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Low-Energy Scattering by a Compound System: Positrons on Atomic Hydrogen*t'f.
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The formalism, developed by Kato, which gives upper and lower bounds on the phase shift for the scat-
tering of a particle by a center of force has been generalized to apply to scattering by a compound system.
Particularly simple and useful results are obtained for the case of zero energy scattering where no composite
bound state exists. As a 6rst example, because of its relative simplicity, the problem of low-energy positron
scattering from atomic hydrogen, with zero total orbital angular momentum, is studied. It is shown that at
zero energy the ordinary Kohn variational calculation, which ignores second order contributions, provides
an upper bound on the scattering length, from which a bound on the cross section is deduced. For nonzero
energies a bound on the phase shift may similarly be obtained, but for a Gctitious problem with cutoff
potentials. If the energy is sufficiently small (less than 3 ev, say) the error thus incurred is expected to be
negligibly small. Numerical calculations performed at k=0 and ka0=0.2 lead to the result that at these
energies the effects of polarization are large enough to cause the positron to be on the whole attracted to the
hydrogen atom.

1. INTRODUCTION
' 'T is somewhat disconcerting that more than thirty
~ ~ years after the advent of quantum theory there
exists no general method that may be applied with
confidence to the calculation of the cross section for
scattering of a particle by a compound system, even if
the energy is sufficiently low so that only elastic scat-
tering is possible. The use of a variational method is in
itself by no means sufhcient to ensure any accuracy
whatever. In applications of the Kohn and Hulthen
forms of the variational principle certain consistency
criteria' are frequently used to check the validity of
the calculation. It is quite clear, however, that these
criteria are by no means completely satisfactory. The
knowledge that the consistency ratio is very diferent
from unity is, to be sure, a useful if negative piece of
information; the difhculty is that a consistency ratio
close to unity may imply nothing more than an accurate
calculation within the limitations, however severe and
inappropriate, of the assumed form of the wave func-
tion. This point has been illustrated by Bransden,
Dalgarno, John, and Seaton'; a still simpler example of
a complete failure of the consistency criteria is found
in the present e+II problem. A trial function involving
no polarization of the hydrogen atom will lead to
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f. A preliminary report was given at the Washington Meeting
of the American Physical Society in April, 1958 /Bull. Am. Phys.
Soc. 3, 171 (1958)j.' See, e.g., Yu. N. Demkov and F. P. Shepelenko, J. Fxptl.
Theoret. Phys. U.S.S.R. 33, 1483 (1957) /translation: Soviet
Phys. JETP 6(33), 1144 (1958)j. (These authors, we might note,
show that a consistency check and a comparison of the results
obtained from the Kohn and Hulthen methods are not inde-
pendent 'validity tests. )' Bransden, Dalgarno, John, @nd Seaton, Proc. Phys. $oc.
(London) 71, 882 (1958).

perfect consistency if the positron wave function is the
exact solution of the static problem, and yet at low
energies we 6nd that polarization plays a crucial role.
The weakness of the consistency checks is well recog-
nized, but though all agree with a previous author'
that "a foolish consistency is the hobgoblin of little
minds, " these checks have nevertheless been frequently
used simply because no better standards have been
available.

In the case of scattering by a static central potential,
where the cross section, 0, consists of a sum of partial
cross sections, O-I., each of which depends upon just one
real number, the phase shift ql, , a number of methods
have been devised for determining upper and lower
bounds on cotqL, and hence on 0-1..4 ' Perhaps the most
general of these methods is the one due to Kato. ' The
method was applied by Kato to the case of I =0 with
rather striking results. It has also been applied to
higher angular momenta'; the calculations are then
more cumbersome, but useful results can still be ob-
tained. Some improvements in the formalism itself
have also been effected, including the minimization of
the amount of a priori knowledge of ri r. which is required
before the method can be applied~; this will generally
be essential for the compound scatterer where (except
for zero energy) one ordinarily has no a pri ori knowledge
of g~ whatever.

It may be noted that the Kato formalism is by no
means restricted to quantum mechanical problems; it is
applicable to any problem that can be reduced to a set
of uncoupled differential equations, each having a
solution characterized by a single phase shift. For

3 R. W. Fmerson, Complete Essays (Random House, New York,
1940), p. 152.

W. Kohn, Revs, Modern Phys. 26, 292 (1954); T. Kikuta,
Progr. Theoret. Phys. (Kyoto} 12, 225 (1954); 12, 234 (1954).
J. Keller, Nuovo cimento 5, 1122 (1957); I. C. Percival, Proc.
Phys. Soc. (London) 70, 494 (1957).

5 T. Kato, Progr. Theoret. Phys. (Kyoto) 6, 295 (1950); 6, 394
(1951);Phys. Rev. 80, 475 (1950}.' L. Spruch and M. Kelly, Phys. Rev. 109, 2144 (1958).' L. Spruch, Phys. Rev. 109, 2149 (1958).
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example, the method has been applied to the study of
certain types of electromagnetic waveguides. '

It is to be expected that some difhculties will arise in
an attempt to generalize the Kato method to scattering
by a compound system, These difhculties will be dis-
cussed in Sec. 2 where it will also be shown that there
exist interesting circumstances under which they can
be circumvented. It is further to be anticipated that a
calculation which furnishes one or both bounds will be
more complicated than a variational calculation. While
this is generally the case, there are situations in which
an ordinary variational calculation gives a bound.

