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An attempt is made to understand the negative results of Panofsky and Saxena and the positive results
of Frisch and Olson in terms of the theory of the interference effects in high-energy bremsstrahlung from
crystals worked out by Uberall. Several of the theoretical approximations are examined in detail: the
validity of the Born approximation, the calculation of temperature. eGects, the validity of the closure
approximation for the crystal lattice, and the use of the Debye form for the lattice vibration spectrum. It
is concluded that a11 of these are justified, except that a partial failure of the Born approximation may be
responsible for the nonappearance of the central minimum in the Frisch-Olson experiment. Crystal im-
perfections and multiple and inelastic scattering of the primary electrons are also considered brieQy, but
are found to be unimportant. No explanation is found for the Panofsky-Saxena results. The interference
should be enhanced by making the primary electron energy as large as possible and the ratio of photon to
electron energy as small as possible. In the case oi a diamond-type crystal the L110$ direction for the
electron beam is to be preferred to either the t 100] or the L111$direction. Little advantage is to be gained
from cooling the crystal.

I. INTRODUCTION II. VALIDITY OF THE BORN APPROXIMATION

It is customary to use the Born approximation in
calculating bremsstrahlung when the atomic number
Z of the atom that scatters the electron is not too large.
However, even for small Z, the phase change of the
wave function of an electron in traversing a crystal
can be very large, and the validity of an approximation
that uses plane waves for the incident and scattered
electrons should be questioned. The eGect of the
periodic potential V(r) of the crystal lattice on the
electron can be taken into account by using Bloch
wave functions N(r) exp(ik r) in place of plane waves,
where tt(r) has the periodicity of the lattice and
exp(ik r) satisfies periodic boundary conditions at the
edges of the crystal. This substitution has the effect of
replacing matrix elements of the form

l
'HE interference eGects to be expected in the

production of bremsstrahlung by high-energy
electrons in single crystal targets have been discussed
in several papers, ' most recently and in greatest detail
by Uberall. "Two experiments have been performed;
by Panofsky and Saxena, ' and by Frisch and Olson. '
The first of these does not show a significant intensity
variation as the angle between the primary electron
beam and the crystal axis is varied, although an in-
crease of about 25/q is expected for very small angles.
The second experiment shows an increase of a factor 2,
which is reported to be smaller than expected. The
present paper is an attempt to understand the relation
between the experimental results and the theoretical
predictions.

The next four sections are devoted to a detailed
examination of some of the approximations made by
Uberall: the use of the Born approximation (Sec. II);
the computation of the effects of thermal vibrations of
the crystal lattice under the assumption that any
change in the phonon occupation numbers is permis-
sible (we refer to this as the closure approximation)
(Sec. III); the validity of the closure approximation
(Sec. IU); the use of the simple Debye form for the
vibration spectrum of the lattice (Sec. U). Finally, in

Sec. VI, we summarize these theoretical results, and

discuss their relation to the experiments.

exp( iks r)—V(r) exp(iki r)d'r

by

J
exp( —iks r)LNs(r)V(r)tti(r)j exp(iki r)d'r. (2)

Now the interference e6'ects in crystal bremsstrahlung
are expected to arise from a combination of two factors.
(a) Owing to the lattice periodicity, the electron-
scattering matrix elements can be large only when the
momentum transfer vector q is very close to a vector
of the reciprocal lattice. ' For an expression of the form
(1), q=ki —k&, where ki and ks are related to the
initial and final electron momenta ko and kr and the
radiated photon momentum k~, in such a way that
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q lies in a thin pancake-shaped region that has the
following properties': it is oriented with its plane
perpendicular to the direction ko of the primary
electron; its radius in this plane is of order the electron
mass p, ', the perpendicular distance from the origin to
the nearer surface of the region is equal to y'k~/2kokg,
and the thickness of the region is also of this order
of magnitude. We choose units such that A= c=1.

