leads to
equivalent Hamiltonians. The requirement of equiva-
lence on the irreducible subspace is expressed by

UHUTale//():HdkTIPQ. (210)

It is consistent with this equation if we require that U
should act as a unit operator on the subspaces of
vacuum and one-particle states:

Uarto=arlyy,

(2.11)
U¢o= UW/():lﬁo.
It follows that U has the form
U=1+D, (2.12)

where D is a destruction operator which annuls both
the vacuum and one-particle states.

The operator U may be formally expanded into a
series of normal products of creation and destruction
operators:

0 Tf A(¢) and B(t) are sequences of unitary operators, and if
A(t)— A, B(t) — B, then A (¢)B(t) — AB. The proof is found in
B. v. Sz. Nagy, Spektraldarstellungen Linearer Transformationen
des Hilbertschen Raumes (Springer-Verlag, Berlin, 1942), p. 11.
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U=1+ Z Guu(pr - pw, i’ pu’)

N=0,M=2
N M
Xgl at(p:)dp: I:Il a(p)dp. (2.13)

We require that U commute with the number operator,
so that H’ has this property. It follows that N=M.
We require further the translational invariance of U in
order to guarantee that of H’. It follows that the func-
tions Gyar must have a factor of theform (3 pi—3" p//).
Hence, the form of U is

U=1+2 | Fx(ps---pn, p1' - pn')
N=2
Xexplik- (X pi—2 pJ)]
N N
xIII at(p)dp: I;I a(pdp. (2.14)

We assume that such an expansion exists with square-
integrable functions Fy.
We consider the sequence of operators

exp(tHot)U exp(—1Ht)
=1+ T [ expill® B(p)— E(p)]

N N N
Xexpik: (O pi—> p)Fn 111 at(ps)

N

Xdp: 11 a(p)dpi dk.

1

(2.15)

In the limit /— =0, the sum on the right-hand side
vanishes strongly in virtue of the Riemann-Lebesgue
lemma.! We have, by Eq. (2.9)

Uy=1. (2.16)

Comparison with Eq. (2.8) shows that under these
conditions, S’=.S, i.e., the Hamiltonians H’ and H are
indeed equivalent.

In order to make H’ a Hamiltonian with the required
invariance properties, we further require that U com-
mutes with the symmetry operators of rotation and of
space and time reflection. This gives rise to constraints
on the functions Fy. In particular, a transformation
which leaves the field operator unchanged and adds a
function of the field to the canonical momentum does
not produce an equivalent Hamiltonian. For, if ®(x) is
the field operator, which we assume to be time-reversal
invariant as usual, and if f is a real-valued functional,
then the unitary operator U=exp[f{®(x)}] does not
commute with the time-reversal operator 7', but anti-
commutes with it. Therefore, the operator H'=UHU'
does not commute with 7" and is not an acceptable
Hamiltonian. If a scattering operator S’ were defined
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from it through Eq. (2.4), it would not, in general, have
the time-reversal property S'f=7S'T-! required of
scattering operators.

III. UNITARY TRANSFORMATIONS IN
SCATTERING PROBLEMS

In calculations of scattering amplitudes, it is often
convenient to consider unitary transforms of a given
Hamiltonian, so that the new form H'=UHU!' is
easier to manipulate. In particular, the transformation
is often used to make the “perturbation” smaller or,
at least, less important for the particular physical
situation.

It is understood that after such a unitary transforma-
tion the wave function must be “reinterpreted.” By
this one means either that a wave function (say, an
eigenfunction of H’) must be transformed by ¢y=U%/'
to have a clear physical meaning or that one connects
the calculated quantities ¢’ to observables by intuitive
arguments. The first procedure is often self-defeating,
because the operators U are usually given as formal
exponential functions of other operators, so that an
actual evaluation amounts to an expansion into an
infinite series, while the second procedure is doubtful.
In particular, the calculation of the S matrix from H’
by the use of Eq. (2.4) or equivalent methods, is justified
only in special cases. As an obvious example of fallacy,
one may consider the transformation

H'=QHQt=H,, 3.1)

which carries H into Ho. Equation (2.4) would then
give S’=1 for the scattering operator, which is absurd.

We can use the result of Sec. IT to determine those
particular unitary operators which allow the use of
the standard Eq. (2.4) to calculate the S matrix
from the new Hamiltonian, without the necessity of
reinterpreting.

The conditions on the operator U are so unspectacular
that one may be inclined to think that “any reasonable”
unitary transformation will lead to the same S operator.
He may notice, however, that U cannot be a Mgller
wave operator as in Eq. (3.1), since this operator is
known to have a 8 function in its second term [Eq.
(2.14)7], so that F would not be square-integrable. Our
result is not in contradiction to the statement that
a scattering operator without bound states completely
determines the potential. The Hamiltonians produced
from a potential interaction by our transformation U
will produce ‘“nonlocal” interactions described by an
integral kernel in coordinate representation.