Of the many-body problems to which the erato
method can be applied we have thought it worthwhile,
for reasons of simplicity, to consider 6rst the scattering
of positrons by hydrogen atoms. '" (The absence of the
Pauli principle and the fact that no three-body bound
state exists simplify the analysis. ) Of course, the possi-
bility of positron-electron annihilation exists. However,
only at extremely small energies will the annihilation
process compete with elastic scattering, " Our subse-
quent "zero" energy results (see Sec. 4) may therefore
be interpreted as extrapolations from some small non-
zero energy.

2. THE KATO METHOD

A. The True Problem

To facilitate subsequent discussion we dehne a
problem with somewhat specialized conditions. We con-
sider the scattering of a particle (particle number 1) of
mass m~ from a system in its ground state consisting of
two particles of masses M and ns&, respectively. We take
nz~=m2 =—nz and choose 3E&&m so that the scattering
system is effectively a particle (particle number 2) of
mass m in a field of force. Particles 1 and 2 are assumed
to be distinguishable so that we need not concern our-
selves with the Pauli principle. Let E~, denote the
ground state energy of the second particle in the deld
of force; b,E2 is its minimum excitation energy. Corre-
spondingly, if the first particle can be bound to the
center of force, let E&, denote the ground-state energy.
If particles 1 and 2 can by themselves form one or
more bound states we denote their ground-state energy
by E»,. Finally, we let T& label the initial kinetic
energy of the incident particle. The discussion is
limited to scattering states of zero total orbital angular
momentum.

The Kato method is applicable only if the scattering
problem is such that the various angular momenta are
not coupled and if the scattering for a given angular
momentum can be completely characterized by one real

8 L. Spruch and R. Sartram (to be published).
'H. S. W. Massey and A. H. A. Moussa, Proc. Phys. Soc.

(London) 71, 38 (1958). There is a misprint in Eq. (15) of this
paper. See our Eq. (4.14) for the correct version.

' H. Moiseiwitsch, Proc. Phys. Soc. (London} 72, 139 (1958).
"W. S. Yeutsch and V. EV. Hughes, Phys. Rev. 103, 1266

(1956).

where II is the Hamiltonian of the system and E=E2,
+Tl is the total energy. Here rl ——

l rll, r2=
l rsl, and

r12——
l rl rsl, w—here rl and r2 are the position vectors

of the two particles measured from the center of
force. Deaning 88= (28N/f22) lE2, l, k'= (28N/A2)TI, and
W= —(281/f22)V for all three "potentials" W, , W, ,
and 8 ~2, we have

1 c) r) Jri 11 c)

+— f2' + l

—+—
I
—(1—p')—

Bf1 f2 Bfs Bfs ~f1 f2 ~ BP BP

+Wl(rl)+ W2(r2)+ W12(r12)+k' —8„(2.2)

where P is the cosine of the angle between rl and r2.
The exact solution, n&, must satisfy the boundary
conditions

288 + R(f2)Leos(kf I+())+cot('g t)) sill(kf 1+0)g

(2.3)
ug —&0, as r2 —+ ~,
ug ——0, at rg ——0,

where R(r2) is the exact ground-state wave function for
the bound particle, normalized such that

2 " r2'rzr2R'(r2) = 1.
0

(2 4)

phase shift. For the scattering of a particle by a center
of force, both of these conditions are realized if the
potential is spherically symmetric. In the many-body
scattering problem we must not only have potentials
which are independent of the spatial orientation of the
system as a whole, to allow a partial wave analysis, but
also certain energy relations must be satis6ed if the
characterization by one real phase shift is to be possible.
In particular, (1) Excitation or ionization must not be
possible; i.e., we must have TI&AE2. (2) Exchange
must not be possible, requiring lEs, l) lEl, l, and
further Tl&lE2, l

—lEl, l. (3) Pickup must not be
possible, requiring l E» l

)
l
E12, l

and further Tl &
l
E2,

l

In the case of positron scattering from hydrogen
atoms, we have

IE2. I

= 2e'/«, ~E2=-'IE2. I, E».= 2E2'

Exchange is not possible and conditions (1) and (3)
above require that Tl be less than ss lE2, l

and 2 lE2, l,
respectively. It is necessary therefore that the initial
positron energy be less than 6.8 ev in order that one
real phase shift completely characterize the L=0
scattering.

We return now to the more general problem and
a,ssume that conditions (1), (2), and (3) are satisfied.
The differential equation to be solved is

(2812/k ) (E If)228(rl f2 f12)/fl
—= (1/rl)zu8(rl, rs, r12) =0, (2.1)
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k cot(g —8) =k cot(2t —8)— N8ZN8d2.

r
+ w82w8d2 (2.5)

then carries over from the one-body case where now
dv =drir2'dr21fP and where

w8(r1 r2 r12) N8(r1 r2 &12) 288(r1 r2 r12) ~ (2.6)

Since w8 is a first order term, Eq. (2.5) constitutes a
variational principle for cot(FI—8) upon dropping the
last term.

The normalization parameter, 8, satisfies 0&8&x but is
otherwise arbitrary. The true phase shift, p, is deter-
mined by (2.1), (2.2), and (2.3). (We have here, and
in the following, dropped the subscript zero on g.)

