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A correlation function for a positron-electron pair within a metal is obtained by solving a Bethe-Goldstone
equation. Thus one may take account of the many body effects, of screening and the exclusion principle, in
computing the electron density at the position of the positron. The results indicate that one may, in this
fashion, reconcile the Sommerfeld model of a metal with the experimental data on positron annihilation in

metals.

I. INTRODUCTION

N recent years attempts have been made to explain
the failure of the Sommerfeld model of a metal to
account for the observed positron annihilation rates in
metals. It was apparent that no progress could be made
until some account was taken of the interactions
between valence electrons and positron within the
metal. We propose to present an adequate treatment
of these interactions. Our work follows most closely
that of Ferrell.! The basis of the latter’s discussion was
the Bohm and Pines theory? of collective motion in an
electron gas. The introduction of the collective or
plasmon modes allows one to effect a separation between
the long range and short range, or screened, Coulomb
interactions in the electron gas. In the present work
we will make no attempt to calculate the effect on the
positron annihilation rate of the plasmon part of the
Hamiltonian. This will be discussed in a later paper.
For now we only refer to the earlier work of Ferrell,
whose estimate of the plasmon effects indicate they
are probably small.

Where we differ from Ferrell is in the treatment of the
screened electron-positron Coulomb force. Ferrell
reasoned that this weakened interaction should admit
of a perturbation treatment. Our calculations indicate
this was not a justifiable assumption, at least not for
most of the metals of interest. We have attempted to
arrive at an electron-positron correlation function by
setting down a two-body equation embodying the
screened Coulomb positron-electron force and the
equally important Pauli exclusion principle. This can
be done by formulating the appropriate Bethe-
Goldstone equation® for an electron-positron pair in a

I R. A. Ferrell, Revs. Modern Phys. 28, 308 (1956).

2D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).

3 H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London) A238,
551 (1957).

metal. No attempt is made here to include the proper
energy-momentum relationship (dispersion law) for the
electron and positron, resulting from the short range
collisions experienced by these particles. It is assumed
that both electron and positron propagate as free
particles.

In Sec. IT we set out in detail the basic wave equation
for our problem. In Secs. III and IV an approximate
solution of the equation is discussed and the results
for electrons annihilating at zero tabulated. The
calculation is extended to include electrons at the
surface of the Fermi distribution in V and the resulting
annihilation lifetimes computed.

II. BETHE-GOLDSTONE EQUATION FOR
ELECTRON-POSITRON PAIRS

We are of course ignoring lattice effects and treating
the metal as an electron gas (at zero temperature) with
the neutralizing charge of the positive ions smeared
throughout space. We assume that the positron on
entering the metal is rapidly thermalized* and assign
zero momentum to this particle. It is convenient to
carry out our calculations entirely in momentum
space, for it is then possible to state both the Pauli
principle and the screening as algebraic restrictions on
the intermediate relative momenta. It is easiest to set
down the two-body equation we have in mind and
explain the notation after.

The equation describing the interaction of a zero
momentum positron with a representative electron of
momentum k.=2a is

dqr
2 (k)=
(B~ a)¢ (k) v f

where ¢ (k) is the relative-momentum wave function of

/ dskl
[k—K'|?

&), (@D

¢ G. E. Lee-Whiting, Phys. Rev. 97, 1557 (1955).
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the positron electron pair, a¢ is the Bohr radius, and
the prime on the integration sign indicates the restric-
tions of screening and of the exclusion principle. The
latter demands that the electron go outside the Fermi
sea before interacting, in an intermediate state, with
the positron. Momentum is of course conserved in this
interaction and the resulting restriction on the inter-
mediate relative momentum is seen to be

|K'+a| > ke, (2)

or

(2b)

k’=a (corresponding to forward scattering).

