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Nernst and Ettingshausen Effects in Silicon between 300°K and 800°K
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The Nernst and Ettingshausen coefficients in p-type silicon single crystals of various impurity densities
have been measured over a temperature range between 300°K and 800°K at magnetic fields of 9000 gauss.
The results are in good agreement with the theoretical predictions. Using the measured coefficients in the
Bridgman relation, values were obtained for the thermal conductivity of silicon in the temperature range

between 550°K and 800°K.

1. INTRODUCTION

HE recently reported investigation of the high-
temperature Nernst and Ettingshausen effects in
germanium! has been extended to silicon for which, to
our knowledge, no such measurements have been re-
ported previously. The experimental arrangement and
the theoretical expressions used were essentially the
same as in reference 1, and the interested reader is
referred to this paper for details of the measuring appa-
ratus and of the assumptions underlying the theory.

2. THEORETICAL PREDICTIONS

Figures 1(a) and 1(b) show the theoretical Nernst
coefficient, B, in #- and p-type silicon as a function of
temperature for various impurity densities. The curves
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were calculated from the expression
B=[gD(unt+u,™) /o (notpo) d(n?)/dT, (1)

where ¢ is the electronic charge; D is the ambipolar
diffusivity; o is the conductivity, o= q¢(uaPnotu,2p0);
no and po are the equilibrium carrier densities; T is the
absolute temperature; #; is the intrinsic carrier density,
usH and u,# are the electron and hole Hall mobilities;
un? and u,? are the electron and hole drift mobilities.
The following numerical values were used?™*:

nd=1.5X108X T3Xexp(—14 028/T),
un?=(2.120.2) X 109X T—2-5%01 cm? v~ sec?,
un=1.52 u,2,
upP=(2.3240.1) X 10°X 2701 cm? v~! sec™?,
1 =0.885 1,2,
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F1c. 1. Nernst coefficient, B, in silicon with various impurity concentrations as a function of temperature; (a) theo-
retical for #-type; (b) theoretical for p-type; (c) experimental for p-type at 9000 gauss.
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F1G. 2. Ettingshausen coefficient, P, in silicon with various impurity concentrations as a function of temperature; (a) theo-
retical for #-type; (b) theoretical for p-type; (c) experimental for p-type at 9000 gauss.

Theoretical values for the Ettingshausen coefficient,
P, were obtained by means of the Bridgman relation,
BT=kP, where the thermal conductivity, «, was ap-
proximated by the expression

k=435/T watts deg™ cm™, (2)

which is an extrapolation towards higher temperatures
of the room-temperature value reported by Carruthers
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Fi1c. 3. Heat conductivity of silicon calculated [rom the Nernst and
Ettingshausen coefficients.

et al.’ These theoretical values were plotted in Figs. 2(a)
and 2(b) as a function of temperature for various im-
purity densities.

3. EXPERIMENTS

The measuring procedure for both effects in silicon
was essentially the same as that for germanium.! Good
ohmic contacts to the p-type material were obtained by
rhodium plating. Since the effects are considerably
smaller in silicon than in germanium, the measurements
were normally taken at magnetic fields of 9000 gauss to
achieve a sufficiently large reading accuracy. Control
measurements at the peak points of the coefficient versus
temperature curves, however, showed no dependence of
the Nernst or Ettingshausen constants on the magnetic
field within the experimental accuracy of several percent.

Figure 1(c) shows the experimental Nernst coefficient
for four p-type silicon samples of various resistivities.
The curves are in good agreement with the theoretical
curves except at the low-temperature end where the
assumptions underlying the theory are not expected to
hold.

Figure 2(c) gives the experimental results for the
Ettingshausen coefficient obtained for the same samples
that were used in the Nernst measurements of Fig. 1(c).
Again the agreement between theory and experiment is
quite good. Because of the internal heating of the two

8 J. A. Carruthers, T. H. Geballe, H. M. Rosenberg, and J. M.
Ziman, Proc. Roy. Soc. (London) A238, 502 (1957).
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high-resistivity samples at temperatures below 550°K,
data could not be taken with the current densities
needed for accurate readings. Therefore, the Ettingshau-
sen coefficient for these high-resistivity samples is re-
ported only above this temperature.