We now introduce a trial function, N8(ri, r2, r12), which
satisfies the same boundary conditions as u& but with
the true phase shift, q, replaced by a trial phase shift, q.
Note that this still involves the exact wave function,
R(r2). The identity

first a restriction which does carry over from the one-
body case, namely, that p must vanish faster than 1/ri
as r~ becomes infinite in order that normalization accord-
ing to Eq. (2.8) be possible and the phase shift, 8(p),
be defined. The choice p=p(r2), for example, is elimi-
nated. " To eliminate pickup in the associated eigen-
value problem, which is defined for an infinitely broad
range of potential strengths, there are two alternatives.

(a) Choose p to be independent of r12, at least for ri
and/or r2 ~ ~ . Then E128 will be independent of p.

(b) Imagine the bound particle to be enclosed in a
box with perfectly rigid walls. The size of the box,
although finite, may be large enough so that the
deviation of the phase shift from that for the real
problem is negligibly small.

The exchange process may occur in the associated
problem even if it is absent in the real problem. Again
there are two alternative solutions.

(a') Choose p to be independent of ri, at least for
r& ~ ~. Then E~, will be independent of p, .

(b') Put the bound particle in a box, as in (b) above.

If this latter suggestion is adopted we require
B. The Associated Eigenvalue Problem

Consider the equation

(2.7)

rip(ri, r2, r12) ~ 0 as ri ~ ~

but p is otherwise arbitrary.

(2.11)

k '
1t „,+,8Pd2 =5„, 882, 88=0, &1, &2, , (2.8)

where 8„ is the Kronecker b-symbol, such that

p, 8 —+ const'(r2) sin(kri+8+8221), as ri —+ ~,
p8 —+0, as r2 —+ ~,
p, 8

=0, for r 1
——0.

(2.9)

We denote the smallest positive eigenvalue of the set
82„8 by u8 and the smallest (in magnitude) negative
eigenvalue by —P8. The Kato inequalities are

where p is a non-negative function to be chosen such
that the scattering problem determined by Eq. (2.7)
and by appropriate boundary. conditions is charac-
terized for each value of p by one real phase shift, 8(p).
Then there exists an infinite set of discrete eigenvalues
p 8 and corresponding eigenfunctions p„8 normalized by

3. APPLICATION TO POSITRON SCATTERING
BY HYDROGEN

Kato has shown for the static central potential that
if the potential cuts off outside a region of radius a then
P8

——~ if, in addition, the following conditions are
satisfied:

(1) ka&m- —8,

(2) g&8&2r.

This is a particularly interesting case since then a lower
bound may be obtained on the phase shift without the
necessity of evaluating the more difficult integral,
J'(218)2p 'dr. The analogous result holds in the three
body problem considered in Sec. 2. LIn this case the
required proof that 8(—~)=—ka (where p=O for
ri) a) is slightly more involved, though still trivial. "]

The many-body problem is generally complicated by
the difficulty that one cannot get even crude bounds
on g, so that condition (2) cannot be proved (assuming
that it is true). We have recourse here to the use of a

—n8 '
) (ZN8)2p 'd7& w82w8dr

&P8 '
~

(2288)2P 'di-. (2.10)

This forrnal development follows that for the one-
body problem, mututis nzltaedis. However, the actual
restrictions on p, referred to above, involve considera-
tions peculiar to the many-body problem. We observe

"The theorem which states that the phase shift for scattering
by a center of force is a monotonic function of the potential
strength for a potential of constant sign carries over to the many-
body case provided that the unperturbed energy of the compound
system remains fIxed as the potential strength varies. Thus,
another reason for demanding that p vanish with large r~ is that
the required monotonicity of B(p) with p will not be preserved if p
beCOmeS SOme funCtiOn Of r~ aS r1 ~ oo. FurthermOre, fOr large
negative values of p, , particle 2 would no longer be bound. The
boundary conditions, Eq. (2.9), would then be violated."See L. Spruch and L. Rosenberg, Research Report No. CX-40,
Division of Electromagnetic Research, Institute of Mathematical
Sciences, New York University (unpublished).
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"conditional inequality. '" We simply assume that con-
dition (2) is satisfied; the subsequent "conditional
inequality" for k cot(zl —8) may or may not be valid.
However, the bound on g deduced from the "conditional
inequality" on k cot(z)—t)) will be valid whether or zzol

the bound on k cot(zl —0) is valid, and therefore wkether

or zzot condition (2) is in fact satisfied.
Turning to the e+H problem, we consider the set of

"potentials"

+ 1(zt)+Wtz(z is) = —2(«z t) '+2(«z tz) ', z i«,

With the choice O=-, m. and with the definitions

—A = lim zi/k, —A =—lim z)/k,
Jt:-+0 k~o

d,=—lim zz; /k,
It:-+0

f
A. &A — NZ@dv, (3.2)

we have the following bound on the scattering length, 2:

where ao is the Bohr radius. For k suAiciently small,
a may be chosen large enough so that the neglect of the
true positron-hydrogen interaction which exists beyond
r~ ——a introduces a negligible error in the phase shift.
If k is zero, we may let a become in6nite, in which case
no distortion of the true potentials is introduced. '4 In
this case, the validity of the second condition stated
above, namely q&0(x, is deduced by assuming that
no three-body bound state exists for the positron-
hydrogen system (none has been found either experi-
mentally or theoretically" ). We then apply a theorem
which is the generalization to many-body systems of a
theorem proved by Levinson" for the scattering from a
static potential. It states that when the exclusion
principle is not in effect the phase shift for zero energy
scattering is ex where e is the number of bound states
of the composite system. ""From this we conclude
that g=0 for k=0. A completely rigorous proof of the
above theorem has not been given even for potentials
which fall o6 rapidly. A proof for the slowly decaying
Coulomb forces will be even more dificult, although

the result (assuming it applies to rapidly decaying

potentials) is perhaps made more reasonable by the

observation that the "effective interaction" of the

positron or electron with the atomic system falls off

fairly rapidly. For e+ on H, e.g. , it goes as 1/r4. Actually,
as will be noted in Sec. 5, the numerical results we have

obtained for the e+FI problem do not depend on the

validity of the above-mentioned theorem.