Following Bohm and Pines, the screening due to
collective effects of the electron-electron interactions
can be accounted for by demanding that the relative
momentum transferred in the electron-positron collision
satisfy

|[k—K'|>k.. 3

This leads to an interaction in configuration space with
a screening length ~1/k.. We have decided tousea value
for the cutoff momentum k., appreciably higher than the
Bohm and Pines result®

ke=0.353kp(r,)}, 4)

where kr is the Fermi momentum of the valence
electrons and 7, is the usual metal parameter describing
the density of valence electrons. The higher value we
use,

o=0.470r 3k, (35)

is a reflection of more recent work® indicating plasma
oscillations exist in an electron gas for higher momenta
than supposed by Bohm and Pines. (1) is now brought
into a more manageable form by concentrating our
attention on the distorted part of the wave function
¢ (k). We write

¢ (k)=68(k—a)+ fu(k). (6)

The é-function represents an initial plane wave of
relative momentum a=1k,, and the parameter multi-
plying the distortion (k) is. f=[4n/(2m)*](1/a0).
Inserting (6) into (1) we obtain

1 1

P—a? |k—al?

u(k)=

&). (1)

f f Ky
B—a®/ | ta| >kr [k—k’|?
k' —a| >ke
k—k'| >kc

5D, Pines, Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, Inc., New York, 1955), Vol. I, Eq.
(6-8).

6§ R. A. Ferrell, Phys. Rev. 107, 450 (1957), Eq. (40); Sawada,
Brue(ckner, Fukuda, and Brout, Phys. Rev. 108, 507 (1957),
Eq. (17).
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I16. 1. Excluded
regions in relative
momentum space.

We have not paid any attention to a definition of the
energy denominator in (7) since our restrictions (2a)
and (3) do not permit it to vanish. This is simply a
statement of the suppression of all but forward scatter-
ing by the exclusion principle.

We note because of screening (7) is valid only for
|k—a|>k.. When |k—a| <k, the equation for #(k) is
homogeneous and we then take #(k)=0. This leads to
the further restriction |k’—a|>#%.---(2c) in (7). The
excluded regions of k’-space are indicated in Fig. 1.
Centered about the origin in k’-space there are two
overlapping spheres of radii kr and k., excluded,
respectively, by the Pauli principle and screening. In
addition one must delete the region interior to the
sphere of radius %, centered at k.

It is difficult to specify a simple analytic procedure
for the solution of (7). It is clear that the relative
angular momentum is no longer a constant of the
motion. Hence one obtains a coupled set of integral
equations for the various partial waves. However, one
may begin by examining a limiting situation, the
annihilation of the positron with a zero momentum
electron. The total momentum of the interacting pair
vanishes and the resulting equation for the distorted
part of the wave function is spherically symmetric. We
consider this case in the following section.

IIL.

Taking a=0 as indicated in the previous paragraph,
we find for (7)

I u(k’)
B)=—+— Y ———. 8
b k4+k2-£’>kp ey @

1k —XK'| >k

It is to be noted since 2>k, in any of the metals we
consider, the condition k’>#%. is superfluous. A per-
turbation treatment of (8) would then simply constitute
an iteration solution beginning with the inhomogeneous
term 1/F%. One can quickly reproduce the results of
Ferrell! at this point by assuming

w(k)=1/k (©
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Then the configuration space correlation function is’
¥(r)= f (K)o 'k

drf r> dk
=1+~——f — sinkr.

r YEp. R

(10)

The second term in (10) represents a concentration of
electrons about the position of the positron. If now one
assumes that the annihilation rate does not vary too
greatly with electron momentum (a statement which
is quite accurate in perturbation theory), one can
compute the enhancement of the Sommerfeld rate
predicted by perturbation theory. With our normali-
zation this is

| (0) 2= (14+2/7acks)2= (142r,/6.02)2.  (11)

It is easy to establish that the enhancement factor
(11) is not sufficiently large to account for the observed
lifetimes. We shall see this when tabulating our own
results and comparing these with available experi-
mental evidence. More important perhaps, is the failure
of (11) to explain the observed variation of lifetimes
with the density of valence electrons in metals. The
Sommerfeld rate varies like 7,73, while experimentally
the lifetimes are roughly constant over a large range of
metals. It is our hope that both the absolute lifetime
and the variation with metals can be accounted for by
a more detailed solution of (8). If an electronic, digital,
computer were available it is likely that an iteration of
(8) would produce the desired results. In view of our
lack of such computing facilities we sought approximate
analytical techniques for obtaining an adequate
solution.