These two factors imply that the intensity of the
radiation will depend on the number of reciprocal
lattice points that are contained in the pancake-shaped
region, which in turn depends on the orientation of the
region and hence on the direction of the primary elec-
trons with respect to the crystal lattice. There are now
two ways in which we can show that the substitution
of (2) for (1) has no substantial effect on the intensity.
We can say that the square bracket in (2) has the
same lattice periodicity as V(r) in (1), so that the
requirement that q be very close to a reciprocal lattice
vector is not affected by the replacement of plane
waves by Bloch wave functions. Or we can say that
N(r) can be written as a Fourier series in reciprocal
lattice vectors, so that the Bloch wave function is a
superposition of plane waves whose k vectors differ
from the original k by reciprocal lattice vectors. From
the latter point of view, any of these k's can be used
to specify the electron momentum, so that ko, kf, and
hence q are not defined within a reciprocal lattice
vector. But such a shift in the origin of the pancake-
shaped region has no effect on the number of reciprocal
lattice points it contains. We therefore expect no
qualitative change in the interference effects to arise
from the use of Bloch wave functions in place of plane
waves in the matrix elements. ~

There is, however, another effect to be considered.
The energy of a free electron is related to its momentum
through E= (k'+p') &; this E—k relation will be altered
for an electron in a periodic potential. If we replace
the free electron relation by

experiments4 ~ the direction of ko is accurately oriented
along or very close to a crystal axis. However, the elec-
tron beam would have to have its energy defined within
a few thousand electron volts, and its direction defined
within about 10 ' radian, in order that its ko not cross
a zone boundary. Thus we can expect that in practice
the second parenthesis in (6) will have a range of
values. If this range is comparable with the reciprocal
lattice spacing, it is apparent that the accompanying
shift in the pancake-shaped region will tend to wash
out the interference effect. If the range is comparable
with (5), which is much smaller than the reciprocal
lattice spacing in the situations of interest, the smeared-
out pancake-shaped region will contain the reciprocal
lattice points that lie in the plane through the origin
perpendicular to ko even when ko is along a crystal
axis; this will have the effect of washing out the
minimum predicted by 'Oberall when the angle between
ko and a crystal axis is precisely zero, but will still
leave an interference maximum for small values of this
angle. Finally, if the range is much smaller than (5),
the Born approximation will be valid.

We therefore proceed to estimate the quantity c that
appears in (4). The second-order Dirac equation may
be written

(E—V)V= ( V+ p')4y—i(e.gradV)4.

We wish to keep the terms of order EV, but not of
order V', on the left side. The last (spin) term on the
right side is of order gradV, and hence small in com-
parison with EV for the high-energy case of interest
here. We thus approximate (7) by

(E 2EV)f= ( V +p )f
and ignore the spinor character of P. For a particular
state i of energy E;, f; may be expanded in terms of
plane waves with momenta k; that differ from each
other by a reciprocal lattice vector:

E= (k'+p, ')&+a, p;= P; A,; exp(ik; r). (9)
where e is expected to be of the order of the lattice
potential V, we find that the location of the pancake-
shaped region described in (b) above is changed. The
distance from the origin to its nearest surface is changed
from

to
p'k~/2kokf

(ii'k, /2kokf) —(eo—eg),

7This lack of de6niteness of the electron momentum vectors
is related to the extinction effect known in connection with the
diffraction of x rays by crystals. The writer is indebted to F. Bloch
for discussion of the extinction effect.

where Ep and ty are the quantities defined by (4) for
the initial and final electrons, respectively. Now an e is
expected to be largest when its corresponding k ap-
proaches the boundary of a Brillouin zone. In the

What we wish to do is diagonalize the energy for a
group of n plane-wave states that are connected to each
other by matrix elements of V and whose unperturbed
energies differ by amounts that are less than or of
order V. These plane waves may be thought of as
having k vectors that cluster about the nominal
vector ko for the group (which we have already seen is
not defined within a reciprocal lattice vector), and
whose displacements from ko are a small number of
reciprocal lattice unit vectors. We associate an un-

perturbed EP with each vector k;, and Eo with ko, in

accordance with the energy-momentum relation for a
free electron.

Substitution of (9) into (8) yields, to an approxi-
mation that is consistent with the neglect of the V'
term in (7), the following set of equations for the
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energy eigenvalues of (8):

(Es—Eo)A;; = (Ero E—o)As, +pi Aav &;,

V,;=0 ' t V(r) expLi(k; —k;) rjd'r,

(10)

where i,j, l run from 1 to n; each term in these equations
is of order V, and

V,;=S(g)a ' v(r) exp(ig. r)d'r. (16)

a, and a summation over the primitive space lattice
which is simple cubic. In this case, the gs form a
simple cubic lattice with edge length 2pr/a. If there
are E atoms in the crystal, the second part of the
L-sum is equal to /V/8, while the first part yields the
structure factor S(g). Since /t//80=1/as, (15) may be
written:

where 0 is the volume of the entire crystal. It follows
from (10) that (E; Ep Vo—) ar—e the eigenvalues of
the matrix (EP Eo V—p)bi—&'+ Vi;, where

Vp= V;;=0 ' V(r)d'r.