The Bridgman relation permits one to calculate the
thermal conductivity of a material from the measured
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values of the Nernst and Ettingshausen coefficients.
This was done for the samples used in our experiments
and the results are shown in Fig. 3. These values for the
thermal conductivity are seen to scatter around the
straight line described by Eq. (2) on which the determi-
nation of the theoretical Ettingshausen coefficients was
based.
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A simple analytic potential energy function, V, is developed from a Thomas-Fermi ion model for the
actinide metals and is found to provide good agreement with wave functions derived from the Hartree
self-consistent field approach by Ridley for the 5f, 6d, and 7s states of uranium. The estimated 5f, 64, and
7s bandwidths are 1.1, 7.3, and 11.8 ev, respectively, in satisfactory agreement with those of Ridley.

Dirac’s equations are solved for the 5f, 6d, and 7s states using this nonrelativistic potential energy func-
tion with the Wigner-Seitz boundary condition. The relativistic energy shift for the 7s state is roughly 13 ev.

I. INTRODUCTION

ONE-ELECTRON statistical potential energy

function is derived in this paper which is suitable
for studying the electronic structure of the actinide
metals, in particular, the cubic phases of thorium,
uranium, and plutonium.

It was pointed out in a previous paper! that spin-
orbit effects must be taken into account for an ade-
quate description of the electronic structure of the acti-
nide metals. A detailed approach was also presented
which took spin-orbit coupling into account via an
appropriate unitary transformation of the energy
matrix, Hy, obtained by neglecting spin-orbit effects.
The primary purpose of this paper is to derive a sta-
tistical potential energy function, V, which is currently
being used to compute radial wave functions which are
needed to determine the Hy matrix for gamma uranium
using the 1937 version of Slater’s augmented plane
wave approach.?

Wayve functions derived from this statistical potential
approach are compared in Sec. IIT with the Hartree
self-consistent (nonrelativistic) calculations carried out
by Ridley for gamma uranium.?

Some numerical solutions of Dirac’s equations using
the statistical potential energy function derived in Sec.
IT are also presented in order to determine qualitative
effects of relativistic forces on the Sf, 6d, and 7s orbitals
in uranium. The numerical procedures for determining
the relativistic as well as the nonrelativistic radial

* This work was supported by the U. S. Atomic Energy
Commission.
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wave functions used in this paper are outlined in an
appendix.

II. POTENTIAL FUNCTION

Each valence electron in the metallic actinides is
considered to move in a potential field arising from
three sources: (i) the nuclear charge for an ion whose
atomic number is Z and the charge distribution due to
the (15)%(25)2(2p)8: - - (5d)™ closed shell configuration
of 78 electrons, (ii) the charge distribution due to the
(65)2(6p)¢ closed shell configuration of eight electrons,
and (iil) the charge distribution due to the presence of
the #,—1 other valence electrons, where %, is the total
number of electrons outside closed shells. For thorium,
uranium, and plutonium, #,=4, 6, and 8, respectively.

A. Iron Core Potential Energy

In atomic units, the ion-core potential energy is
given by
/PC(N ,l")

[r—r|

27
ion =— d y
Vion(r) - —I—Zf r (1)

where p.(V,r) is the electron density at the point r of
the IV core electrons contained inside a sphere of radius
7.. If the 6s, 6p, and valence electrons were absent, one
could take p. to be the usual Thomas-Fermi electron
density, prr(IV,r) associated with the ion under con-
sideration here.* In the model used in this paper, it is
assumed that p.=Mprr(N 1) is a good approximation

4For a discussion of the Thomas-Fermi ion model see P.
Gombas, Die Statistische Theorie des Atoms (Springer-Verlag,
Wein, 1949),