To illustrate our approach let us consider (8) in the
limit of no screening, but with the exclusion principle
still taken into account. Of course one would now
expect the annihilation rates to be much too large since
the positron would be able to affect an exaggerated
number of electrons in its neighborhood.

(8) now reduces to

7

1 27rf “ ! 7 7
u(k>=;+7eg—fw(dk Ye'u(k) In (12)

k—Fk

It is evident that a solution for 2>k can be obtained
as a power series in (kp/k)? in this instance, since (12)
is invariant to the transformation &2 — —%. We assume

then
u(k) =—1— i an(—]ff)zn.

(13)
ko k

Inserting (13) into (12) we find, making use of the
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identity® (n=0,1, ---.)

m[ 1 . 1 'Il

Imt+-2m+3  2n— 2m-102m+1

m=0

tan(n+1)7r=0, (14)

T 2(+1)

the odd powers in 1/k cancel out and there remains the
following set of equations for the dimensionless coeffi-
cients ay: '

ke Ay

ao=147>_ ,
o 2n+1

(15)

T o Ay

= 2 — )
2m+1 0 2n—(2m—1)

Qm

where
r=2/makp.

The latter set of linear equations represent a restatement
of the integral Eq. (12), and can be solved by some
iterative procedure to any degree of accuracy required.

An interesting relation can be established between
the first coefficient in the series (13) and the amplitude
¥(0). By considering limy,k%(k) in (12) or by direct
calculation one obtains

a=""(0). (16)

We will not display the numerical solutions of (15).
It is sufficient to state that the values of the enhance-
ment factors obtained are much too large and moreover
the variation with valence electron density is still too
marked. The Pauli principle appreciably alters the pure
Coulomb interaction at zero electron momentum, but
by itself it cannot explain the observed data.

We now show that it is possible to write down a set of
equations similar to (15) for the integral equation (8),
if we are willing to treat the screening restriction
approximately. (8) can be written

1 ® u(k’
u(k)=—+if dzk/__(_)_
Bt BJrp [k—K'|2

S 1
—— &Pk —————u(k). (8"
B kx| <k | k—k'|2
The last term in (8’) represents a reduction in the
distortion #(k) due to screening. We will assume this
term can be approximated by evaluating #(k’) at the
point k’=k and hence removing #(%’) from the inte-
grand. This approximation is prompted by the singu-
larity in the integrand at k’=k. If k2> kp+k., the
region defined by (3) is a sphere and there results for
7 Reference 1, Egs. (51) and (52).

81L.. B. W. Jolley, Summation of Series (Chapman and Hall,
Ltd., London, 1925), Eq. (421).
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the last term in (8')

(f/B?)u(k) (4rk.). (18)

However when 2 kp+k. (3) is something less than a
sphere and we obtain a different approximation for the
screening term. In fact for k=kp it is easy to show that
the relevant term is very nearly

(f/&)u(k) (2rk.). (19)

Since # (%) clearly drops off rapidly with increasing %
we will want to weight the interior regions of integration
more heavily than the exterior and assume then

f

1 /
7 Ak ————u(k') ~—u(k)x(2nk,), (20)
BV kx| <k k¥

[k—K|?

where x is a number between one and two but probably
closer to one. We can adjust « at will to minimize the
error in our treatment of the screening. It is natural to
choose this parameter so as to make the error in ¥(0)
as small as possible.

We must then solve an altered integral equation

(1+2nfRx) 1
wo(k)————=—

k? k!
nf >

24

7

+ uo(k). (21)

k
k'dk’ In
k

k/

We can regard the solution of (21) as an improved
starting point for the iteration of (8). Our treatment of
the screening is in any case not without ambiguities,
so that we are justified in handling it in the above
fashion.

Once again (21) admits of a solution

1 0 kF 2n
uo<k>=—zan(-) ,
k4 n=0 k

with the coefficients in (22) satisfying the equations

(22)

o0 aﬂ
ap=14+7 Y,
n=0 2n-+1

(23)

T 0 Ay

> .
2m—+1 o 2n—2m+-1

AmFam_1(3xm68) =

The relation ag=¥(0) is still valid. We can now fix our
attention on a particular metal and solve the set (23)
by iteration. This is done in the following section.

Iv.