Thus by taking traces of the matrix and its square we
6nd that

Z (E' Eo Vo)-=2—(E"—Eo), (12)

2 (E.—Eo—V )'=Z' (E'—Ep)'+Z Z I
V I' (13)

If we start from a set of unperturbed states that
have nearly the same energy, the right side of (12) will

be very small, and the average of the perturbed energies
E; will be very close to Ep+Vp. The first term on the
right side of (13) will also be very small in this case,
and the mean square deviation of E; from its average
will be very close to

(14)
i i'

The right side of (14) is obtained from the left side by
noting that the i-summation results approximately in
a factor n. The shift Vp in the average E; is not signi-
ficant, since it appears in both the initial and the final
electron states, and hence drops out of (6). Thus (14)
provides a simple estimate for the square of one of the
e's that appear in (6).

The lattice potential V(r) may be written

V(r) =Pz, n(r —L),

where e(r) is the atomic potential and L is the vector
position of any atom (for a composite lattice, L includes
the atoms within the unit cell as well as the primitive
space lattice vectors). Thus, with g=k; —k;, which is
a reciprocal lattice vector, (11) becomes:

U;;=0 'P exp(ig L) I o(r) exp(ig r)d'r. (15)
L J

For a diamond lattice (the experiments were performed
with silicon and germanium) the summation over L
may be expressed as the resultant of a summation over
the eight atoms in a fundamental cube of edge length

It is easily verified that S(g) vanishes except when g
lies on either of two parallel lattices: (1) a face-centered
cubic lattice of edge length 87r/a with a lattice point
at the origin, for which $(g)=8; (2) a simple cubic
lattice of edge length 4pr/a located such that the origin
is at the center of a lattice cube, for which S(g) =4(1&i)
at alternate lattice points (this may also be described
as a sodium chloride lattice of edge length Spr/a). A
convenient approximate form for o(r) is —(Ze'/r)
&&exp( —r/b), with b=hs/me'Z&; in the case of silicon
this is quite close to the potential (self-consistent
without exchange) computed by Mullaney' for the
important region of small r and large e. Then the
integral in (16)„becomes:

o(r) exp(ig r)d'r= —4prZe'b'/(1+g'b') (1/)

In computing the right side of (14) we are only
interested in including those states whose unperturbed
energies diQer by amounts that are less than or of
order V;;. From (16) and (1'/) we find that V;; is less
than or of order 5 ev for silicon and germanium. Now
if g is parallel to kp the unperturbed energy difference
is of the order of g, which is at least several thousand
electron volts; on the other hand if g is perpendicular
to kp the unperturbed energy difference is roughly
g'/2kp, which is of order a few hundredths of an electron
volt. Thus we include in the J-summation of (14) only
the g's that lie in a plane perpendicular to kp. For an
order-of-magnitude estimate we replace the sum by an
integral over the plane:

Q I
V, ,

I

2 L2~o (~Zesb2)s/ap] kg/(1+gsbs)2
jwi Jp

= 16m-'o Z'e4b'/a'. (l8)

Here o- is defined so that 2xgo-dg is the average sum of

I S(g) I' over the annular ring of radius g and width dg;
the infinite upper limit can be used since the integral
converges. The value of o- evidently depends on the
direction of kp with respect to the crystal axes;~for kp

along the L100j axis a =2(a/pr)s, for kp along the 110
axis a=8&(a/pr)s, and for kp along the I 111$ axis
a= (4/3'*) (a/~)'

In the Panofsky-Saxena experiment, silicon was used

s J. F. Mullsney, Phys. Rev. 66, 326 (1944).
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and the electron beam was along the L100] axis.4 Then
Z=14, @=5.43)&10 ' cm and b=2.20&(10 ' cm, so
that the square root of (18) is about 13 ev. For com-
parison, the quantity (5), with kp

——600 Mev and
k~=235 Mev, is about 140 ev. Thus we cannot account
for the absence of interference in this experiment in
terms of a failure of the Born approximation.

In the Frisch-Olson experiment germanium was
used and the electron beam was along the [110]axis. '
Then Z=32, a=5.66&(10 and 6=1.67)&10 cm, so
that the square root of (18) is about 29 ev. For com-
parison the quantity (5), with kp=1 Bev and kr= 100
Mev, is about 15 ev; the distance between adjacent
reciprocal lattice planes is 8isr/a=3100 ev. Thus the
inadequacy of the Born approximation in this case is
expected to remove the central minimum, as is observed,
but not to wash out the interference maximum.

