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Mechanism for the Sidewise Motion of 180' Domain Walls in Barium Titanate

ROBERT C. MILLER AND GABRIEL WEINREICH
Bell Telephone Laboratorie, Jr/Ierruy H~ll, 1Vem Jersey
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An important unanswered question concerning the sidewise
motion of 180 domain walls in single crystal SaTi03 is the
mechanism by which the boundaries move. This paper considers
two possible models. One model assumes that the wall motion
results from the repeated nucleation of steps along existing parent
180' domain walls and that the nucleation rate is the controlling
factor in the propagation of the wall. The second model investi-
gated involves paired screw dislocations of opposite sense which
propagate the wall in a manner analogous to certain types of
crystal growth.

Many features of the experimental data are consistent with the
nucleation model. The nucleated steps are assumed to be triangular
slabs along the wall and about one lattice constant thick. For a
field of 300 v cm ', the critical nucleus is calculated to be 7)&10 '
cm wide (along the electroded crystal surface) and 16X10 ' cm
high (along the ferroelectric axis). For limited ranges of Geld, the
model gives a wall velocity dependence on Geld of s ~ exp( —5/E),

which agrees with experiment. The magnitude of the calculated
activation Geld 8 agrees with experiment if the energy of the
additional wall consequent on a nucleation is set equal to 0.4 ergs
cm 2. The calculated temperature dependence of 8 is through
I', T 'e, & and is in fair quantitative agreement with experiment.
The approximately square domains observed in the low field
region are consistent with the model, and the change in shape of
the domains observed at higher Gelds can likewise be explained
if slightly diferent wall energies are assumed for the edges of the
nucleated steps on the two diferent types of 180' domain walls.

The screw dislocation model does not predict a wall velocity
s ~ exp( —S/E) in a straightforward way. It is only with certain
unrealistic restrictions on the dislocation density or the wall
mobility that this model will give the correct form of Tf. However,
it is suggested that this mechanism may contribute to the wall
motion with fields of a few thousand volts per centimeter or higher.

INTRODUCTION

HERE are considerable experimental data in the
literature on the sidewise motion of 180 domain

walls in single crystal BaTi03, however, the measured
characteristics of the wall motion have not been
described in terms of a specific mechanism. The present
paper discusses two possible mechanisms for the wall

motion, one of which is shown to be compatible with
many of the important features of the experimental
data.

Before discussing the two models, some of the
important aspects of the data will be summarized. The
wall velocity v as a function of the applied electric
Geld E has been measured' over a velocity range of
about eight decades, 10 ' cm sec ' to 10 cm sec '. The
Geld dependence of the velocity over a range of several
decades in velocity is described by

v= v„exp( —5/E),

with v„and 8 field independent. However, v„and 8 are
not constant over the entire range. In fact, —d 1ns/

d(1/E) increases slightly with field. ' There is no
evidence of a well defined coercive Geld, i.e., a Geld E,
below which the wall will not move. Equation (1) has
been found to apply for velocities as low' as a few
angstroms per second. ' There is likewise no evidence
that the wall velocity depends on the size of the
domains. The data include domains whose widths vary
from about 5&10 ' cm to 10 ' crri. ' ' Data of a prelimin-
ary nature show that the wall velocity for a given
field depends to some extent on the impurity content
of the crystal. ' Limited data' indicate that the ternpera-

' R. C. Miller and A. Savage, Phys. Rev. 115, 1176 (1959).' R. C. Miller and A. Savage (unpublished).
~ R. C. Miller and A. Savage, Phys. Rev. 112, 755 (1958).

ture variation of the activation 6eld 5 is 1% 'C ' in
the neighborhood of room temperature.