As an illustration, we exhibit a simple operator U.
Consider the effect of U on the two-body subspace. The
operator U is represented by a functional operator u
which acts on the two-body Fock functions y (x,y) :

() (2,3) =¥ (w,9)+ f (%, Gla"y W (&'y)dx'dy. (3.2)

H. EKSTEIN

Let # act as a unit operator on the center-of-mass co-
ordinate x+y=R. A special choice is

—1

() (R,r>=w<R,r>—z[ [ f2(r)d3x]

X7 ) f FEW RS (3.3)

If r=|x—y| and f is any real square-integrable func-
tion, this operator is unitary and real, i.e., orthogonal,
and therefore commutes with the time-reversal opera-
tor. It also commutes with the operators of space-
translation and rotation.

IV. CONNECTION WITH THE POSTULATES OF
GENERAL SCATTERING THEORY

The equivalences established in the previous sec-
tions seem somewhat unmotivated and surprising. It
will be shown now that they are just special conse-
quences of general scattering theory.

In wave mechanics, the physical meaning of the
operators is given at the outset, and scattering theory
is a straightforward application of established prin-
ciples. In field theory, on the other hand, the physical
significance of the field operators is obscure; even in
the one-particle subspaces, the position operators ‘“‘get
lost” and must be reintroduced by special postulates.!?
It is necessary to adopt additional principles for the
physical interpretation of the theory.

In the modern literature, several such principles have
been proposed.’®'® In these papers certain ‘“‘bare” or
“basic” field operators are of fundamental importance,
although they are not, at finite times, directly related
to observables. We adopt a slightly modified version
of Haag’s formulation!® in which the basic fields play
no role.®

We assume, as usual, that the Hilbert space is the
basis of a reducible representation (up to a factor) of a
group of symmetry operators. This group may be the
Lorentz or the Galilei group. There are irreducible sub-
spaces, which correspond to one-particle states.

Instead of introducing field operators with simple
transformation properties, but with obscure physical
significances, we define creation operators c; which,
acting on the vacuum, produce one-particle states:

c(B)po=¢r®, (4.1)

where ¢ is a simultaneous eigenstate of the space-

( 12 T)D Newton and E. P. Wigner, Revs. Modern Phys. 21, 400
1949

1BH, Lehmann, K. Symanzik, and W. Zlmmermann Nuovo
cimento 1, 205 (1955)

uA. S Wightman, Problémes Mathématiques de la Théorie
Quantigue des Champs, Colloques Internationaux (Centre Na-
tional de la Recherche Scientifique, Paris, 1959), p. 1

15 R. Haag, Phys. Rev. 112, 669 (1958).

16 This is a more precise version of the principles proposed in
H. Ekstein, Nuovo cimento 4, 1017 (1956).
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and time-translation operators.l” For scalar particles,
the momentum % fully specifies the one-particle func-
tion; for particles with spin, another variable must be
added.

We require that the operators ¢ have the same trans-
formation properties under translation and rotation in
general as they must have by Eq. (4.1) when acting
on the vacuum. In particular, if P is the generator of
space translations, the translation r has the effect

exp(iP-r)c(k) exp(—iP-r)=exp(—ik-r)c(k). (4.2)

The operators c¢(k) should create “physical particles”
in the reducible part of Hilbert space. Intuitively, we
mean that if a particle is created by means of ¢ in
addition to other existing particles, and if the added
particle is sufficiently distant from the pre-existing ones,
the action of the symmetry operators (in particular, the
Hamiltonian) on such a state should be “additive,” i.e.,
the Hamiltonian should act on the pre-existing set as
well as on the added particle as if they were the only
existent ones.
Consider the operator

crm f fBeere®)dt, 43)

which, for large distances 7, creates a particle distant
from other pre-existing particles, and a general state
Cyo. We require

Hc;,Cr//o— C/,.HCIP()“ CHCf,-",bo d O, (4.4)

as a strong convergence for large distances |r|. The
same condition should hold if several particles are
created at large distances:

(H]II ¢1y-C—I1I €;(my»H C— CH I €7 (myr)

Xo—0. (4.5)

Equation (4.5) will be referred to as postulate 1.