'4 Actually, as discussed in Sec. 2, the electron is to be thought
of as enclosed in a large box, which has no effect on the true
problem at zero energy but which limits the number of allowable
processes which can take place in the associated problem."C. Fronsdal and A. Ore, Physica 19, 605 (1953).

' N. Levinson, Kgl. Danske Videnskab. Selskab, Mat. -fys,
Medd. 25, No. 9 (1949). See also, J. M. Jauch, Helv. Phys. Acta
N, 143 (1957); and J. C. Polkinghorne, Proc. Cambridge Phil.
Soc. 54, 560 (1958).

z~ R. newton, Ann. Phys. 4, No. 1, 29 (1958).
' A generalization of Levinson's theorem to scattering by a

compound system has been given by Swan LP. Swan, Proc. Roy.
Soc. (London) A228, 10 (1955)j, including the eiTects ol the
exclusion principle, subject however to the approximation that the
polarization of the compound system can be neglected. (We might
note that in the absence of the Pauli principle the static approxi-
mation leads directly to the usual differential equation for which
Levinson's theorem is known to be true. ) By virtue of the profound
e6ects of polarization in the present problem (see Sec. 4), results
based on the static approximation clearly have no relevance here.

where u has the asymptotic form

—+ 4—:(2/gps) &s slap(A rt)
~1

(3.3)

One of the strong features of the Kato method is
that in general it provides a different bound for each
choice of 0. This is not true at k=0, however, where the
identical result is obtained for any 0 other than 0=0.
The choice 0=0 will lead to a valid bound on 2 only
if g approaches zero from below as k goes to zero, i.e.,
only if A is positive. In this case we have

A ')A '+A ' zzZzzdz. (3.4)

If u is sufficiently close to the true function such that A

is positive and such that ill«A, where

4. NUMERICAL CALCULATION

A. No Polarization Approximation, 0=0
To begin with, we consider the class of trial functions

of the form
u(rt, rs,r, s) =g(rz)f(rt). (4 &)

The required asymptotic form fixes g(rz) as

a(~p) =~(» ) = (2/«')'e """.
We also have

f(0)=0
f(zt) —+A rt, as rt ~~—(4.2)

then Eq. (3.4) may be rewritten as

A&A I+A 'I'+ ~—, if'i«A. (3.4')

Jt then follows (since A) 0) that Eq. (3.2) is superior
to Eq. (3.4). Therefore, for the special case of zero
energy scattering, where no composite bound state
exists, the problem of the optimum choice of 0 is par-
ticularly simple. One should use Eq. (3.2), which follows
from any choice of 8 satisfying 0&|3&m.
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A trial function in this product form corresponds to the
approximation (variously referred to as the no polariza-
tion approximation, the static approximation, and the
one-body approximation) in which the hydrogen atom
is not polarized by the incoming positron. We substitute
the above expression for u into Eq. (3.2) and integrate
over y2 and p. Dropping the subscript on yl we find

Jp
l~() l~ &1 (4 9)

With U(y)= —(1—/2)W, (y), this leads to n, )5/3. 21

If we choose

condition for the existence of a bound state for a
"potential" E/(y) is

A(A — I f(y) 2,f(y)dy, (4.3) f(y) =g (1 e—vr/00) y(1+—ge «/00) (4.10)

where

and
2,=d2/dy2+ W, (y), (4.4)

we find, with m=1.5 and q=2, that

0.5762ap &3,&0.5823ap. (4.11)

W, (y) = —(2/ap)e '"/" (1/up+1/y), (4 5) At the same time we have

so that in the static approximation the positron is
repelled by the hydrogen atom. The best possible
choice for f(y) would be f, (y), the exact wave function
for scattering by a 6xed potential, W, (y). This will now
be shown to follow from an application of the Kato
method to this one-body problem. " Since no bound
state exists for the potential W, (y)+/2p(y) with )2 nega-
tive we conclude from I.evinson's theorem that

6(/2) =0, /tl &0, (4.6)

and therefore that p1 = 00. Thus, for any trial func-
tion, f(y), we have

f(y) Z,f(y)dy,

where 2, is the exact scattering length for the static
problem. Since the equality holds only when f(y) =f, (y),
the statement above has been verified. From Eq. (4.3)
with f(y) =f, (y) we find that

A&A, . (4.g)

"It should be emphasized that in the remainder of subsection A
various quantities, and in particular, P& and ap, refer to this
(static) one-body problem and not to the true problem.

