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outside the integral. The latter then reduces to 4sl/3
times the unit dyadic, and Eq. (28) becomes simply the
local relation of Eq. (1).

The portion of the current which depends explicitly
on the density, denoted by subscript D, is calculated in
parallel fashion. Note that in the numerator of Eq. (18)
we can write

k v—to=(k v oo —ir —t)+jr t, (29)

where the quantity in parentheses cancels with the
denominator and yields no current. Thus we find

ceo
tp( e—1/tgs

)& (1V(k,to) exp/ —i (k (—toP/vs) j (30)

so that the Fourier inversion gives

gg) (x,t) = —(evs/4trl) ~ d'P e &t'&'grt(x', t'). (31)

This is the diGusion current which must be added to
Chambers' expression whenever longitudinal fields are
acting in the metal. Here again it is of interest to check.

the static limit for fields which vary slowly in space.
Then we have, approximately

N(x', t') =rt(x, t) —g gradn (x,t). (32)

The density gradient may now be taken outside the
integral, so that the nonlocal, retarded diGusion formula
of Eq. (31) reduces for this special case to Eq. (2), the
simple uniform-gradient expression of kinetic theory.

To summarize, we began by emphasizing for the
limiting case of time independence that it is necessary
to include diGusion along with ohmic Row when de-
scribing longitudinal electric fields in metals. We then
sketched a transport theory derivation of the relation-
ship between the Fourier coefficients of the current and
field. The result of this work is expressed by the con-
ductivity functions of Eqs. (20) and (24). The diffusion
is automatically included in the Boltzmann equation
provided that the relaxation is based on the local
density, rather than on the unperturbed density as is
often done. Finally, we exhibited the explicit non-
local, retarded relationship of current to field in the
form of two integrals. The first is exactly Chambers'
formula, while the second, given by Eq. (31), is the new
diGusion term.
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The Hamiltonian used by Bardeen, Cooper, and Schrie8er in their theory of superconductivity is studied
in the strong-coupling limit. The complete set of energy levels can be found by using group theory, even for a
finite system. An expression for the grand partition function can immediately be written down, and this
expression can be evaluated in a simple manner for a large system. The results are in qualitative agreement
with the weak-coupling theory, and in quantitative agreement with the strong-coupling limit of the expres-
sions derived by Bardeen, Cooper, and Schrieffer. The second-order phase transition is a simple consequence
of the form of the grand partition function. There is an energy gap independent of the total number of
particles which goes to zero as the temperature approaches the critical temperature. The normal state is not
metastable below the critical temperature.

1. INTRODUCTION

''N the theory of superconductivity developed by
~ ~ Bardeen, Cooper, and Schrieffer' (which we shall
refer to as BCS) a, system of interacting fermions with
spin one-half is considered. The only interactions which
are taken into account in the BCS theory are those be-
tween particles with opposite spin and momentum.
Because of this, the single-particle states are paired oG
with each other. Each "pair state" consists of a single-
particle state with a particular momentum and spin
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Atomic Energy Commission.
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direction, together with the state of opposite momentum
and spin. The interaction then carries a pair of particles
from one pair state to another pair state. The kinetic
energy is, of course, diagonal in the pair states, since it
is diagonal in the single-particle states. If a pair state is
singly occupied at any time, it remains singly occupied,
since there is no other particle with which the one
particle can interact, and since no pair of particles can
scatter into an already occupied pair state.

This problem was studied in BCS by a variational
method. It was shown by Bogoliubov, Zubarev, and
Tserkovnikov' that the perturbation series for the part

~ Bogoliubov, Zubarev, and Tserkovnikov, Doklady Akad.
Nauk S.S.S.R. 117,788 (1957) Ltranslation: Soviet Phys. -Doklady
2, 535 (1957)j.
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of the free energy left out in the BCS solution vanishes
term by term in the limit of an infinite (extended)
system. This indicates that the BCS solution may be
exact, but it is not a proof, as can be seen from the fact
that there are many solutions which satisfy this criterion,
although the free energy should be a unique function of
temperature. In particular, the normal state satisfies
this criterion at all temperatures, although the supercon-
ducting state, where it exists, has a lower free energy.