III. TEMPERATURE EFFECTS ASSUMING
THE CLOSURE APPROXIMATION

where q is given by (3), ur, is the displacemen. t of the
atom at the lattice site L from its equilibrium position,
and M' is the radiative matrix element for a single
atom. The closure approximation consists in neglecting
the dependence of M on the energy change of the
lattice, and summing the squared matrix element over
the n; for fixed q. We therefore have to calculate the
expectation value of

L expiq (L+uL) I'

for the m; that correspond to the temperature T.
Physically this approximation is equivalent to the
assumption that the bremsstrahlung can be calculated
from atoms at fixed positions (L+ui,), and the resulting
intensity then averaged over the temperature distribu-
tion of the uL.

For a large crystal containing E atoms the expectation
value of (20) may be written

PL PL'expiq (L—L')(expiq (ui, —uL))r
=X P& f&(1) expiq 1, (21)

where 1=L—L' and the dependence of

fr(1) =(expiq (uL —uL ))r (22)

The basic process under consideration is the transition
from a state in which the electron has momentum ko
and the crystal lattice has a set of phonon occupation
numbers nz; to a state in which the electron has momen-
tum kr, the photon has momentum k, and the lattice
has phonon occupation numbers e;. We assume in this
section that the values of the e; are not observationally
significant, so that all possible sets can be summed
over. We call this the closure approximation, and
inquire into its validity in the next section.

The basic matrix element may be written

(sst, ass,
~
PL expiq (L+ui)

~
ml srg '')'

XM (kp, kr,k7), (19)

on L and L' separately (surface effect) is neglected.
The computation of (22) proceeds by expanding ur, in
terms of quantized waves (phonons) of propagation
vector k. In actuality, there are iY/8 such independent
vectors that fill uniformly a cell of volume (2s-/a)s in
reciprocal lattice space, and for each k there are 24
independent modes that arise from the three coordinates
of the eight atoms in the fundamental cube of edge
length a.' However, we shall only require rather
general properties of fr that are independent of the
crystal structure. It is, then, sufhcient for our computa-
tion to use a simple cubic lattice instead of a diamond
lattice, and this results in a considerable simplification.
The space lattice constant is then a/2, and there are
X independent phonon propagation vectors k that fill

uniformly a cell of volume (4r/a)s in reciprocal lattice
space. The lattice frequency spectrum co(k) determines
the phonon occupation numbers for the particular
value of T.

Several calculations related to the evaluation of (22)
appear in the literature, in connection with ferro-
magnetism, ' the diffuse spots in x-ray diGraction, ""
and slow neutron capture" and scattering. ' We there-
fore omit the details here, and simply quote the result:

fr(1) =exp —P Lq'/2MNco(k)](1 —cosk I)

2
X 1+

expL(o (k)/aT] —1
(23)

Here ~ is Boltzmann's constant and M is the atomic
mass.

In the remainder of this section we use the simple
Debye form

(24)to(k) =sk

for the vibrational spectrum of the lattice, where v is
the velocity of sound in the crystal, and approximate
the summation in (23) by an integration, S(a/4or) sJ'dsk,
over a sphere of radius

k„=(o„/s = (4s/a) (3/4s.)&=aO/e, (25)

where 0' is the Debye temperature. The summation in
(23) then becomes

sin'(k I/2)-—luff(l) =Apg' 1— +4(T/0')s
(k„I/2)

tr sinXyy ydy
X 1I I, (26)

Xy ) expy —1
' See for example R. E. Peierls, QNarrrlss Theory of Solids

(Oxford University Press, New York, 1955 ), Chap. I.' F. Bloch, Z. Physik 74, 295 (1932)."H. Ott, Ann. Physik 23, 169 (1935).
"M. Born and K. Sarginson, Proc. Roy. Soc. (London) A179,

69 (1942)."H. A. Jahn, Proc. Roy. Soc. (London) A179, 320 (1942).' W. E. Lamb, Jr., Phys. Rev. 55, 190 (1939).
's A. C. Zemach and R. J. Glauber, Phys. Rev. 101, 118 (1956).
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where AO=3/4M~0 and X= A lT/O~. The corresponding
expression obtained by Uberall2 is contained in his
Eqs. (35) and (36), and differs from our Eq. (26)
because of approximations made by him. Now the fr (I)
given by (26) is equal to unity for 1=0, and approaches
exp( —Aq~) as I becomes very large, where