Time-translation has an effect similar to that of
space-translation in that it increases the distances be-
tween particles indefinitely, i.e., decreases the proba-
bility of finding two particles near each other. The
equation

exp(—iHY) f () [ () Phbo

- f exp[—iER)1f (R c(B)Phpo, (4.6)
suggests that the analog of Eq. (4.3) is
- f exp(—iExt) f(R) ¢ (B) B, @.7)

17 Tt is understood that such state vectors are improper and that
a ‘“smearing out” is necessary to make them meaningful.
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and that of Eq. (4.5) is

(Her I eom—1I comyHes— e7H ITT €oeny)o— 0
n n n

t— +o). (4.8)
Equation (4.8) will be referred to as postulate 2.

Equation (4.8) may be applied to the product of two
operators €s(n:1)Cr2ye2), with subsequent limits, for
the times ¢ and f,:

Hesmim i@ — Cr@uH ey
—crayemHes i)Yo — 0 (((1) — »,1(2) — «).
(4.9)

By Egs. (4.1) and (4.6), the two last terms may be
written

[CeG)+ E® Gk eEe(
Xexp{ —i[E(k)t1+ E (k2)t: ]} &k:1d®ksbo.

More generally, for a product of creation operators

(H II Cf(n)z(n)—f[Z E(kn) 11 fu(k)IT c(k2)

Xexp[—1 Y. E(kn)ta 1] dkn)lﬁo =0 (tny — »).
(4.10)

We have defined a particle theory by the requirement
that operators satisfying Eqs. (4.5) and (4.8) exist.
This may be considered as a formal expression of an
empirical fact. This postulate must be supplemented by
two assumptions of rather technical nature: (2a) In
Eq. (4.10), the time limits may be taken simultaneously,
i.e.,, t{(n) may be replaced by the single parameter i.
(2b) The length of the vector on the left-hand side of
Eq. (4.10) decreases asymptotically faster than ¢, It
will be shown now that the existence and general
properties of the scattering states can be derived from
these postulates.

Consider the state vector

N
exp (iH) g crmyabo=Q(0). (4.11)

If this quantity has a strong limit for  — d= then
the existence of asymptotic scattering states, and from
there the theory of the .S matrix, can be established.!%:16

The Cauchy test for convergence is

10(T) —Q(T2)|| <e(T),
where T1>T and T»>T. The convergence is proved if

Ta dQ
f —dt|| <e,
71 di
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or if We have
0 dQ
f l—i—' di<e, Q' (t) =exp (sH{) exp(—iKt) exp GKt)U
71l df Xexp(—iK)UU T ¢;mUtpo.  (4.22)
that is, if ||dQ/d¢|| is integrable to infinity. _
By Eq. (4.11), IE Ulvo=ys, and
exp(iKt)U exp(—iKt) — 1, (4.23)

ldQ/de] = |lexp(itto) f [H~F E(k)]

XTI fu(kn)c(kr) expl—i Y E(ka)t1dkabol|. (4.12)

The asymptotic vanishing of this limit follows from
Eq. (4.10) if the uniform limit #() =1 is taken according
to postulate (2a). The integrability follows from postu-
late (2b). From this point on, the theory of the .S
operator may be established as usual.’® In particular,
Haag has shown that all operators ¢ which satisfy our
requirements lead to the same .S matrix.

The results of Secs. IT and III can now be recognized
to be special applications of the general theory. We
consider a special class of theories in which the opera-
tors ¢(k) may be chosen so that the canonical commuta-
tion relations hold :

Le(k),ct(k)]=8(k—F'),
and that the adjoints of ¢ are destruction operators:
c(k) Wo=0. (4.14)

These are the theories without vacuum polarization.
For this class of theories, Eq. (4.11) may be written
under the form

(4.13)

()= exp (i) exp(—iKt>ﬁ by, (&.15)

where
K= f c(R)E(k)ct (k)dk, (4.16)
since
exp(—iKt)c(k) exp(+iKi)=c(k) exp(—iEx), (4.17)
and
Kyo=0, exp(iKi)po=vo. (4.18)

A set of equivalent operators may be generated by

the substitution
c(k)y=Uc(k)UH. (4.19)

For the new operators ¢/, the appropriate form of Q(2),
according to Eq. (4.11), is

Q) =exp(iH?) exp(—iK't) IT ¢1m'¥o,

where K’ is the function K [Eq. (4.16)] of the new
operators, i.e.,

(4.20)

K'=UKUM. (4.21)

the limits of Q and Q’, and hence the S matrix, are
identical.

We have shown that the equivalent Hamiltonians
considered in Sec. II may be considered as being
identical operators, expressed as functions of different
but equivalent physical-particle operators.
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APPENDIX

The “asymptotic vanishing of destruction operators”
in theories without vacuum polarization is not new.
For convenience, and without any claim to originality,
we give a somewhat detailed proof.

