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Excitation of Plasma Oscillations*
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The theory of Bohm and Gross and the experiments of Looney and Brown upon the excitation of plasma
oscillations by the two-stream mechanism, which appear superficially to be in disagreement, are here
shown to be compatible with each other and with related experiments.

1. INTRODUCTION

' 'N a paper bearing the above title published in 1954,
~ ~ Looney and Brown' reported the results of experi-
ments upon the interaction of an electron beam with
an electron plasma. The object and results of these
experiments are summarized by the following paragraph
taken from that paper:

"In 1949 Bohm and Gross' published a theory of
plasma electron oscillations based on a one-dimensional
analysis of a uniform infinite plasma. The theory
postulated that a traveling longitudinal potential field
could be excited by a beam of high-velocity electrons
in the plasma and that this could be used to explain
the energy transfer from a beam of high-energy particles
to the oscillation existing in the plasma. A large portion
of our experimental e8ort was devoted to injecting an
electron beam into a discharge plasma so as to generate
a plasma oscillation by the mechanism proposed by
Bohm and Gross. The electron beam injected into a
uniform plasma from an electron gun did not excite
observable plasma oscillations in any of the experi-
mental tubes constructed to satisfy the conditions of
the Bohm and Gross theory. However, as soon as the
discharge in the tube. . . was modified by introducing
large sheaths on the beam electrodes, oscillations were
immediately found at the same plasma density where

they were not observed in the 'infinite' plasma. "
The object of the present paper is to resolve the

apparent paradox between the theory of Bohm and
Gross and the experiments of Looney and Brown.

The aspect of the Bohm and Gross theory which is
being questioned is their treatment of perturbations of
two infinite uniform interpenetrating electron streams
(neutralized by ions), the result of which is summarized

by the dispersion relation

(co '/ro')+Lros'/(oo —ek)'j=1, (1.1)

where ~, and ~y are the I-angmuir frequencies of the
plasma and of the beam, respectively, and v is the
beam velocity. (The effect of nonzero plasma tempera-
ture is not included in this equation, since the tempera-
ture term of Bohm and Gross is unsatisfactory. This
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point will be discussed further in the next section. )
co and k are the radian frequency and wave number of
a Fourier component of the perturbation. It is found
that for su%ciently small real values of k,

k (k,—=e—'(co„'+tosb) '*, (1.2)

Eq. (1.1) leads to complex values of to. This implies
that the two-stream system is unstable against pertur-
bations of suKciently large wavelengths. It would
therefore appear that an electron beam injected into an
electron plasma should be unstable and lead to the
generation of oscillations; as Bohm and Gross pointed
out, this interpretation of the dispersion relation
receives some support from study of energy transfer in
the two-stream system. The fact that Looney and
Brown failed to observe such oscillations therefore
appears to contradict the Bohm-Gross theory.

In analyzing the above discrepancy, our first step
will be to examine more closely the inference which one
shouM draw from the dispersion relation (1.1) or from
modifications of this dispersion relation which include
the eGect of temperature. It has been shown in a recent
paper' that instabilities of propagating media may be
divided into two classes which are termed "convective"
and "nonconvective. " Convective instability provides
a mechanism for the spatial amplification of injected
disturbances. Nonconvective instability, on the other
hand, leads to disturbances which grow in time,
ultimately occupying the entire available region of the
medium (provided that the dimensions of the system
permit the appropriate range of wavelengths to be
excited). In Sec. 2, we shall discuss the kinematic
properties of the Bohm-Gross dispersion relation as it
applies to the Looney-Brown experiment, from which
we shall conclude that, in the original experiment in
which ion sheaths were absent, the plasma-beam
combination should have displayed amplification rather
than spontaneous oscillations.

In order to see what the observable sects of such
amplification would be, it is necessary to modify the
Bohm-Gross theory to apply to a thin beam passing
through a plasma. The appropriate dispersion relation
is derived in an Appendix and discussed in Sec. 3:
we conclude that the spatial amplification was too
small to have resulted in amplification of thermal
noise to the point at which the beam would display

P. A. Sturrock, Phys. Rev. 112, 1488 (1958).
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large-amplitude oscillations, in agreement with observa-
tions. We also confirm that the observation of standing-
wave oscillations when the plasma is modified by
biasing certain electrodes so that the plasma is bounded
by reAecting sheaths, and so that there exists a beam
of electrons traveling in the direction opposite to that
of the principal beam, is in agreement with the predic-
tions of the Bohm-Gross-type dispersion relation.