It has been found that there are at least two types
of 180' domain boundaries which move under the
inQuence of an applied Geld. ' The intersections of these
boundaries with the crystal surface are either parallel
or at 45' to the crystalline u axes. The relative ease
with which the two types of boundaries move is Geld
dependent. The published quantative data" on the
field dependence of the wall velocity pertain to the
walls which are at 45' to the a axes. Lastly, under
certain conditions, the 180' domain walls do not
appear to be parallel to the ferroelectric axis of the
crystal. 4 ' A complete theory should, of course, be
capable of explaining in a convincing way the body of
experimental facts mentioned above. Unfortunately,
a theory encompassing all the data has not been found;
however, one of the two models proposed in this paper
is consistent with much of the data.

It is generally agreed that the 180' domain wall
does not move sidewise in a continuous manner as a
unit parallel to itself on an atomic scale. This type of
motion is excluded on the basis of energy considerations
which arise out of the high value of the estimated wall

energy, 1—10 ergs cm ', and the estimated one to a few

lattice constants thickness of the wall. ' ' ' Nakamura"
has suggested that screw dislocations may permit
sidewise 180' wall motion to take place with applied

4 W. J. Merz, Phys. Rev. 95, 690 (1954).
5 E. A. Little, Phys. Rev. 98, 978 (1955).' D. P. Cameron, IBM J. Research Develop. 1, 2 (1957).
7 R. C. Miller, Phys. Rev. 111,736 (1958).
'W. Kanase and H. Takahasi, J. Phys. Soc. Japan 12, 464

(1957).
9 V. A. Zhirnov, J. Exptl. Theoret. Phys. {U.S.S.R.) 35, 1175

(1958) Ltranslation: Soviet Phys. JETP 55, 822 (1959)g."T.Nakamura, J. Phys. Soc. Japan 9, 425 (1954'j.
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case, the only uncompensated charge will be that
arising from the finite divergence of the spontaneous
polarization on the two edges of the nucleus. Since these
walls are assumed to be very thin and narrow, p& and p2
will be replaced by a linear charge density 2P,c sin8
where 28 is the apex angle of the nucleus. The dielectric
constant in ferroelectric BaTi03 is anisotropic so that in
order to carry out the calculation indicated in Eq. (3),
it is necessary to make a transformation" which changes
the ratio of the s to the x and y dimensions by a factor of
(e,/e, )«. The quantities s and e. refer to the dimensions
and dielectric constant, respectively, along the ferro-
electric axis, while x, y, and e refer to the a axes which
are normal to the ferroelectric axis. After the trans-
formation has been made, the medium can be treated
as isotropic. U~ is found to be

c~ a~ 2g
Ug ——8P,2——ln—.

~, t eS
(4)

The dimensions a* and l* of the critical nucleus as well
as the activation energy AU* are determined by the
conditions

cIAU/Be=0 and &AU/Bl=0 (6)

The width of the step c is taken to be as small as
possible, one lattice constant, so that the minimum
activation energy can be determined. The small
variation of d, U with a through lnu will be ignored.
For ease of presentation, it is convenient to rewrite
Vg in the form

where
Uo 2o „ba'/l, ——

o ~= (4P,2b/e, ) ln(2a/eb).

The conditions given in Eq. (6) applied to Eq. (5) yield

o (o„+2o,)
P,E~' (o„+3o„)

(9)

o.„' (o.„+2o„)

P,E~ (o„+3o „)«
(10)

In the calculation, a'/2P and higher order terms have
been neglected compared to unity. It will be shown
that this is a good approximation. Then AU* can be

The lattice constant b comes into the expression as the
lower limit of ri~. The portion of Eq. (4) which involves
ln2 arises from the interaction between charges on the
two opposite sides, while the remaining part, 1n(a/eb),
is twice the interaction of the charges along one side.