20 V. Bargmann, Proc. Natl. Acad. Sci. U.S. BS, 961 (1952).

In point of fact one cannot solve for f, (y) However, .
since we are dealing here with the scattering by a static
potential, at zero angular momentum and zero energy,
it is a trivial matter to find an upper bound on 2, and
hence on A. We will also find a lower bound. on A„'
a comparison of this lower bound with the upper bound
we shall subsequently deduce, taking into account the
effects of polarization, will give a measure of the limit
to the accuracy of the static approximation.

We have already shown that p1 = pp. Choosing
/p(y) = —W, (y) we observe that u; is the smallest posi-
tive value of /2 for which the "potential" W, (y)(1—

/2)

can support a bound state, for the appearance of a
bound state indicates that the phase shift has jumped
from zero to 2r.

l Actually, B(n; ) =-',2r.j Since W, (y)
X(1—/tl) isn t even attractive until /2=1, we immedi-
ately obtain a; &1.This lower bound can be improved
quite easily. Bargmann2P has shown that a necessary

A &0.5823ap. (4.12)

The cross section at zero energy, o.(k=0), is 42rA2.

The above result without an accompanying lower
bound does not exclude a large negative value of A and
therefore does not provide an upper or lower bound on
0 (k=0).

It is interesting to note that a lower bound on A, has
also been determined (though with less accuracy),
without performing a variational calculation. "

The presence of excited states of positronium would
spread out the wave function and one would therefore
expect that a value of t slightly less than ~ would be the

2' A comparison of (1—p, )IV, (r) with the Hulthen potential (see
the second paper mentioned in reference 5) leads to cry )2. We
prefer, however, to base the present result on an application of
the Bargmann theorem rather than on this rare occurrence of an
excellent comparison potential for which solutions may be ob-
tained analytically.

B. Polarization Considered, %=0

A trial function of the form 22=g(yl, y2) may take into
account, to some extent, the polarization of the hydro-
gen atom. It may be shown, "however, using arguments
quite similar to those employed in subsection 4A, that
this type of trial function leads to a positive bound on
the scattering length, a conclusion which is independent
of the particular form of g(yl, y2).

It is clear that a realistic trial function should depend
on rj, r2, used r~2. This dependence was chosen under
the physically plausible assumption that the polariza-
tion is largely accounted for by the virtual formation
of positronium. Since the latter has a ground-state
function proportional to exp( ——,'y)2/ap), the term
C exPl —(ty»/(20) —(vy2/ap)], the additional factor being
required for convergence, was added to a function
similar in form to the trial function, Eq. (4.10), which
was so successful in the static calculation. We have
chosen

6(y y yl)2=1(22/(ip)'lAe "2 0(1 8 "1 0)—
y /r r2/00+ gy g (Qrl/00) —(vr2/00)

+gy (r
—(lr12/00) —(vr2/$0)$ (4 13)
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T~LK I. Results for k=0, with the trial function given by
Eqs. (4.13) and (4.15), corresponding to the set of exponential
parameters {g,s, t, e}= f0.50, 0.95, 0.46, 0.78}.The consistency
ratio, Rrr is de6ned as Rrr= (A t—Ng'ldr)/A T.he second calcu.-
lation (D+0) yielded a trial function containing no nodes. Note
that while the second result is an improvement over the first,
its consistency ratio deviates further from unity.

A/ap

—1.3714—1.4453
2.6516
2.8106

—1,4620—1.4979
0—0.0532

Upper
bound

on A/ap

—1.356—1.397

Lower
bound

on r(k =0) Rz

7.357m ap~ 0.989
7.802~ap2 0.966

best choice. A number of sets of values of the expo-
nential parameters q, s, t, and v were tried, but nothing
even approaching a systematic determination of the
best set was attempted. "Best" is here defined as the
set which gives the lowest upper bound on A. Since the
results were found to be quite sensitive to the choice of
the exponential parameters the realization that 2
satisfies a minimum principle was a great computational
advantage. The linear parameters were of course de-
termined variationally for each choice of the exponential
parameters. Results are given in Table I."

The effect of polarization is rather dramatic. The
value of 2 is negative so that, contrary to the situation
in the static approximation, the positron is on the whole
attracted to the hydrogen atom. Further, an upper
bound on A now yields a lower bound on o.(k=0).

We note incidentally that the best value of t among
the sets considered was t=0.46, i.e., somewhat smaller
than —,', as expected.

Massey and Moussa' used a trial function of the form

N(ri, rs, ris) = (2/ass)ie "»'0

&& {sinkrt+(a+ (f/+orts)e ""0
X (1—e ""'))coskri). (4.14)

They determined p variationally for various values of k,
the smallest of which was k=0.2/as. Presumably they
avoided k=O because they did not trust the form of
their trial function for that value of k. If, nevertheless,
we use their form we find 2=0.512ao, this value does
not diGer appreciably from that obtained under the
static approximation. It should be noted that despite
the extremely poor value for 2 the above calculation
provides a consistency ratio

The results are collected in Table I.
The linear parameters were determined variationally,

i,e., without regard to the question of nodes; the re-
sultant tria, l function is nevertheless nodeless. Further,
the bound on 8 was lowered only slightly. These two
results suggest (in the absence of the other bound on A
we do not use a stronger word) that our bound on o.

may well be reasonably close to the true value. On the
other hand our trial function does not indicate the
presence of an effective polarization potential which
falls off asymptotically like 1/r', as demanded by
perturbation theory. '

Our trial function, Eq. (4.15), may now be used to
estimate the effective range, " ro, for the e+H system,
from the relation

re= (2/As) ~I (g s—gs)dr (4.16)

the other. These results speak strongly for the need for
obtaining bounds.

