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NERNST AN 0 ETTI NGSHAUSEN EFFECTS IN Si

high-resistivity samples at temperatures below 550'K,
data could not be taken with the current densities
needed for accurate readings. Therefore, the Ettingshau-
sen coefficient for these high-resistivity samples is re-
ported only above this temperature.

The Bridgman relation permits one to calculate the
thermal conductivity of a material from the measured

values of the Nernst and Kttingshausen coefficients.
This was done for the samples used in our experiments
and the results are shown in Fig. 3. These values for the
thermal conductivity are seen to scatter around the
straight line described by Eq. (2) on which the determi-
nation of the theoretical Ettingshausen coefhcients was
based.
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A simple analytic potential energy function, V, is developed from a Thomas-Fermi ion model for the
actjnjde metals and is found to provide good agreement with wave functions derived from the Hartree
self-consistent field approach by Ridley for the Sf, 6d, and 7s states of uranium. The estimated 5f, 6d, and
7s bandwidths are 1.1, 7.3, and 11.8 ev, respectively, in satisfactory agreement with those of Ridley.

Dirac s equations are solved for the 5f, 6d, and 7s states using this nonrelativistic potential energy func-
tion with the Wigner-Seitz boundary condition. The relativistic energy shift for the 7s state is roughly 13 ev.

I. INTRODUCTION
I

A ONE —ELECTRON statistical potential energy
function is derived in this paper which is suitable

for studying the electronic structure of the actinide
metals, in particular, the cubic phases of thorium,
uranium, and plutonium.

It was pointed out in a previous paper' that spin-
orbit effects must be taken into account for an ade-
quate description of the electronic structure of the acti-
nide metals. A detailed approach was also presented
which took spin-orbit coupling into account via an
appropriate unitary transformation of the energy
matrix, Hp, obtained by neglecting spin-orbit effects.
The primary purpose of this paper is to derive a sta-
tistical potential energy function, V, which is currently
being used to compute radial wave functions which are
needed to determine the Ho matrix for gamma uranium
using the 1937 version of Slater's augmented plane
wave approach. '

Wave functions derived from this statistical potential
approach are compared in Sec. III with the Hartree
self-consistent (nonrelativistic) calculations carried out
by Ridley for gamma uranium. '

Some numerical solutions of Dirac's equations using
the statistical potential energy function derived in Sec.
II are also presented in order to determine qualitative
effects of relativistic forces on the 5f, 6d, and 7s orbitals
in uranium. The numerical procedures for determining
the relativistic as well as the nonrelativistic radial

*This work was supported by the U. S. Atomic Energy
Commission.

' G. W. Lehman, Phys. Rev. 116, 846 (1959).
~ J. C. Slater, Phys. Rev. 51, 846 (1937).' E. Cicley Ridley, Proc. Roy. Soc. (London) A247, 199 (1958).

wave functions used in this paper are outlined in an
appendix.

II. POTENTIAL FUNCTION

Each valence electron in the metallic actinides is
considered to move in a potential held arising from
three sources: (i) the nuclear charge for an ion whose
atomic number is Z and the charge distribution due to
the (is)'(2s)'(2p)' ~ (5d)" closed shell configuration
of 78 electrons, (ii) the charge distribution due to the
(6s)'(6p)' closed shell configuration of eight electrons,
and (iii) the charge distribution due to the presence of
the e,—1 other valence electrons, where e, is the total
number of electrons outside closed shells. For thorium,
uranium, and plutonium, e,=4, 6, and 8, respectively.

A. Iron Core Potential Energy

In atomic units, the ion-core potential energy is
given by

2Z t. p, (cV, r')
U;.„(r)= ——+2 dr'

r " /r —r'/

where p, (X,r) is the electron density at the point r of
the X core electrons contained inside a sphere of radius
r, . If the 6s, 6p, and valence electrons were absent, one
could take p. to be the usual Thomas-Fermi electron
density, prr(&, r) associated with the ion under con-
sideration here. In the model used in this paper, it is
assumed that p, =X'prr(X, Xr) is a good approximation

4For a discussion of the Thomas-Fermi ion model see P.
Gombas, Die Stutistische Theoric des Atoms (Springer-Verlag,
Wein, 1949).