XP fy(1) exp(iq I)

=1V d'l' fz (I') exp(iq I')P b(l —I')

d'l'fr(1') exp(iq I')P(2s.) ' d'lt expik (I—I')
1 4

=X ~d'k Q exp(ik 1)yp(q —k),

where

Pi(k)=(2m) ' d'le(I) exp(ik I)

is the Fourier transform of f~(1). In evaluating the
I-summation it is necessary to use the true crystal
structure, since it is at this point that the dependence
of the pancake-shaped region on its orientation with

respect to the reciprocal lattice arises. It is sufficient

to evaluate it for an infinitely large crystal, remembering
that I=L—L' is itself a space lattice vector:

Pi exp(ik I) = (2+/a)' Ps S(g)b(k —g),

where S(g) is the structure factor defined below Eq.
(16).Thus the right side of (21) becomes:

E Pi fr(1) exp(iq I)=E(2~/u)' Ps S(g)pr(q —g). (28)

Now if fz (I) were equal to unity for all I (complete
correlation, so that the ui, all equal each other), @r(k)
would be equal to 8(k), and the interference would be
that corresponding to a perfect crystal with no zero-

point or thermal motion of the atoms. If fT (I) were to

A =A, 1.+4(T/O) " . (27)
expy —1

'

Uberall approximates further by using this asymptotic
value of fr(1) for all I different from zero. Since fr(l)
actually lies between unity and its asymptotic value
for moderate values of I, it is apparent that Uberall's
calculation underestimates the correlation between the
motions (zero-point and thermal) of near neighbor
atoms in the crystal, and hence underestimates the
interference effect in bremsstrahlung.

The additional correlation may be estimated in the
following way. While fi (I) only has physical meaning
when I is a space lattice vector, Eq. (23) or (26) defines
it as a continuous function of 1. The right side of (21)
can therefore be rewritten:

IV. VALIDITY OF THE CLOSURE APPROXIMATION

The closure approximation is expected to be valid if
the energy

e=P; (n;—m;)s), (30)

transferred to the crystal in the basic process described

by the matrix element (19) is too small to be observa-
tionally significant. Since this e appears in the same
way as the quantity (eo—et) in (6), it must be at least
of order 10 ev before it can be of importance for the
present experiments. To And the distribution with
respect to e we multiply the squared matrix element

(19) by

~E~ Z(n, m;)~—,j—
pQO

= (2s)—' dt expire —Q(n, —m, )~d,]t
—00 IL

before summing over the e;.' The summation over the
e;, and the calculation of the expectation value of the

"L.I. Schiff, Phys. Rev. 83, 252 {1951).

approach zero for large I, gi(k) would have a finite
maximum at k=O, and fall oG to zero for large k.
Actually, as we have seen, fi (I) approaches exp( —Aq')
for large I; thus @i (k) can be written

gr(k) =8(k) exp( —Aq')+Pi'(k), (29)

where Pi'(k) has a finite maximum at k=0 and falls
off to zero for large k.

As pointed out near the beginning of Sec. II, inter-
ference arises because of the inclusion of varying
numbers of reciprocal lattice points within the pancake-
shaped region as the direction of the primary electron
is varied. Uberall's approximations are equivalent to
the assumption that pz'(k) in (29) is nearly constant
over a reciprocal lattice spacing. Since it is actually
peaked at k=O, a portion of it should be included with
the 5-function in computing the change in intensity as
the primary electron direction is varied. While it is
difficult to make a quantitative computation of the
magnitude of this effect, it is readily seen that it is
quite small. It can only be significant when the damping
factor exp( —Aq') is appreciably smaller than unity,
since only then can it matter if part of the continuum
associated with Pr (k) is included with the b-function.
However, the bremsstrahlung cross section falls off
with increasing q because of the atomic form factor,
and q values much greater than the reciprocal of the
screening radius" (111/pZ') do not contribute in an
important way. For this value of q the damping factor
is equal to exp —A (pZ&/111)'=0.87 for silicon at room
temperature (Z= 14, A =280/ti'). A rough numerical
estimate indicates that the theoretically expected
interference effect found by Uberall should be increased

by only a few percent. This is too small to be significant
in connection with the present experiments.
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result for the m, that correspond to the temperature 1,
can then be carried through by making use of an
elegant formalism developed by Zemach and Glauber. "
This formalism replaces the factor exp( —s g;tt, oi;t)

by exp( —iHt) operating on the final state, and
exp(s P;m, &u;t) by exp(sHt) operating on the initial
state, where H is the Hamiltonian for the lattice
vibrations. The amplitudes of the lattice normal modes
can then be replaced by t-dependent amplitudes.