To cover an interesting range of metals we have
carried out computations for the following values of
the parameter 7,

0.6667, 1.0000, 1.2500. (24)

KAHANA

TABLE 1. Wave function and enhancement factors for
electrons annihilating at zero momentum.

- 0.6667 1.0000 1.2500
x 1 1 1.315=
s 3 3 4

ay 2.27 4.06 4.98
g1 —1.27 —4.17 —8.63
ay 0.40 2.73 10.03
g3 —0.14 —1.60 —10.52
ay —0.03 0.87 10.00
ag —0.015 —0.46 —9.47
ag —0.0007 0.22 8.41
o .. o —7.38
a .. ... —521
@0 o oo e 4.42
on .. ... —3.69
aq pert. 1.67 2 2.25
| (0)|2 5.15 16.48 24.75
TX 10710 gect 1.31 1.39 1.80

a Corresponds to }78x =0.7500.

These correspond, respectively, to metals with the
density parameters (7,)

2.010, 3.014, 3.768, (25)
‘and screening parameters (83=*k./kr),
0.6663, 0.8159, 0.9124, (26)

The first of the values (24) corresponds roughly to
aluminum, the last to sodium.

It is not necessary to discuss the actual calculations
in great detail. We began by solving a truncated set
of equations for a.,m<s. The latter coefficients were
used to estimate the coefficients a,, for m>s. One
could then reconsider the equations for the first s
coefficients, including coupling from the previously
ignored coefficients. This procedure was iterated until
it was felt the error in the first s coefficients was of the
order of a few percent. For the cases corresponding to
7=0.6667, 1.0000 the coupling between successive
coefficients decreased quite quickly with increasing .
However, for the value r=1.25 the coupling de-
creased only moderately with increasing » and it was
necessary to use a larger basic set of equations (larger
value of s) and to proceed out further in the sequence
[am]. It is to be noted that the parameter x mentioned
previously was taken to be larger for the case 7=1.25.

Using the values of ao noted above in Table I we can
compute the enhancement factor |¥(0)|2. Assuming
all electrons annihilate at essentially zero momentum
we would obtain mean lives 7" given (in seconds) by

T-1= E( Z—:) (87a®) (1.25% 10—10)—1} [T (0)]2 (27)

The bracketed factor in (27) is the spin-averaged
Sommerfeld annihilation rate obtained by comparing
the density of valence electrons in the metal to that in
positronium. The enhancement factors and corre-
sponding lifetimes are also contained in Table 1.
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We have included in Table T the perturbation
theory values for ap. From these the inadequacy of
perturbation theory in lowest order can be inferred.
However it does seem likely that an iteration of the
lowest order would achieve some degree of success for
the metals with denser valence electron gases.

It is possible to estimate the error in our approximate
solution of (8) by using the solution of (21) as a first
iterate in (8). This is an impossible task in the light of
our computing facilities, but we did compute the error
in the lifetimes due to the inhomogeneous term in the
integral equation which one obtains for the difference

w1 (k) =u(k)—uo(k). (28)
The change in ¥(0) is seen to be

AT (0)=4rf " ek w1 (E)

kr

® 2mr fxk,
= 4’7Tf Rk [——]‘cﬂ—-ﬁo (k)

kr

f a3kt M] (29)
(k—K'|?

B2k —x'| <k,

Because of the complexity encountered in evaluating
(29) we arbitrarily cut off the calculation after the
fourth term in the expansion (22). Moreover (29) was
evaluated only for the two extreme values of the
electron density considered. We should point out that
the first order errors in the wave function #(k) were
considerably larger than those in the amplitude ¥ (0).
This is reminiscent of the situation encountered in a
Ritz variational calculation. As a representative
calculation we can quote the relative error in #(k) at
k=Fkr. For the case 7=0.6667 one finds this error to be
some 59, while the corresponding error in ¥(0) is
completely negligible. For the case 7=1.25 one has
little confidence in the values #o(kr) and ui(kr); but
for larger kA~ kr-+k., the ratio u1/u is of the order of
0.25. Nevertheless for the latter case (29) constitutes
only a 39, reduction of ¥(0).