In Sec. 4, we shall discuss certain related experiments
and show them to be in agreement with our interpreta-
tion of the Looney-Brown experiment.

-m=ck
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2. KINEMATIC INTERPRETATION OF THE
DISPERSION RELATION

The classification of instabilities of two intersecting
streams of charged particles was discussed in reference 3
for the case that the streams are at zero temperature.
It was found that the instability is convective if the
stream velocities are nonzero and similarly directed,
and nonconvective if the stream velocities are nonzero
and oppositely directed. The case that one of the stream
velocities is zero is singular, and the theory quoted is not
applicable without modification. However, one can argue
that in this case the instability would be convective. Since
the mechanism for instability involves the interaction of
the two streams, one would expect that a growing
disturbance cannot propagate faster than the faster
beam, nor slower than the slower beam, and this may
be confirmed by I'ourier-transform analysis. If one
of the beams is stationary, it follows that any growing
disturbance must propagate in the direction of the
moving stream.

As has been pointed out by Allis, ' it is dissatisfying
merely to attempt to classify this singular case as
convective or nonconvective, since the behavior of
the real system will in fact be sensitive to other factors
which are ignored in this simple model. The most
obvious discrepancy between the Bohm-Gross model
and the Looney-Brown experiment is that the former
assumes infinite streams while the latter incorporates
streams of finite cross section. This point will be
discussed further in the next section, where we shall
find that its effect is quantitative rather than qualita-
tive; it affects the rate of instability or amplification,
but not the kinematic classification of the instability.

The dispersion relation (1.1) ignores the effect of
nonzero temperature of the electron plasma. (The
temperature of the beam is expected to be small
compared with that of the plasma. ) The form of the
dispersion relation proposed by Bohm and Gross to
tak.e account of this eGect was

2 ( c2$2 ) ~ 2

~ + = 1, (2.1)
co' ) (co—vk)'

4 E. Gordon, Massachusetts Institute of Technology Research
Laboratory of Electronics Quarterly Progress Report 85,
{unpublished), pp. 11—13.' W. P. Allis (private communication).

FIG. 1. Dispersion diagram for a thin beam in a thermal plasma.

co' —c'k' (co—vk)'
(2.3)

This is of the fourth order in both co and k; moreover,
it yields —c, e as the minimum and maximum values
of v„satisfying our expectation that disturbances may
propagate in both directions.

We now wish to determine whether the dispersion
relation (2.3) predicts convective or nonconvective
instability. To this end, we construct the dispersion
diagram shown in Fig. 1. The diagram is as shown

T. H. Havelock, The I'ropagati ort of Distrcrbartces il Dispersive
Media (Cambridge University Press, ¹wVork, 1914),

7R. W. GouM, Electron Tube and Microwave Laboratory
Technical Report No. 4, California Institute of Technology, 1955
(unpublished).

where we introduce c for the root-mean-square compo-
nent of electron velocity in the direction considered
by our one-dimensional analysis. As those authors noted,
this equation is objectionable in that it is of the sixth
order in co, although it is only of the fourth order in k.
A more serious objection is seen by evaluating the
characteristic velocities determined by

v, = lim (ro/k),

which represent the possible velocities of propagation
of discontinuities. The wave-front velocities are given
by the maximum and minimum values of v, (evaluated
for various modes). These are found from (2.1) to
be 0, ~ from which we infer that it is impossible for
any disturbance to propagate other than in the direction
of the beam although electrons of the plasma are travel-
ing in both directions. In this respect, the dispersion
relation (2.1) does not offer a satisfactory physical
description of the plasma-beam system.