The result of the calculation is that the quantity
fr(1) defined by (22) is replaced by

fr(e, l) = (2') ' dt exp(iet)

Xexp —P(q'/2MEoi(k) j L1—coso&(k) t cosk 1j

V. LATTICE VIBRATION SPECTRUM

It is generally recognized that the vibrational spectra
of silicon and germanium differ signihcantly from the
simple Debye form. '" " The spectrum may be ex-
pressed in terms of the number of lattice modes e(&u)doi

that have angular frequencies between oi and oi+doi.
A knowledge of N(o&), together with the assumption
of isotropy, makes it possible to reduce (23) to a form
analogous to that given in (26) for the Debye spectrum.

Integration over the polar angles of k in (23) leads to

!'"( sinks)—lnfr (1)= (q'a'/32m'M)
&s ( kl )

2
X 1+ (k'/o~) dk, (32)

exp( /aT) 1—
2

X 1+
exp/or (k)/aT j—1.

+i sino~(k)t cosk l . (31)
ri (oi) dto = 4n k'dk, (33)

where k =(4s/a)(3/4s. )&. If we assume there is a
single-valued relation between co and k, this relation
can be determined from the condition

It is apparent that J'„"fr(e, l)de is equal to f&(1) given
in (23), as of course it must be.

Equation (31) has a quite complicated structure,
even when the Debye approximation for oi(k) is made.
Its general dependence on e can, however, be inferred
by inspection. Thus if all oi(k) were zero, fr(e, 1) would
be proportional to 8(e). The actual range of oi(k)
determines the scale of the dependence of the second
exponential on t, through the factors cosa&(k)t and
sino&(k)t. The smallest scale of the t-dependence is of
order 1/oi, , so that the largest range of the
dependence of fr(e, l) is of order c0,„. From (25),

=aO', which for silicon and germanium is somewhat
less than 0.1 ev. Thus the spread of the e-dependence
of fr(e, l) about e=0 is so small that it can be ignored,
and the closure approximation is excellent in this
situation.

It might seem at first that the k-summation in (31)
would increase the effective value of oi(k) to a much
larger value, perhaps even as large as 1Va&(k). However,
the k-summation over 3)V lattice modes is balanced by
the factor E in the denominator, so that it is actually
the individual mode frequencies that are significant.
A more physical way of seeing this is to note that the
eGective mass of a lattice mode oscillator is not of the
order of the atomic mass M, but rather of the order of
the- entire crystal mass %3'." This means that the
transition probability for emission or absorption of n
phonons is proportional to X ". Thus the important
transitions for large N are those in which e diferent
modes each emit or absorb a single phonon, not those
in which any one mode emits or absorbs more than one
phonon. The number of combinations of e modes is
(3X)!/ri!(31V I)!, from which it f—ollows that the
expectation value of the energy transfer must be of
order to(k), as was inferred from inspection of (31).

which may be integrated to give

(34)

dp
e(oi) dpi =4rk '/3 = (4s/a)'. (36)

In order to estimate the eGect of replacing the Debye
form for n(&o) by a more realistic spectrum, we compute
the asymptotic value of (35) when 1 —& ~. This means
that the quantity A in (27) is to be replaced by

l"

1+ N(co) dt's/co
& p exp(oi/aT) —1

(37)

e(co)doi
Jp

"H. Cole and E. Kineke, Phys. Rev. Letters 1, 360 (1958)."J.C. Phillips, Phys. Rev. 113, 147 (1959).
Flubacher, Leadbetter, and Morrison, Phil. Mag. 4, 273

(1959) i the writer is indebted to J. C. Phillips for calling his
attention to this paper and its relevance for the numerical com-
putations of Sec. V.

2' B. N. Srockhouse, Phys. Rev. Letters 2, 256 (1959).
'Palevsky, Hughes, Kley, and Tunkelo, Phys. Rev. Letters

2, 258 (1959).