In the strong-coupling limit we take the interaction
to be so strong (or else the effective mass to be so large)
that the variation of the kinetic energy from particle to
particle can be neglected, at least over a small region of
momentum space. We suppose that there is a spherical
shell within which the kinetic energy of each particle is
a constant, e, and the coupling between pair states is a
constant, J. Outside this shell the particles have, their
normal kinetic energy but no interaction. We suppose
that the Fermi surface is within the shell, so that the
states on one side of the shell are fully occupied at low
temperatures, whereas the states on the other side are
completely empty.

The particles outside the shell and. the particles in
singly occupied pair states inside the shell behave like
free fermions. The part of the Hamiltonian which affects
the rest of the particles can be written as

B B B
H= +2eb,'b;—P g Jb,'b;,

where bi annihilates and bi creates a pair of particles in
the pair state i. The sum runs over the 8 pair states in
the shell which are not singly occupied. This problem
has been solved exactly by Wada, Takano, and Fukuda, '
who use the analogy between the operators b; and spin
operators, but a different method will be used here.

It can be seen that the form of Eq. (1) is unchanged if
the labels of the 8 pair states are changed amongst
themselves. For this reason, the eigenstates of the
Hamiltonian must give rise to irreducible representa-
tions of the group of permutations of 8 objects, the
"symmetric group. " In Sec. 2 we find which these
representations are, and what energy and degeneracy
each one corresponds to; the eigenfunctions found form
a complete set. In Sec. 3 we write down an exact expres-
sion for the grand partition function and evaluate it for
a large system. The second-order phase transition ap-
pears in a very simple manner, and various other
features of this model are compared with the BCS
theory.

2. CONSTRUCTION OF THE EIGENFUNCTIONS

If we operate on the vacuum with D digerertt opera-
tors b;t, we construct a state with D pairs in the j3 pair
states. Since the different operators commute, their

e Wads, Takano, and Fukuda, Progr. Theoret. Phys. (Kyoto)
19, 597 (1958).

order is immaterial, and we can construct 8!/D!(8 D—)!
mutually orthogonal wave functions in this way. These
wave functions give all the ways of putting D pairs into
J3 pair states. They are the basis of a reducible repre-
sentation of the symmetric group, and the problem is to
find the irreducible representations contained in it. We
shall show that we can construct at least one wave
function of a particular symmetry; then we know it is an
eigenstate of a particular degeneracy and energy. We
shall find that we can exhaust the 8!/D!(8 D)!—
available degrees of freedom in this way.

The irreducible representations of the syDUnetric
group can be characterized by their Young diagram. e

The Young diagrams which give us the desired repre-
sentations have two rows, with B—r squares in the first
row and r squares in the second row. Now put the 8
operators b;~ in order into the 8 squares, and add to this
arrangement all the other arrangements which occur
when we symmetrize within each row and then anti-
symmetrize within each column. We operate on the
vacuum with the operators which occur in the first D
squares of an arrangement, and add together the states
we get from each arrangement. There is a factor —1 for
each permutation within a column, and so we will get
zero if D&r or if D)8—r. If r &~ D&~ 8—r, the coeffi-
cient of a component for which D of the first 8—r pair
states are occupied is D!(8 r D)!r!, and—th—e coeffi-
cient of a component for which D—1 of the first 8—r
pair states and one of the last r are occupied. is
—(D—1)!(8—r—D+1)!r!,and so on, We have now
constructed wave functions with the appropriate sym-
metries, and it remains to find their energies and
degener acies.

The dimensionality of a representation, or the de-
generacy of an eigenfunction, is equal to the character of
the identity element of the group. This can be evaluated
in the usual way, ' and is found to be

8!(8—2r+1)
(2)

r!(8—r+1)! r!(8—r)! (r—1)!(8—r+1)!

The sum of l„ from r=0 to r=D or 8—D, whichever is
less, gives 8!/D!(8—D)! in either case, so we have
found all the required eigenfunctions.

The character of a single permutation is found in the
same way' to be

(8—2)!(8—2r+ 1)
Xf= (8' 2r8 8+2r' 2r). —(3)— —

r!(8—r+1)!