A more satisfactory form of the two-stream dispersion
relation taking account of the plasma temperature may
be obtained by replacing the Maxwell distribution of
velocities of the plasma by a "spherical shell" distribu-
tion in which it is assumed that electrons of the
plasma all have the same speed, c, but that the velocities
are distributed isotropically. Bohm-Gross-type analysis
applied to such a model yields the following dispersion
relation:
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provided that
(2.4)

which will normally be satisfied since c&(e. The limbs
A, A' of Fig. 1 represent normal propagation since to
any real value of k corresponds a real value of co and
vice versa. The same is not true of the limbs 8, 8'.
real wave numbers lead to real frequencies only for
su%ciently large values of the wave number, and vice
versa. Reference to the criteria set out in reference 3
shows that the range of values of k for which ~ is
complex represents convective instability; the same
physical property of the system may be expressed
alternatively by the statement that the range of values
of co for which k is complex represents amplifying waves.

As a consequence of the above conclusions, we may
assert that an electron beam injected into a thermal
electron plasma should lead to amplification of noise or
other modulation along the length of the beam, but
should not result in large-amplitude standing waves
along the entire length of the beam.

where

cos (co—nk)'

V'= —,'to ssb' I ln (1/bk) —y I .

(3 1)

(3 2)

' G. J. Budker, proceedirtgs of the ClrR1V Symposirtrrr on &igh-
E~nergy Accelerators and Pion Physics, Geneva, 1956 (European
Organization of Nuclear Research, Geneva, 1956), Vol. I, p. 68.

3. MODIFIED DISPERSION RELATION FOR
THIN ELECTRON BEAM

We have already drawn attention to one of the most
obvious discrepancies between the model of Bohm-Gross
theory and the experiment of Looney and Brown: the
former deals with infinite streams whereas the latter
necessarily employed streams of finite dimensions.
The real wave number corresponding to the wave
with largest imaginary component of co is approximately
k, . Hence, if the beam radius b is large compared with
k, ', one may expect that infinite-beam theory provides
a useful approximation to the experiment; if, on the
other hand, b is appreciably smaller than k, ', infinite-
beam theory is inapplicable. In the Looney-Brown
experiment, typical values of the relevant quantities
are 6=0.05 cm, v=10' cm sec ' ~ =5)&10 sec '
cop=10' sec ', so that b is in fact smaller than k, '
with the consequence that infinite-beam theory is
inapplicable.

The dispersion relation which is appropriate to a
thin electron beam passing through an infinite plasma
may be obtained by slight modification of the calcula-
tion presented by Budker in his treatment of electro-
static oscillations in interacting beams of charged
particles. An alternative brief derivation of the
required relation is given in the Appendix. The result
is most conveniently expressed as

Since k appears in (3.2) only by way of the logarithmic
term, V is insensitive to wave number, so that it is
more appropriate to characterize the electron beam by
a "plasma velocity" than a "plasma frequency. " For
present purposes we ignore the nonzero temperature of
the plasma.

It is easy to solve (3.1) for k as a function of to. We
find that, for small beam perveance (i.e., b'cess«rr'), k
has its maximum imaginary part at a frequency just
below co~ and that the maximum value is given by

k, coo/2v. (3.3)

In the Looney-Brown experiment, we find that k;=2.5
cm ', corresponding to a gain of 20 db/cm. We should
therefore expect the beam break-up, if it occurred, to
be several centimeters from the point of entry into the
plasma, whereas the interaction length was only 1.5 cm.

We now inquire whether the dispersion relation (3.1)
is also compatible with the results of the second
Looney-Brown experiment, which incorporated a pair
of biased, and therefore reflecting, sheaths separated by
about 1.5 cm, and which led to oscillations. The
distinction between convective and nonconvective
instability is now redundant, since even if the principal
interaction mechanism between the primary beam and
the plasma gives rise to convective instability, the
fact that the region of excitation is bounded and the
fact that there is a return beam4 providing a feedback
mechanism will ensure that such instability will lead
to oscillations throughout this region. Hence we need
merely examine the range of wave numbers for which
(3.1) leads to complex values of to. We find the condition
for instability to be of the form (1.2), where now

ke ohio/rr) (3.4)

since V((~. We should expect oscillations to occur if
the sheath separation exceeds 0.6 cm, corresponding to
half the wavelength of the longest wave allowed by
(3.4). The fact that oscillations were observed, there-
fore, agrees with our theory.