The square-integrable function Fy in Eq. (2.15)
may be uniformly approximated by sums of products
of square-integrable functions of one-particle variables
ks, k. Hence, we only have to prove

o= [ F = @k —0 (= ),

with square-integrable f. If we restrict ourselves to a
particle number L smaller than Ly, then e, is bounded,
and we may, for the purpose of the proof, consider only
an everywhere dense set of states ¢/. The assertion that
if a;¢’ — 0 then as4p — 0, for all states ¢, is proved as
follows. By the definition of “everywhere dense,” for
every ¢ there exists a ¥’ such that |[¢/—y| <e/2¢
where € and ¢ are positive numbers. If a;; is bounded
there exists a number ¢ such that ||as@| <c||¢||. Then,

ozl =llon@—¥)+ar'l| <l lv—v'|

+Hlas/'| <e/2+asd/|.
The first inequality is the “triangle inequality.” The
assertion is thereby proved. For the set ¢/, we choose,
in Fock representation, finite sums of products of one-
particle functions ®,---®; for the /-particle subspace.

These form an everywhere dense set. By the definition
of the destruction operators

(lfg‘b,’ . ‘q)¢= (l/l !)[(fg*,q)l)‘pz’ . "@1
F®,(f*,@s) - Bt - +P1- - - (f5,B0) ],

where

fe=f(k) expL—iE(k)t].
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It is now sufficient to show that
(9= [ expl-iB®ABREEE—0.

A change of variables from % to E and two angle vari-
ables Q gives

(@)= f exp(—iE0) f(E,Q)®(EQ) JAEdL,
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where J is the Jacobian. By Schwarz’s inequality, the
product of two square-integrable functions f and & is
absolutely integrable with the weight function J. The
Riemann-Lebesgue lemma then asserts the asymptotic
vanishing of the norm ||as4|.

The “asymptotic vanishing of destruction operators”
was used previously by Coester and Kummel.®

18F, Coester and H. Kummel, Nuclear Phys. 9, 225 (1959),
Appendix II.
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The general theory of relativity is cast into normal Hamiltonian form in terms of two pairs of independent
conjugate field variables. These variables are explicitly exhibited and obey ordinary Poisson bracket
relations. This form is reached by imposing a simple set of coordinate conditions. It is shown that those
functionals of the metric used as invariant coordinates do not appear explicitly in the Hamiltonian and
momentum densities, so that the standard differential conservation laws hold. The bearing of these results

on the quantization problem is discussed.

I. INTRODUCTION

N the program of quantization of general relativity
according to the Schwinger action principle it has
previously been shown that the classical theory can, in
principle, be reduced to canonical form in terms of
two pairs of independent, unconstrained canonical
variables.! This canonical form has been given explicitly
for the linearized theory in I, where the analysis was
in complete analogy to the quantization of electro-
magnetic theory. In I, a general study of the dynamics
of the full classical theory led to the exhibition of four
unconstrained variables whose specification fully deter-
mines the state of the system, but which were not
canonical. The precise definition of these variables
* Supported in part by a National Science Foundation Research
Grant.

t Alfred P. Sloan Research Fellow. On leave from Palmer
]lfhysica.l Laboratory, Princeton University, Princeton, New

ersey.

1 Two previous papers in this series, R. Arnowitt and S. Deser,
Phys. Rev. 113, 745 (1959); and R. Arnowitt, S. Deser, and C. W.
Misner, Phys. Rev. 116, 1322 (1959), will be referred to as I
and II, respectively. Notation and units are as in II with the
exception that g/ here denotes the three dimensional matrix
inverse to g;;. Natural units are employed: k=16ryc™*=1, c=1,
where v is the Newtonian gravitational constant. Latin indices
run from 1 to 3, and Greek from 0 to 3 and x°=¢. Ordinary differen-
tiation is denoted by a comma in a subscript or by the symbol d,.

depended upon the specification of the four remaining
field variables (the gauge functions) as invariant
coordinates. In general, these four field variables will
appear explicitly in the Hamiltonian density which
arises when the dynamical variables are rearranged into
canonical form. Thus, the Hamiltonian density will in
general depend upon the coordinates explicitly and
hence the system will appear to be nonconservative for
a closed system. The remaining problem, as was
stressed in II, was thus to achieve canonical form
while simultaneously choosing as coordinates a set of
gauge variables which will not appear in the resulting
Hamiltonian.

This paper exhibits explicitly a simple set of canonical
variables and coordinate conditions which solve the
above problem.

II. FORMULATION OF THE PROBLEM
We begin with the action integral obtained in IT

when the algebraic constraints have been eliminated.
Written in terms of variables appropriate to a 341
dimensional breakup it becomes

I=fd4x£,

(2.1)