The total energy change consequent on a nucleation
along the wall, given by Eq. (2), can now be written as

6U= 2P,Ealc+ 2o—„c(o,'+l2) '*

+8P '(c'a'/e, l) ln(2a/eb). (5)

written
4b ( o.„

o„(o +2o„)(

P,E &o- +3o.„)
Anticipating a little, it will turn out that r„&a.„so

that Eqs. (9), (10), and (11) can be approximated by

and .

a*=x3(o /P, E),
l"=2o„«o „«/%3P,E,

(12)

(13)

ol
o ~ exp( —AU*/kT),

Sb o.„o
i ~ exp[

3~3 P.EkT j (16)

Equation (16) is appealing since it is consistent with
some of the experimental data. For limited ranges of
E, i.e., several decades in velocity, Eq. (16) predicts a
wall velocity which should vary with E as exp( —const/
E). The small variation of o„with E through ina*
will result in a theoretical activation field,

d lnv 1 dAU*

d(1/E) kT d(1/E)

which decreases slightly with increasing field. However,
nucleation steps of mb, e& 1, become more probable as
the field increases so that one might expect that this
eGect tends to increase 6& with field. It will be shown that
in the measured field range steps with e& 1 are unlikely
and therefore probably do not contribute to the wall
motion. The data' show that —d 1ne/d(1/E) increases
by about 30%%u~ as the field increases from several
hundred volts per centimeter to about 1500 v cm '.
In any case, for limited ranges of electric field, the
field dependence of the velocity given by Eq. (16) is in
agreement with the data.

One would not expect a well-defined coercive field
with a nucleation mechanism for the wall motion.
This is in agreement with experiment.

Equation (16) also explains the shapes of the single
domains observed in the low field region. It has been
found that the 180' domain walls can move in a
direction parallel to the u axes more easily than in any
other direction. r In the low field region where 8 /E i'
large, motion of the wall in the direction in which 8~

is a minimum should be highly favored. This direction
is parallel to the u axes where the minimum step is b,
one lattice constant. The activation energy for a
minimum step, for example, in a direction 45' to the

aU*= (Sb/3%3) o„:„«/P,E-,«(14)
The rate of nucleation is proportional to exp( —hU*/

kT) so that if the sidewise wall motion is controlled by
nucleations of this sort and if the number of nucleations
per unit length of wall is not field dependent, the wall
velocity can be expressed by
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Xi 1+
1

(»)
2 ln(a*v2/eb) )

with a* given by Eq. (12) is then solved for o.„.The
appropriate dielectric constant e is the clamped
crystal value, 2000." The lattice constant b is 4A.
For an applied field of 300 v cm ', one finds 0.„=0.42
ergs cm which is as expected with in an order of magni-
tude of the theoretical estimates. Other relevant
quantities are a*=3.6)(10 ' cm, /*= 16)&10 ' cm and
0.„=2.7 ergs cm '. The ratio of the wall energy term in

rs W. J. Merz, Phys. Rev. 91, 512 (1953).
rr W. J. Merz, Phys. Rev. 76, 1221 (1949).

a axes is 2& as large as the activation energy for a
minimum step parallel to the a axes.

The experimental data on the temperature depend-
ence of the wall velocity which cover a range of 12 C
give a change of 1%%uo in 8 per degree centigrade. ' Several
theoretical investigations' ' have concluded that the
180' domain wall energy varies as I','. Therefore, if it
is assumed that the temperature dependence of the
wall energy is through a dependence of 0-„on I',', then
8 will vary with temperature as I','T 'e &. With the
data for I', and e, as a function of temperature given
by Merz, "'r (d/dT)(P, 'T 'e, '*) results in a change of
5& equal to 0.6%%uo

'C '. Thus, there is fair agreement
between the temperature dependence of the experi-
mental and theoretical values of b.