4. DISCUSSION

We have seen in the last two sections that Bohm-
Gross theory, when applied to the Looney-Brown
experiment, leads one to expect that the beam will
exhibit amplification in the case that the rejecting
sheaths are not present. This is entirely in accord with
the analysis of the Merrill and Webb experiment'
published by Twiss'0 in 1951. Merrill and Webb in
fact used a larger beam of lower energy so that b was
appreciably larger than rr/ooo Infinite-. beam theory,
which was used by Twiss, may be considered appro-
priate and leads to much higher rates of amplification
(about 1/0 db/cm) than we found for the thin-beam

e H. J. Merrill and H. W. Webb, Phys. Rev. 55, 1191 (1939).I R. Q. Twiss, Proceedings of the Conference on Ionized
Media, London, 1951 (unpublished).
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model. This leads to amplification of shot-noise to
full dc amplitude in less than 1 centimeter, so that
Twiss was able to explain why the beam should exhibit
large-amplitude oscillations and break up at about this
distance from the point of entry of the beam into the
plasma.

Two-stream amplification due to the interaction of
an electron beam with an electron plasma has more
recently been the subject of experimental investigation
by Boyd, Field, and Gould. " Their experiments fully
confirm that, in the case that the plasma is stationary,
instability is convective rather than nonconvective.

If the electron plasma is not stationary, we should
ascribe velocities v„and v~ to the plasma and beam,
respectively. If thermal velocities also are taken into
account by the spherical-shell model, the dispersion
relation takes the form

=1.
(~—p k)' —esk2 (~—yak)2

(4.3)

Construction of the appropriate dispersion diagram
shows that the instability is convective only if v„&—c,
where we assume vq&0. Hence we should expect that if
the electron plasma is given a drift velocity exceeding
the mean thermal velocity in a direction opposite to
that of the electron beam, the instability would become
nonconvective so that large-amplitude standing-wave
oscillations would be set up.
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~4
m = —e—,

Bt2 Bs
(A.1)

where the electric potential P is given by

P(s, t) =Ne, ~ dSG[s 8 —1(s—,t)$, (A.2)

if G(s—s) is the potential at the point s due to a unit
charge at the point s'. Small-amplitude analysis leads to

821 (s,t) Mes
I
" 821'(s,t)

ds G(s—s),
Bt' m ~ 85'

(A.3)

which leads, on Fourier analysis, to the dispersion
relation

where

~2= 2m. (117e2/m) k2C(k)

G(k)=(1/22r) " dse
—"G(s)

(A.4)

(A.S)

For (s~ )b, G(s) is approximately )s~ '. Hence for
bk((1, (A.5) may be approximated to

1
I
"dt cost 1=- I in(1/bk) —

& I,
bk

(A.6)

where y is Euler's constant, so that the dispersion rela-
tion (A.4) becomes

Since
(a2 = (21Ve'/m) I ln(1/bk) —y I k'.

lV =m-b' e)

(A.7)

(A.8)

(A.7) may be written alternatively as

(A.9)

state from its position in the unperturbed state of the
beam. The equation of motion is

APPENDIX. DISPERSION RELATION FOR A THIN
BEAM IN AN INFINITE PLASMA

where
V'= -'2(o ssb2 I ln (1/kb) —y I . (A.10)

Consider a thin electron beam, of line-number density
N and radius b moving with velocity v through an
infinite plasma with Langmuir frequency co~. Initially,
we ignore the presence of the plasma and the velocity
of the beam. We seek an approximate dispersion relation
for the case bk&(1.

Let the beam lie along the s axis of a coordinate set
and let us characterize the perturbation of the beam
by the displacement 1 (s,t) of an electron in the perturbed

The effect of the beam velocity is taken into account
by replacing co by cv —vk. The eGect of the plasma is
taken into account by noting that it modifies the
dielectric constant to

e = 1—o),'/co2, (A.11)

so that the inverse of this quantity should be included
on the right-hand side of Eq. (A.2). Hence the dispersion
relation for the combined plasma and electron beam
becomes

"Boyd, Field, and Gould, Phys. Rev. 109, 1393 (1958). (~ 2/~2)+PP2k2/(~ pk)2j —1 (A.12)