The character x„is given by the expectation value of the
operator P;; which permutes the statesi and j, summed
over all /„ states of the irreducible representation. The
expectation value of P;; in one state, summed over all
different combinations of i and j, is 8(8—1)7t„/2l„. The

e H. Boerner, Darstelisslgel sol Grgppers (Springer-Verlag,
Berlin, 1955), pp. 91-111.' Reference 4, pp. 171-176.
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probability that I';; will permute two occupied states is
D(D 1)/—B(B—1), the probability that it will permute
two unoccupied states is (B D)—(B—D—1)/B(B—1),
and its expectation value in the case that it permutes an
occupied and an unoccupied state is the expectation
value ot b,tb, +b,tb;. These can be added together to give

B(B 1)x„/—2/, = ,'D(D -1)+—-,'(B—D) (B—D—1)

+2 2 (b"») (4)
1L jgS

Equations (2) and (3) can be substituted in this, and the
result used to evaluate the expectation value of (1).
This gives

(H)=2qD —J[D(B—D+1)—r(B—r+1)]. (5)
This result can also be derived by operating with H on
the wave function for which an explicit construction has
been given, and evaluating the coefficient of a particular
component.

Since J' is assumed to be positive (attractive inter-
action), and r is no greater than either D or B—D,
Eq. (5) shows that the ground state has r=0, and the
energy increases steadily with r. The spacing between
the ground state and the first excited state is JB, and
the spacing between successive levels decreases as r in-
creases. Equation (2) shows that the ground state is
nondegenerate, and the Grst excited state has de-
generacy —,'B(B—1)—1. For B=2D, this agrees with
3CS Kqs. (2.42) and (2.54) in the strong-coupling limit.
Our B is equivalent to 21V(0)ko in 8CS. There are other
excitations which can be made from the ground state.
A pair can be broken up, and both particles left inside
the shell, so that 8 is decreased by two and D is de-
creased by one; this raises the energy by J(B 1).A—
particle can be excited from the Fermi sea into the shell,
so that 8 is decreased by one; the energy is increased by
JD plus the kinetic energy needed. All these and other
processes need an energy of at least JB if the kinetic
energy gap between the Fermi sea and the shell, and
between the shell and the outside region of momentum
space, is at least 2JB.

We are chieQy interested in an extended system, and
so we will suppose that 8 and D are proportional to the
volume of the system, while J is inversely proportional
to the volume. This means that the energy contributed
to the ground state by the interaction is proportional to
the volume, as the kinetic energy is, and the gap between
the ground state and the 6rst excited state is inde-
pendent of the volume. The degeneracy of the rth
excited state is proportional to the rth power of the
volume. If r has its maximum value, the potential
energy is zero or very close to zero, and the degeneracy
is very great, so this state is closely related to the
"normal" state.

3. STATISTICAL MECHANICS

Since we know all the energy levels of the system, we
can write down an expression for the grand partition

function. The particles inside the shell are independent
of the particles outside the shell, and so we can treat the
two subsystems separately. For the particles outside the
shell, we have an ideal Fermi gas with a region of
momentum space excluded, and so the statistical me-
chanics of this subsystem is straightforward. We there-
fore con6ne our attention to the particles inside the
shell, whose behavior is determined by the Hamil-
tonian (1).

We suppose that there are E pair states inside the
shell, but q of them are singly occupied, so that B=E
—q. There are K!/q!(K q)! w—ays of choosing these q
states, and 2& ways of putting one particle into each of
them. The energy of each single particle is e, and the
only restriction on q is that it should lie in the range zero
to E. Using Fqs. (2) and '(5), we write the grand
partition function as

!)=Tr exp+(ply —P)]
Ir —',()r—q) (K q r) 2 qK—I (E— q

—2y+—1)=ZZ Z
r~ D r q!r!(E—

q
—&+1)!

&&exp(P[(p —q) (q+2D)+ JD(E—
q
—D+1)

—Jr(E—
q
—r+1))). (6)

The sum in (6) is over the three-dimensional space
defined by the coordinates q, r, and D. The region over
which the sum is taken is a tetrahedron bounded by the
planes q=0, r=0, D=r, and D+q+r=K. The number
of points in this tetrahedron is equal to its volume,
which is K'/12.