It would be dificult to say how reliable our result is
without obtaining a lover bound on A. We have been
unable to do so, for we have been unable to obtain a
lower bound on n//. (The difficulty is connected with our
inability to prove formally that a composite bound
state for e++II does not exist. ) We therefore sought
additional criteria for the accuracy of our results.

In particular, since no composite bound state exists,
we expect by analogy with the one-body problem that 6
should be nodeless. The trial function given by Eq.
(4.13) has nodes, although at physically uninteresting
points (rs large). Since attempts to remedy this by
varying the exponential parameters were unsuccessful
another term was added. This term was taken to be
proportional to exp( —6ris/as); if one thinks of this
term as being related to the virtual formation of posi-
tronium in its first excited state (it does not have pre-
cisely the correct form), one might expect that 8 should
be somewhere near 4. Further, since our previous
exponential factors directly coupled r2 and ri, and
r2 and r12, we have in this case chosen the additional
term to couple r1 and r12. We take it to be proportional
to exp( —2ri/as). Tl'le final form is

u(r, ,rs, ris) =u LEq. (4.13)]
+ (2/oos) kDrie —res/4ao sr'/ap (4.15)

Rrc ——
~

A — 8Zddr
~

A=1.04. The asymptotic function, 8„, is defined by Eq. (3.3).
We find

ro 110{). (4.17)
It is rather surprising that the two trial functions,
Eqs. (4.13) and (4.14), each containing r» dependence
and three variational parameters, lead to such strikingly
diferent results, corresponding as they do to an effective
attraction in one case and to an effective repulsion in

22 The integrals required in this and subsequent calculations are
evaluated in reference 13,

k cotr/= A '+-,'k'r—o- (4.18)

2' J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949);
H. A. Bethe, Phys. Rev. 76, 38 (1949).

This very large value of the effective range severely
restricts the domain of applicability of the shape inde-
pendent approximation,
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At the very best (if the coeKcient of k'res in the next
term is small" and if the expansion is in fact of the
same form as for the one-body case") Eq. (4.18) shouM
be useful only for krp somewhat less than unity, i,e. ,
kap somewhat less than 0.1.

k tanz/ =k tanr/+ „u..Zu..dr,j Q s (4 20)

where 2 is given by Eq. (2.2). The result of the calcu-
lation is q=0.1645,

I= I uf Zu;„dr= —0.0017/as,

and q=0.156. As a point of comparison we note that a
variational calculation (including polarization) per-
formed by Massey and Moussa' for the same scattering
energy gave p= —0.098.

Since the trial function is based on the zero energy
function which we expect to be quite good, we have
obtained what we believe to be an accurate estimate
of p, although not necessarily a lower bound. Before
considering the calculation involving the cuto6 poten-
tials we recall that the cutoff point, a, is limited by
the condition ka(x —8. In order to be able to pick the
largest value of a (for fixed k) we wish to choose the
smallest value of 0 consistent with the condition g(8.
(Note that we desire that this relation be satisfied, in
order that our bound be a useful one. As discussed
previously, the bound will be z/aisd in either case.) The

~4 In the e+H or e H problem, for example, gL, does not vanish
with k like k2 +' for 1.&0 (due to the long-range polarization
potential). Here the effective-range theory, in its usual form,
would not be applicable. (See reference 2.)

C. Polarization Considered, k/0
As indicated in Sec. 3, a bound on the phase shift

may be obtained for k/0 provided a cutoff potential is
introduced; for suKciently small nonzero energies the
cutoG point may be made large enough so that the
difference between zf and r/, (the phase shift in the pres-
ence of the cutoff potentials) is negligibly small. To
illustrate the procedure we describe here a determina-
tion of a lower bound on g, for kap=0. 2.

To begin with we ignore the question of obtaining a
bound and perform an ordinary variational calculation
for the true problem. We use a trial function which
reduces, as k —&0, to the zero energy function, Eq.
(4.15), namely,

(rr, rs, rts)/k= (2/ap )*')Ae '""coskri(1 —e ""')
rs/~zz sinkri/k-//-Prie s"z/ 0 z"z/~0

+( r e
—(znz/~o) (vrz/~o)+Dr e——(rzz/4ao) —(srz/ez) j (4 li9)

(The exponential parameters are fixed at the values
cited in Table I.) From the asymptotic form of this
function we see that A= —tant//k. The variational
principle is now

TABLE II. Results for ka&=0.2, using a trial function,
which is a slight modification of the function given in Eq. (4.19).
/The exponential parameters in Eq. (4.19) were taken to be the
same as those cited in Table I.g The bound is obtained on z/„ the
I.=O phase shift for the problem in which the positron interaction
vanishes outside a sphere of radius 14uo. Thus the difference
between g and g, is extremely small. A previous variational calcu-
lation, ' for the same energy, gave q = —0.098. All phase shifts are
in radians.