We make use of (33) to change the variable of integra-
tion in (32) from k to oi.

sinkl )—lnf&(1) = (q'a'/128~'~)
kl )

2
X 1+ n(~)de/~ (35)

exp (oi/aT) —1

where k is given in terms of &o by (34).The normalization
of N(ru) can also be found from (34):
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p„= (3Ã) ' v"G(v)dv (3S)

where v=cv/2s, G(v)dv=e(co)der, and Jjg G(v)dv=31V
is the total number of lattice modes in the crystal;
there is, of course, no reason why the finite upper
limits in the integrals of (37) cannot be replaced by
infinity, as in (38), if n(~) and G(v) are modified ac-

cordingly. For temperatures that are not too small the
following expansion is useful:

(expx —1) '=x '(1——,'x+a~x' —a~x'+a3x' —a4x'+ . .),

where

1/ag ——12, 1/a2 ——720, 1/a, =30 240, 1/a4= 1 209 600.

The corresponding series for 8 is:

8=(2~~) 'L(~&/h)p 2+al(&/~T) —a2(h/~&)'p2

+a3(h/~T) 'p4 a4 (h/~T)'IJ&+ —.]; (39)

note that h, not A, appears here since the moments are
dehned in terms of v rather than co. For room temper-
ature (T=300'K), successive terms of the series (39)
decrease very rapidly, and numerical substitution gives
8=400/p' for silicon and 8=465/pP for germanium;
the units of 8 are those dered near the beginning of
Sec. II; k=c=1, and p, is the electron mass.

In order to see the eGect of the departure from the
Debye spectrum, we may calculate A from (27), using
Phillips' values for 0 at room temperature. " For
silicon 0~=645'K, so that A=280/p, ', for germanium
0=354'K, so that A=330/p'. As expected, the en-

hancement of the low frequencies makes 8 much
Larger than A in both cases.

which reduces to A when e(~)=Ccu'. It is apparent that
a redistribution of the normal mode frequencies that
favors small ~ will make 8 larger than A, and hence
make fr(1) =exp( —Bq2) smaller than Uberall's asymp-
totic value for the same quantity. There are two
physical reasons why low-frequency modes are especially
effective in reducing interference. (a) The squared
amplitude of the displacement of a quantum oscillator
of given mass is inversely proportional to the frequency.
Thus the low-frequency modes give rise to relatively
large displacements of the atoms, and hence to the
factor 1/~ in the integrand of the numerator of B.
(b) The excitation energies of the low-frequency modes
are relatively small in comparison with ~T, and hence
are favored in the T-dependent part of this integrand.

The numerical values of 8 for silicon and germanium
at room temperature are easily obtained from the
moments of the frequency spectrum given by Flubacher,
Leadbetter and Morrison. " These moments are ex-
pressed in the form:

VI. SUMMARY AND DISCUSSION

We have considered several of the approximations
made by Uberall' in relation to the two experiments that
have been performed thus far.4' In Sec. II it was
shown that the use of the Born approximation tends
to overestimate the interference eGect. A more correct
treatment has no significant eGect on the Panofsky-
Saxena (PS) experiment, while it can account for the
failure to observe the predicted central minimum in the
Frisch-Olson (FO) experiment. In Sec. III it was
shown that a more correct treatment of temperature
eGects tends to enhance the expected interference.
With the assumption of the Debye spectrum and the
validity of the closure approximation, this enhancement
is too small to aGect the comparison between the theory
and either experiment. In Sec. IV it was shown that
the closure approximation is an exceedingly good one.
In Sec. V it was shown that the departures from the
Debye spectrum are expected to change the damping
factor from exp( —Aq') to exp( —Bq'), where 8 is much
larger than A.

In order to evaluate this last change we proceed as
at the end of Sec. III, and find the corresponding
change in the damping factor when q is set equal to the
reciprocal screening radius. Now PS analyzed their
experiment by suitably scaling Uberall's calculated
curves for copper at T=O'K and a primary electron
energy of 1 Bev for the diGerences in primary energy
and lattice constant. Thus we must not use A =280/p, '
for sihcon at room temperature, but rather A=121/p'
for copper at zero temperature, and replace this by
8=400/p, '. This changes the damping factor from
expL —121(Z~/111)')=0.95 to exp/ —400(Z&/111)'j
=0.83. A slightly better estimate indicates that the
expected interference should be reduced by 15 to 20%.
It follows that even though the Debye spectrum is a
rather poor approximation, use of the correct spectrum
does not resolve the discrepancy between the PS
experiment and the theory, nor will it have much eGect
in the case of the FO experiment.