If we call the maximum value of the summand of
Eq. (6) Sq, we know that 5()( 5( SqE'/12. Quantities
of physical interest are found by taking the logarithm
of 5 and dividing by the volume, so that bo is a very
good approximation. The error goes as 3V ' log V, where
V is the volume of the system, although this is certainly
an overestimate of the error. A local maximum of the
summand is also interesting, since this will represent a
metastable state of the system. YVe must look for
maxima both in the interior of the tetrahedron and on
its boundaries.

The summand increases rapidly as we go from the
planes g=0 and r=0 into the interior of the tetrahedron,
so we are interested in only the other two faces. As we

go in a line parallel to the D axis from the faces D= r and
D+q+r= E, the summand increases by a factor
of approximately exp[2P(p, —q)+PJ(E—

q
—2r)j and

exp[—2P(p, —q)+PJ(K q 2r)] in the two cases—for—a
change in the value of D by one. This shows that a
maximum can occur only on the face D=r if p, &c, and
one can occur only on the face D+q+r= E if p) q, since
E—

q
—2r is positive. The maximum value of the

summand on either face occurs at

q=-', K sech'[-,'P(p, —q)j,
r=E[exp(P~ p —q~)+1J—'.
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where

q=2Ky(y+1) ',
r =K(y+1)—',

D=J '(p e—)+,'—(K q-), —
(9)

y= expPP J(K—
q
—2r) $. (10)

These equations can be combined to give the single
equation for y,

lny = -,'PJK (y—1)(y+1)-', (11)

The condition for this to be a true maximum of the
summand is that the summand should not increase
towards the interior, and the condition —2

~
p,—e

~

+J(K q
—2r) &—0 implies

p&po=2[p e—
(

' tanh '(2~ p,—6[/JK). (8)

If we write down the condition for the summand to be
a maximum at a point in the interior, we get the coupled
equations

D vary from the values given in Eqs. (7) and (9) by an
amount proportional to E'. Above the critical tempera-
ture, for p/ e, the derivative of the summand in a direc-
tion normal to the face does not vanish, and so the
quantities D—r and E—D—

q
—r, for p,(e and p, & e, re-

spectively, Quctuate only by an amount independent of
E. For p, = e, the Quctuations of all three variables are
proportional to E:even above the critical temperature.
At the critical temperature, two stationary points of the
summand coincide, and the second and third derivatives
of the summand with respect to r also vanish. In this
case, the Quctuations of r are proportional to E&.

We can now substitute Eqs. (7) and (9) in (6) to get
expressions for the thermodynamic functions. We shall
refer to the state above the critical temperature as
"normal" and to the state below the critical temperature
as "superconducting, "using the suffixes e and s to dis-
tinguish the thermodynamic functions for the two states.
We find that the thermodynamic potential is

which has the solution y=1, and also one solution
greater than one if and only if PJE)4. The solution
y=1 lies outside the tetrahedron unless p, = e, and this
case will be treated separately below. Equation (11)
shows that the other solution for y is a monotone in-
creasing function of P. The condition for the point (9)
to lie inside the tetrahedron is

0„=—p 'in&
= —2KP-' In(2 coshPP(p, —e)$}—K(p —e),

0,= 2EP ' 1n—(y+1)+$2Zy/P(y+1)) lny
--.'JE'(y-1) (y+1)-'

K(IJ, 6) J (p 6) ~

(14)

Pc=4/JK, (13)

and there is a maximum of the summand in the interior
below the critical temperature. There is also a stationary
point in the middle of one edge, at q=2K, r=K/4,
D=K/4, as can be seen from Eq. (7) or from Eq. (9)
with y=1. As can be seen from Eq. (6), the factor
E—

q
—2r is important near this point, but its main

effect is to shift the maximum of the summand by a
distance proportional to E', so it will be ignored. As we
go away from the edge, the summand increases by a
factor r(K—

q
—r) ' exp' J(K—

q
—2r)j as r decreases

by one. This factor is greater than unity in the interior
of the tetrahedron below the critical temperature, and
is less than unity above the critical temperature, so that
this state is unstable below the critical temperature, and
there is no metastable state.