So far no mention has been made of the magnitude of
5&, o-„, 0.„,etc. If the model is correct, the magnitude of
8~ should, of course, be equal to the experimental value.
One difhculty in estimating 8& is the value to use for
the wall energy 0„. Theoretical values of the 180'
domain wall energy range from about 1 to 10 ergs
cm ' and pertain to large area walls which are in the
plane of the ferroelectric axis. ' "In the present case,
the wall is very small in area (only one lattice constant
wide) and the wall is not in the plane of the ferroelectric
axis. Therefore, there is no assurance that the theoretical
estimates of the wall energy are relevant to the walls
under consideration here; however, one would guess
that the order of magnitude was correct. The approach
which has been taken is to equate the experimental
and theoretical values of 6 and solve for the wall energy.
The experimental values of 6 apply to the walls which
are at 45' to the a axes so that the minimum nucleation
step is not one lattice constant b, but 6&2. Therefore,
the fi which appears in Eqs. (8) and (16) should be
replaced with b&2. The experimental value of 5 will
be taken as 4000 v cm ' (13.3 esu) which is the figure
obtained from measurements in the low field region on
thick crystals where surface layer effects should be
minimized. ' The equation

16 2-' b& o„&
~

u*v2~ '

3v3kT e,'*& eb )

Eq. (2) to the depolarizing energy term is 3. The total
energy AU* is 5)(10 " ergs, or about 12 kT. The
assumption made earlier that l*/d«1 is a good approxi-
mation as d is of the order of 10 ' cm. Also, zi(a*/P)'
is small compared to unity as assumed earlier in
determining AU*.

The possibility of steps eb with e) 1 was suggested
as an explanation for the increase of —ding/d(1/Z)
with field. From Eqs. (8) and (14) it follows that for
small e

gU g sgU Q (19)

Even with the largest 6eld for which data are available,
about 5 esu, the second term is only 7%%uo of the first one.
Thus, in the measured Geld range steps greater than
the minimum probably do not occur with suKcient
frequency to have much eGect on the wall motion.
Therefore, the theoretical value of 6 is described by
Eq. (18) which predicts a decrease of 8i with field of
about 20%%uo as E goes 1 to 5 esu. The small increase of
the experimental value of 5 with 6eld remains unex-
plained by the model.

With applied fields of about 1000 v cm ', octagonal
shaped domains have geen observed. ' Thus, in this
field region, the walls which are parallel to the c axes
and those which are at 45' to the u axes move with the
same velocity. This means

V2 exp( —B,U4s*/kT) = exp( —AUe~/kT), (21)
with

8=1000v cm '.

Equation (21) requires that the wall energy be slightly
diGerent for nucleations on the two types of 180'
domain walls. The wall energy for nucleations on the
wall which is parallel to the a axes must be about 30%%uo

larger (o„=0.56 ergs cm ') than the o calculated
earlier.

What can be said regarding the subsequent growth
of the activated nucleus? The ratio of //a, which is
about 4 for the critical nucleus, in most cases cannot
possibly remain constant as the step attains its final
size. The final value of a cannot be greater than the
width of the parent domain which can, of course, be
several orders of magnitude less than the crystal
thickness. Since the data show that the wall velocity
does not depend on the size of the parent domain, it
seems likely that the anal value of a is the same for all
domains, therefore less than the smallest ones measured,
several microns in diameter. On the other hand, / most
likely approaches d as the step grows. In additio~, there
are theoretical considerations which also indicate that

where hU, * is the activation energy for the minimum
step and hU„* the value of AU* for a step e times the
minimum. With steps of eb, the wall velocity becomes

v = const/exp (—6Ui~/k T)+ 2exp (—2'6 Ui*/k T)

+3 exp( —3'EUi*/kT)+ . 7. (20)
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FIG. 2. Step in a 180'
domain wall which occurs when
the wall is pierced by a screw
dislocation normal to the walj.

the width a should not remain constant as l ~ d. The
depolarizing energy can decrease, and therefore tend to
increase the value of a beyond a*, as the nucleus ap-
proaches the opposite side of the crystal for at least
two reasons. First, the interaction of the polarization
charge on the sides of the nucleus with the opposite
electrode will reduce the depolarizing energy; and
secondly, as the nucleus grows, the polarization charge
in the side walls may be partially compensated by free
charge within the crystal. Another important point is
that sidewise motion of a wall moving in a continuous
manner parallel to itself is considered to be very
unlikely. Therefore, the activated nucleus would prefer
to grow in such a way that the amount of sidewise
motion of the edges was kept small. This would favor
a final value of a not much larger than c*.The edges of
the full grown nucleus are probably parallel, or nearly
parallel, to the ferroelectric axis since there is less
energy associated with a wall which has no polarization
charge on it, i.e., parallel to the ferroelectric axis, than
a wall which is slanted with respect to the ferroelectric
axis. For the reasons given above, it therefore seems
likely that the final shape of the grown nucleus is
that of a thin narrow slab, one lattice constant thick,
d in length and something larger than a* in width.