A/co

—0.8285—0.8300
2.0434
2.1159

—1.1271—1.1464
0—0.0412

Lower
bound
on $e

0.150
0.156

a See reference 9.

trial function, Eq. (4.19), is normalized with 8=szr.
This would lead to a =7.9ap. In order to obtain a
variational estimate of g corresponding to the use of a
trial function with different (and smaller) 0-normaliza-
tion, we may simply choose

us ——u; cosr//sin(r/ —0), (4.21)
so that

k cot(zf —(/) =k cot(r/ —0)—Lcosr//sin(r/ —0)]'I, (4.22)

where q and I have already been determined. We expect
that this variational estimate of p should change very
slowly as 0 is decreased from —,'m. . It is found, in fact,
that to three significant figures the result is unchanged
for (1 as small as 0.34. (Smaller values of 8 lead to
appreciably lower estimates of zf.) We have therefore
chosen 0=0.3400 which allows us to pick a= 14ap.

To obtain a bound on g, we must now perform a
simi1ar calculation with 2 replaced by 2, which con-
tains the cutoff potentials, Eq. (3.1).The trial function,
u& „must now satisfy the additional requirement that
Z,Ng, ,=0 for r~&a", while Ng, , must of course be con-
tinuous in slope and value. It may be shown" that a
function, Ng „may be chosen such that. , with a= 14ap,

sy, 2 Qp, G7 — sgZQgd7'

z/=- lim (zszr —kp.„), (4.23)

'~ This may be seen from the fact that in order to obtain Py = ~,
p must vanish beyond rz a However, j'(Zzzz, ,)z——p 'd. r should
exist.

is negligibly small. Therefore, the variational estimate
of g is actually a bound on q, and hence is extremely
likely to be a bound on q itself, since the contribution
of the potential in the region rj&a is expected to be
extremely small. Results appear in Table II.

It is easily shown, in the one-body problem, that if
the potential vanishes beyond r=a, and further, if
ka+zf&zr, then the wave function is nodeless in the
region r &a. Thus, the standard definition of the phase
shift, i.e.,
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can be written, in this case, as

q=em —kp, p & a, (4.23')

where p is the eth zero (not including the zero at the
origin) in the wave function. Now consider the point
r'= (vr —tl)/k. From the assumed restriction on tl it is
clear that r'&a. Now the wave function takes on its
asymptotic form beyond the point a, and must therefore
vanish at r' Bu. t from Eq. (4.23'), r'=pt, so that we
have shown that the first zero occurs beyond a.
In the present problem, under similar conditions (i.e.,
Wt+ W'ts ——0 for r,)a, and ka+tl(s. ) it may be shown
that the function

r

g(rt) —=
,

rs'drsdpR(rs) u(rt, rs,p) (4.24)

is nodeless for r~ (a. For a large enough it seems reason-
able (we have not proved it) that a stronger statement
can be made, namely, that I itself is nodeless for r&&a.
If we assume this statement to be true, it may be used
to test our trial function. With a=0 the function has
nodes for r~(a but these nodes do in fact disappear
when the full trial function is used. Further, this im-
provement in the trial function is accompanied by only
a small improvement in the bound on the phase shift.
Both of these considerations suggest that this bound
may well be in the neighborhood of the true value.

5. DISCUSSION

In our application of the Kato method to the case of
zero energy e+H scattering we have made use of two
assumptions, the completeness of the set of solutions,
p„,s, of the associated eigenvalue equation (Sec. 2), and
the validity of the generalization of I.evinson's theorem
to scattering by a compound system (Sec. 3). The
derivation of the inequality for the scattering length,
as we have presented it here, will then be completely
justified only when the validity of the above two
assumptions has been rigorously established.

We wish to point out, however, that the upper bound
deduced for the e+B scattering length is rigorous. It will
be observed that the final result, the expression for the
bound, contains no reference to the associated eigen-
value problem. This suggests that the final result, if
true, can be derived in a simpler, more direct fashion,
independently of the Kato method. This has in fact
turned out to be the case, and the proof has been given
for far more complicated systems than that considered
here. ' Further, an extension of this result has been
obtained to include situations where bound states do
exist. ' These latter methods, however, are limited to

Q„,s(r) ~ const sin(kr+8+m),

g,s(0) =0.
(A.1)

It is, however, more reasonable to assume that in order
to obtain a complete set of eigenfunctions the operator
Z+pp should be Hermitian, i.e., the boundary condi-
tions should be taken as'8

~t trap„, sdr — rk, sZwdr=0. (A.2)

the case of zero energy scattering and are specifically
designed to provide only the upper bound. Since the
Kato method is in principle applicable at al/ scattering
energies and can provide both bounds on the phase
shift we believe it to be well worth further investi-
gation, notwithstanding the various mathematical diffi-
culties which we have encountered, and it is for that
reason that we have presented in this paper the Kato
method as generalized to scattering of a particle by a
compound system.

We might note that for scattering by a center of
force for which there is no bound state, the fact that
the Kohn variational principle gives an upper bound on
the scattering length follows rigorously from the Kato
formalism, for in this case there is no question as
to completeness or as to the validity of I,evinson's
theorem.

The bound obtained on the s+H phase shift for k/0
has not received independent justification in the present
paper. (It can be done; we hope to return to this point
in the future. ) However, even as a variational calcula-
tion the result is noteworthy; we believe that the trial
function used was an extremely accurate one since it
was taken to be a direct extension of the zero energy
function constructed with the aid of a rigorous minimum
principle.
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APPENDIX

The boundary conditions chosen for the eigenfunc-
tions, P„s, i.e., Eqs. (2.9), are the most straightforward
generalization to the many-body problem of the form
used originally by Kato for the scattering of a particle
by a center of force, namely,

ss L. Spruch and L. Rosenberg, Phys. Rev. 117, 143 (1960);
Proceedings of the International Conference on Nuclear Forces
and the Few Nucleon Problem, London, July, 1959 PPergamon
Press, New York (to be published)j.