In general, the summand of Eq. (6) falls oG from its
maximum value so rapidly that the quantities q, r, and

(y+1) '& ' —J 'K '-ip, —pi, (»)
and this is equivalent to P)Po, where Po is the reciprocal
of the critical temperature defined by Eq. (8).This shows
that at all temperatures there is only one maximum of
the summand, and this maximum lies in the interior of
the tetrahedron for temperatures less than the critical
temperature, but it lies on the face for temperatures
greater than the critical temperature.

The case @=c is particularly interesting, because it
corresponds to the situation examined in BCS. The
equation (8) for the critical temperature becomes

These functions must be equal at the critical tempera-
ture, since the points given by Eqs. (7) and (9) are the
same. DiGerentiation with respect to the chemical po-
tential gives the number of particles as

X =K+K tanhL-,'P(u —~)j,
1',=K+2(u e)/J, — (15)

pBV~q V' ~aNq

4 BP ) ~,p 1P ( Bp) r, p

P'2

pK sech'L:,'p(p, —p)7, (17)
2X„2

pBV, y 2V'

KBP)~p E,'J

which is continuous at the critical temperature. The
entropy can be obtained by differentiating Eq. (14)
with respect to temperature and making use of Eq. (11),
so that we have

S„=2Kk in{2 coshL2iP(p, —e)1}
—Kkp(u —e) tanhL:', p(p —e)j, (16)

S,=2Zk ln(y+1) —JK'kPy(y —1)(y+1) '.

The entropy also is continuous at the critical tempera-
ture; k is the Boltzmann constant,

It is clear that there is a second-order phase transi-
tion, since differentiation of Eq. (15) with respect to,the
chemical potential gives the isothermal compressibility
as
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so that the superconducting state is more compressible
than the normal state, unless p=e, when there is no
discontinuity. There is also a discontinuity in the

specific heat, which can be found by calculating the
derivatives of Eqs. (15) and (16), since

(BS) (BX) (BE)
(BT) y, LBT) ~ 0 8/s) p (18)

C,=2Kkyllny7/L (y+ 1)'—PJKyl.

The limiting value of C, as y approaches unity is 3Ek, so
this quantity represents the discontinuity in specific
heat for p=e. The phase transition occurs when the
maximum of the summand of Eq. (6) goes from the
interior of the tetrahedral region of summation to its
surface.

Another quantity which must be calculated in order
to compare our results with those of BCS is the variation
of the energy gap with temperature. The energy gap is
the energy needed to break up or excite one pair, and
this can be calculated from Eqs. (5) and (9) as

2eo J(K q
——2r) =—JK—(y 1)/(y+1—). (19)

This decreases steadily up to the critical temperature
with increasing temperature, but it goes to zero only if
p=~. For p, =e, we can compare many of our formulae
with those of BCS taken in the strong-coupling limit.
Equations (19) and (11) are equivalent to BCS Eq.
(3.27); Eq. (13) agrees with BCS Eq. (3.28); and Eq.
(16) agrees with BCS Eq. (3.34). The agreement of this

model with the strong-coupling limit of BCS is therefore
precise.

4. CONCLUSIONS

We have studied a simple model which can be solved
exactly, and which gives a second-order phase transi-
tion. The eigenfunctions of the Hamiltonian were
obtained by a group-theoretical method, and the
thermodynamic functions were then calculated by
straightforward algebra. This model is a strong-coupling
limit of the BCS theory of superconductivity. The pre-
cise agreement with the BCS results is an interesting
verification of the accuracy of those results. The quali-
tative features of the strong-coupling limit are very
similar to those of the weak-coupling theory, and the
main difference is that the excited states are discrete
instead of forming a continuum of energy levels. Nu-
merical values of important ratios are not changed
much. For example, the ratio of the energy gap at zero
temperature to kTg is 4 in the strong-coupling limit
and 3.50 in the weak-coupling limit, while the energy

gap behaves like 6.9 kTo(1 —T/To)'* instead of 6.4
kTo(1 T/To): n—ear the critical temperature. Because
of the simplicity of the model, it is possible to show that
the normal state is not metastable in the absence of a
magnetic 6eld below the critical temperature.
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