The nucleation model described above explains
many aspects of data; however, the model is not entirely
satisfactory. Some of the data have not been explained
and in addition, several assumptions of uncertain
validity have been made, e.g., the large area domain
wall is a plane parallel to the ferroelectric axis and the
6elds given in the data (the applied voltage divided by
the crystal thickness) are the local fields in the region
where nucleations are thought to occur. The dislocation
model described below has also been investigated in
some detail since it provides another mechanism for
sidewise wall motion with small applied fields.

R=o/2EI'„. (22)

/
/

R ~
I
I

/rr

brief presentation and do not significantly aGect the
qualitative conclusions presented.

It was suggested by Nakamura" that the presence
of a screw' dislocation could materially aGect the motion
of the domain wall. The reason is basically that if the
wall is pierced by a dislocation whose Burgers vector has
a component perpendicular to the wall, it becomes
impossible for the wall to be Qat. As shown in Fig. 2,
there must exist a step in the wall which extends outward
from the dislocation. Sidewise motion can then be
accomplished by merely "screwing" the step around the
dislocation in the appropriate sense, and one might
expect an activation energy for this process considerably
below that required for the bodily motion of the wall.

Now it is not, of course, realistic to consider the
presence of but one dislocation; but it is necessary to
consider only those dislocations whose direction and
Burgers vector both have a component perpendicular to
the wall (thus pure edge dislocations perpendicular to
the wall are ruled out). Let there be 2P such dislocations
per unit area of the wall, of which half are right-handed
screws and half left-handed. Each one of these is then a
terminal point of a wall step of the type shown in
Fig. 2; but these steps, instead of running out indef-
initely, now end on another dislocation of opposite
sense.

In the discussion which follows, it will be important
to know the distribution in length of the steps. Note
that the energy of a step of length l is o-bl, and that two
diferent types of distributions are possible. If the
temperature or the dislocation density is low, each
step will proceed to the nearest opposite dislocation
available, with (l)A, =P ~; whereas at high temperatures
or densities the average / will be thermally determined,
with (l)A, =kT/ob.

Consider now Fig. 3, which shows what will happen
to a wall step connecting two dislocations when an
electric held is applied. In this case the straight line is
no longer the equilibrium curve for the step. For the
isotropic case it is easily to show that if the depolarizing

energy is ignored, the step will be a circular arc whose
radius of curvature is given by

DISLOCATION MODEL

In the following analysis the crystal will be treated
as an isotropic medium, and the depolarizing energy
will be ignored. These two approximations permit. a

FiG. 3. Effect of an electric Geld on the shape of the step
produced in a 180 domain wall by paired screw dislocations of
opposite sense. The 180' domain-boundary is in the plane of the
figure. For R ) l, there are in general two circular arcs which con-
nect the ends of the step. The smaller one gives a stable con6gur-
ation, while the larger one is unstable and expands out.
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with the direction of bowing determined so as to increase
the volume of energetically favored polarization. As
Fig. 3 indicates, there are in general two possible arcs
of given curvature connecting two points; it turns out
that of these the shorter one is stable, whereas the
longer one is unstable. In other words, once the larger
arc is reached, it becomes energetically favorable for
it to expand without limit.