2r Rosenberg, Spruch, and O'Malley, Phys. Rev. (to be pub-
lished).

~8 We shall not attempt to give a proof of completeness under
the assumption of Eqs. (2.7) and (A.2). For a rather general
though not entirely rigorous proof of the completeness of eigen-
functions of a positive-de6nite, IIermitian'operator see P. M.
Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-
Hill Book Company, Inc. , New York, 1953), p. 777.



POSITRON SCATTERING BY ATOMIC H

The equivalence between Eq. {A.l) and the one-body
form of Eq. (A.2) may easily be displayed. This
equivalence does not carry over to the present problem,
however. If there exist solutions of the associated
eigenvalue equation with energies in the continuum,
which decay asymptotically, these solutions satisfy
Eq. (A.2) but not Eqs. (2.9). They would be required
for completeness but would not be included if the
boundary conditions given by Eqs. (2.9) are adopted.
A calculation of ne and Pe would have to take into
account the additional bound state solutions, thereby
possibly complicating the problem considerably. We
note, however, that if these additional solutions are
orthogonal to the function we are expanding (i.e., the
difference function w) their omission is of no conse-
quence in an application of the Kato method.

Now bound-state solutions embedded in the con-

tinuum exist by virtue of their belonging to a diA'erent

symmetry class from the scattering solutions and conse-
quently being orthogonal to them. If the trial function
is chosen with the correct symmetry properties then m

will be orthogonal to the additional decaying solutions.
Difhculties may arise if the true scattering solution has

symmetry properties which are not easily recognizable.
(Such difhculties are of course not peculiar to the
Kato method; they exist for the ordinary variational
principle as well. ) We do not believe that any hidden

symmetries exist in the e+H problem. In any event, as
we have already noted, we are able to claim complete
rigor for the bound we have obtained on the e+H

scattering length, aside from any questions of complete-

ness, by virtue of our having given an independent proof
of the validity of the bound.
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Measurement of the Total, , Differential, and Exchange Cross Sections for
the Scattering of Low-Energy Electrons by Potassium*f
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An atom beam recoil technique has been used to determine the
total, Q, differential, o (8), and differential exchange, o.,(8), cross
sections for the scattering of low-energy electrons by potassium.
The method consists of observing the angular distribution of
atoms scattered from a potassium atom beam which has been
cross fired by an electron beam. Relative values of o (8) are then
obtained by transforming to electron scattering angles. An
inhomogeneous magnet and collimating channel are used as a
velocity 6lter for the atom beam. Curves representing the vari-
ation of o. (0) with 0 between approximately 15' and 60' are

presented for various electron energies between 0.6 and 9.0 ev.
The magnet also serves to polarize the beam. Relative values

of o, (8) were determined by observing the amount of depolar-
ization of the beam in the scattering region, using a second
inhomogeneous magnet as an analyzer. Over the observed range
of angles, exchange accounts for approximately one third of the
scattering. Bounds on the total exchange cross section, Q„are
also tabulated for energies between 0.5 and 4.0 ev. The bounds.
on Q, at 0.5 volt are 0.8)(10 ~4 cm~ &Q, &1.6)(10 '4 cm2

1. INTRODUCTION

HE exchange interaction during an electron-atom
scattering event plays a significant role in many

scattering processes. Such interactions, however, have
not been extensively studied. In some recent experi-
ments performed by Dehmelt, ' Novick and Peters, '
and Franken et al. ,' bounds on the cross sections for
exchange scattering of thermal electrons by alkali
atoms have been obtained. In these experiments,
exchange cross sections were determined by observing
depolarization by free electrons of an alkali gas previ-
ously aligned by optical pumping.

* Supported by the OfBce of Naval Research.
t For preliminary reports of this work, see Bull. Am. Phys.

Soc. 2, 270 (1957) and Bull. Am. Phys. Soc. 4, 234 (1959).
)From part of a thesis submitted by K. Rubin in partial

fulQlment of the requirements for the degree of Doctor of Phi-
losophy, Department of Physics, New York University.' H. G. Dehmelt, Phys. Rev. 109, 381 (1958).' R. Novick and H. E. Peters, Phys. Rev. Letters 1, 54 (1958).' Franken, Sands, and Hobart, Phys. Rev. Letters 1, 52 (1958).

The main purpose of the present experiment was to
observe exchange events directly by cross firing a
pola'rized atom beam with a monoenergetic electron
beam. Exchange collisions result in a readily observable
partial depolarization of the atom beam. The method
thus makes it possible to study exchange scattering as
a function of electron energy. Furthermore, because of
the recoil suffered by scattered atoms, these can readily
be distinguished from the unscattered atom beam. 4'
It is, therefore, possible to investigate differential
scattering by observing the angular distribution of the
scattered atoms.

By the use of this method, we have determined
relative values of the differential cross section o. (8) and
the differential exchange cross section (ft)afor the
scattering of potassium by electrons over a range of

4 W. E. Lamb and R. C. Retherford, Phys. Rev. 79, 549 (1950).
~ Rubin, Perel, and Bederson, New York University Technical

Report No. 1, Nonr 285(15), 1957 (unpublished).