A few other eGects may be considered brieQy. It
might be possible that imperfections in their silicon

crystal could account for the failure of PS to observe
interference. They quote an angular width for an x-ray
rocking curve run on this crystal which can be roughly
translated into a 6nite smearing-out size of each
reciprocal lattice "point. " This size turns out to be of
the order of a few ev; it is much smaller than the
thickness of the pancake-shaped region, and hence is
unable to account for the negative result. PS also state
that multiple scattering of the primary electrons in the
target, which they measured directly, is too small to
have an effect. Another possibility is that excitation
or ionization of silicon atoms by the electrons occurs
frequently enough to destroy the coherence of the
primary electrons which is essential for interference.
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The energy loss per unit length is

(2rrN(Ze4/tj) ln(kps/21sZ'tt)

where No is the number of atoms per unit volume,
IZ is the average energy loss per collision, and I=11
to 14 ev." If we divide this by NOIZ we obtain an
average inelastic collision cross section. The result is
actually an overestimate, since polarization of the solid
silicon reduces the logarithm in the stopping power
formula by reducing the small-energy-loss, large-impact-
parameter collisions; by the same token it increases
the average energy loss per collision above the free-atom
value IZ. The cross section obtained in this way
corresponds to a free path for inelastic collisions of
about 850 atom distances in silicon, and this number,
as just remarked, must be an underestimate. A co-
herence distance of the order of this free path has
roughly the same eGect as a lack of perfection of the
crystal over a comparable distance, and this smears
out the reciprocal lattice "points" to a size of about
1/850 times their distance apart, or about 10 ev.
Since we have overestimated this size, the effect is
unimportant.

We are forced to conclude, then, that no theoretical
explanation has yet been devised for the absence of
interference in the PS experiment. " This makes it
especially interesting to make a comparison between
the two experiments that have been performed. As
compared to the PS experiment, FO (1) used germanium
instead of silicon, (2) directed the primary electron
beam along the L110) axis of the crystal instead of the
L100] axis, (3) used ke ——1 Bev and k~=100 Mev
instead of ko=600 Mev and kv=235 Mev, and (4)
collimated the observed radiation to a cone of half-
angle about one milliradian. From the present point of
view, silicon and germanium differ with respect to
their lattice constants and their values for the parameter
B. However, both of these differences are small enough
so that point (1) above cannot be expected to account
for the striking difference in the results of the two
experiments. The diGerence in choice of crystal axis

n See for example W. Heitler, Quantnne Theory of RaCkatfon
(Oxford University Press, New York, 1954), third edition, p. 370."Y.H. Ichikawa and M. Yamamoto (to be published) have
suggested that the small-g processes are inhibited by a screening
that arises from the phonon field. However, phonon effects were
calculated essentially correctly by Uberall assuming the closure
approximation I'Sec. III), and the closure approximation was
found to be excellent (Sec. IV). Thus we cannot accept a phonon-
screening effect as an explanation of the PS experiment.

means that the effective density of reciprocal lattice
points in the perpendicular plane is different in the
two cases. When account is taken of the structure factor
S(g), these effective densities turn out to be in the
ratio 1:2&:(4/3)&=1:1.414:1.155 for the L1007, $110],
and L111] directions. Thus point (2) leads to a 41%
greater interference eGect in the FO than in the PS
experiment. Point (3) is certainly the most important
difference between the two experiments. As mentioned
at the end of Sec. II, the FO experiment has a minimum

q value of 15 ev, as compared with 140 ev for PS. In
accordance with Oberall's numerical results, the curve
of radiation intensity as a function of angle between
primary electron and crystal axis is compressed to
smaller angles and has a larger maximum value when

q;„ is decreased. Finally, point (4) seems to be quite
unimportant. The characteristic radiation angle is of
order tt/ks ——sr milliradian and almost independent of
k~,"so that any larger angle must arise from multiple
scattering of the primary electrons in the target" or
from their lack of parallelism before they strike the
target.

The fact that the FO experiment gives less inter-
ference than expected might be caused by divergence
or multiple scattering of the primary electrons, which
were not measured by them, or by the same unknown
factor that leads to the negative result of the PS
experiment. Indeed, it can be said, considering points
(2) and (3) above, that the two experiments are
consistent with each other if divergence and multiple
scattering are unimportant for FO. We conclude by
remarking that the interference eGect can be enhanced
by making q;„=ttskr/2kskf as small as possible and,
in the case of a diamond-type crystal, using the L110]
direction for the primary electrons. On the other hand,
since the interference is insensitive to the value of 8,
little advantage is to be expected from cooling the
crystal. It also seems likely that the central minimum
in the interference pattern will be difIicult to establish
experimentally, since for the most favorable case of
small q;„, partial failure Of the ,

'Born approximation
tends to fill it in.
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