Now it is an important feature of this configuration
that if R(l the construction of Fig. 3 is impossible;
that is, a step of length 2/ possesses rto stable form if

E&o/2I', t. (23)

Instead„ the wall will expand in the sequence of Fig. 4,
continually sending out "ripples" which give rise to a
continuous advance of domain wall into or out of the
plane of the drawing. This mechanism bears an obvious
similarity to some processes of crystal growth and of
mechanical yield. '

Consider the consequences of such a mechanism.
Assume first that

P &ob))kT, (24)

f(E)= ~dL—exp( —4~pp) 3
~ l=aj2EPg

=exp( rrPo'/E'I' ') —(26)

Now this f(E) may be taken as the approximate
form of the dependence of wall velocity on applied Geld
for the present mechanism. Since the experiments
reveal a dependence whose exponent contains E '

(e) (b) (c)
FIG. 4. Motion of the step in a 180 domain wall when the

a,pplied 6eld is sufFiciently large so that the step possesses no
stable form. This mechanism serves to propagate the wall into
or out of the plane of the figure.

' See, for example, tA'. T. Read, Jr., Dislocations in Crystals
(McGraw-Hill Book Company, Inc. , New York, 1955).

so that each wall step goes from its initial dislocation
to the mearesI, available dislocation of opposite sense.
If these are randomly distributed, the probability p(t)dt
of a step having a half-length between t and l+dl is
given by

p(l)dl = —
d [exp (—4m.Pl') $. (25)

Therefore the fraction f(E) of "active" sources, that
is, of steps whose length is greater than the critical
value given by Eq. (23) is

rather than E—', one must choose among the following
three conclusions.

(I) The distribution of dislocations is not random,
but such that the integration in Eq. (26) yields an
exp( —b/E) law.

(II) The concentration of dislocations is so low that,
even at the lowest experimental fields, all the sources
are active; so that the rate-limiting process in the wall
motion is actually in the spreading of the "ripples. "

(III) The concentration of dislocations is so high
that, even at the highest experimental fields, virtually
mome of the sources are active, and wall motion occurs
by some other process.

Regarding conclusion I, an E ' exponent can be
obtained if one assumes a preference of dislocations of
opposite sense to be close together. In particular, it is
required that given a dislocation piercing the wall, the
probability per unit wall area of finding a dislocation of
opposite sense be inversely proportional to the distance
between the two. Such a distribution, if it existed, would

.have to arise during the original process of crystal
growth. Although it is true that dislocations of opposite
sense attract each other, there appears to be no plausible
reason for assuming that a very exact inverse distance
distribution results.

Regarding conclusion II, the experimental measure-
ments' go down to about 100 v cm ' so that according
to Eq. (23) the average distance between dislocations
would have to be well above 4X10 ' cm. This would be
somewhat surprising in a crystal grown under sgch
drastic nonequilibrium conditions. In any case, one
would expect the "ripples" to move out according to a
mobility-type law rather than an exponential of inverse
field.

Accordingly, conclusion III is left as the most
plausible one. With fields of a few thousand volts per
centimeter, Zq. (25) requires an average distance
between dislocations less than about 10 cm. It should
be noted that this is approximately the length of step
that would be thermally excited near room temperature,
so that regardless of the density of dislocations, some
active sources should appear at a few thousand volts
cm '. This may possibly explain the slight wall velocity
increase over the ordinary exponential law which has
been observed at higher fields.

It remains to consider the possibility that, even
though few or no "active" sources exist, the "passive"
ones might occasionally be thermally excited to the
unstable position of Fig. 3 and thus act as nucleation
centers. Now it is easy to see that at the lower experi-
mental fields such a process is not likely to contribute
appreciably to the wall motion. The reason is that if the
wall energy in the step is very small compared to the
activation energy required to reach the unstable state,
the step has no particular advantage as a nucleation
center over other points of the crystal. At very high
fields, on the other hand, such an activated process may
begin to contribute, thus providing a continuous
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transition with increasing field to the mechanism of
the previous paragraph.

SUMMARY

Two mechanisms have been investigated to explain
the experimental data on the sidewise motion of 180'
domain walls in single crystal BaTi03. A nucleation
model which assumes that the wall motion is controlled
by the nucleation of triangular steps along existing
180' walls satisfactorily explains much of the data.
Over limited field ranges, the model predicts a wall
velocity ucc exp —5/E, as observed. The theoretical
and experimental values of 8 agree if the wall energy
o-„ is set equal to 0.4 ergs cm ', a value in order of
magnitude agreement with theoretical estimates of the
wall energy. The shapes of the domains observed in the
low field region are in agreement with the model.
Furthermore, provided that slightly different wall
energies are assumed for nucleations on parent walls
parallel and at 45' to the crystalline a axes, the model

accounts for the change in domain shapes observed with
Geld in the neighborhood of 1000 v cm '. The measured
temperature dependence of the wall velocity is in fair
agreement with the nucleation model which gives a
variation of the activation field 5 with temperature
through P 3T 1e

A screw dislocation mechanism has also been dis-
cussed. If it is assumed that the screw dislocations of
both senses are randomly distributed in the crystal, and
that they are not too close together, then the expected
form of the wall velocity is e ~ exp( —const/Es) which is
not in agreement with experiment. The possibility that
screw dislocation sources may become active at higher
fields is suggested. Such a process may account for the
observed small increase in —d lne/d(1/E) with Geld.
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Extension of the Madelung Method. for the Evaluation of Lattice Sums
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The Madelung formulas for the electrostatic potential of a linear or planar Bravais lattice of ions,
neutralized by a uniform distribution of charge, are extended to the lattice sums over a linear or planar
Bravais lattice involving two-body interactions of the type R " (R, interatomic distance; n)0), evaluated
at points outside the lattice. The application of these generalized Madelung formulas in the evaluation of
the speci6c face energy for neutral planes of an ionic solid of composition MX is briefly discussed.

1. INTRODUCTION

A WELL-KNOWN method for the evaluation of
electrostatic lattice potentials is the so-called

Ncdelumg methad. ' In essence, the method involves the
expansion of the electrostatic potential of a Bravais
lattice of point charges, neutralized by a uniform
distribution of charge, into a Fourier series of complex
exponentials with the required periodicity. The series
that one obtains do not converge rapidly inside the
lattice itself, and thus the relevant results of the method
are the formulas for the electrostatic potential generated
by a neutralized linear or planar Bravais lattice in its
surroundings. We will show that these formulas can be
easily extended to the case of lattice sums over a linear
or planar Bravais lattice involving interactions between
pairs of atoms which decrease with some power of
the distance, such as the van der Waals interactions,
evaluated at points outside the lattice. In effect the

' See, e.g., M. Born, Atomtheorie des festen Zgstandes (B. G.
Teubner, Leipzig, 1923), Sec. 37 and G. Leibfried, Bandbgch der
Ehysik (Springer-Verlag, Berlin, 1955),Vol. VII/1, p. 104, Sec. 26.

formulas given by Hove and Krumhansp for interaction
energies of this type between a semi-infinite cubic or
square lattice of atoms and an atom outside it, as well
as the expressions given by Benson and his co-workers'
for various lattice sums of interest in the theory of the
surface energy of ionic crystals, can be regarded as par-
ticular applications of the generalized Madelung method.

2. LINEAR BRAVAIS LATTICE

We consider a linear Bravais lattice of period a
along the x axis with lattice points in the positions
xi= la (I,, integer) and a point (x,r), a distance r from
the line of the lattice (r)0). To evaluate the sum

+cd

S„(x,r) = (I)
&=~ L(x—x~)'Pr']~"

s J. Hove and J. A. Krumhansl, Phys. Rev. 92, 569 (1955).
3 B. M. E. van der Hoff and G. C. Benson, Can. J. Phys. 3I,

1087 (1953); G. C. Benson and H. P. Schreiber, Can. J. Phys.
33, 529 (1955); H. P. Schreiber and G. C. Benson, Can. J. Phys.
33, 534 (1955); F. van Zeggeren and G. C. Benson, J. Chem.
Phys. 26, 1077 (1957).