V. VARIATION OF THE ENHANCEMENT FACTOR
WITH ELECTRON MOMENTUM

As we have indicated the task of computing ¥(0)
for nonzero electron momentum is perhaps an order of
magnitude harder than that for zero electron
momentum. However, we will proceed under the
assumption that ¥(0) varies only slowly across the
Fermi sea. A straightforward procedure is to expand
#(k) in a series of Legendre polynomials in the fashion

a(k) = ﬁ_’i (k) Pl(coit), (30)
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where 0 is the angle between the vectors a, k. Of course
we are interested only in the s-wave in (30), but un-
fortunately we cannot separate off this partial wave
from the rest. In fact we obtain for the case /=0, the

following integral equation (ignoring for the moment
the restriction |k—k’| <Z.).

1 k+a f 1
w(k)=—In|—I|+ f ARt —
2ka |k—a| R —a? lk’—a[ <ks 2kE
k'+4a| >kr
4 0
XlIn P > u'(R)Pl(cost’). (31)
— k| 1=0

If k., kr were equal, we would have an equation
similar in structure to the Bethe-Goldstone equation
for two identical particles (both subject to the exclusion
principle). In such a case it is easy to show the coupling
of the p-wave to the s-wave in (31) is eliminated. The
reason is simply that the region of angular integration
in (31) is then symmetrical about 6==/2. In fact only
the partial waves with even / remain. Moreover one
expects the coupling of successive waves to decrease
with increasing /. This suggests that even in the event
k.#ky we assume

u(k)=u"(k). (32)
The latter assumption is best for metals with lower
valence electron densities when § approaches unity.
We have estimated the error in neglecting the p-wave
by using a Born approximation for this wave and
inserting it into (31). In the least favorable circum-
stances we find an upper limit to the p-wave contri-
bution of less than 19,

Referring now to Fig. 1 it is clear that the exclusion
principle will no longer be manifested as a sharp
cutoff on the range of intermediate momenta. However,
to simplify our calculations we have computed the total
volume excluded by the spheres (2a) and (2c), and from
this computed an effective Fermi momentum k&z*(a,k.).
It is likely that our treatment of the excluded regions in
momentum space will tend to underestimate the
enhancement factors since we expect #(k) to fall off
with increasing k. We have redone the calculations of
IV only for the value a=%r/2, i.e., at the Fermi surface.
For this latter calculation we treat the screening
restriction (3) in the same fashion as in III. No estimate
of the errors involved in this approximation were made,
but we again expect these to be small.

It is then possible to average the enhancement factor
|w(0)|? over the Fermi distribution of electron mo-
mentum. We assumed that ¥(0) varies linearly with
electron momentum in performing this average. Table
IT contains the information relevant to the annihilation
of an electron at the Fermi surface, as well as the final
lifetimes 7T taking into account the variation of annihi-
lation rates with electron momentum.

We have not corrected the lifetimes for the errors due
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Tapre II. Wave function at the Fermi surface
and annihilation lifetimes.

- 0.6667 1.0000 1.2500
koti/ks 1.069 1.129 1.179
Teff 0.6236 0.8860 1.060
g 2.38 3.85 5.05
ay —0.47 —2.14 —5.03
az —0.05 0.51 3.09
az —0.03 —0.15 —1.07
ay cee —0.006 0.82
g cee —0.23
g e e +0.08
T (10710 sec) 1.22 1.51 1.76

to the approximate treatment of the screening. Such a
correction would appear to increase the lifetime by
about 69, for 7=1.25 and leave unaltered the lifetime
for 7=0.667.

VI. CONCLUSIONS

One may sum up the experimental situation on
positron annihilation in metals by saying that the
lifetimes are of the order of 1.5)X 107 sec over a wide
range of metals.® This is in good agreement with our
calculations. The size of the errors quoted in the experi-
mental lifetimes varies between 0.3X107° and 0.6
X107 sec.” Hence the variation of lifetime with metals
that we predict is certainly not ruled out. It is hoped
that more accurate experiments will check this point
more carefully.

Moreover the work on the two photon angular
correlation from the decay® has indicated that the
distribution of the total momentum of the annihilating
pair is very nearly that of the Fermi distribution of
valence electrons. Since our calculations predict a
roughly constant enhancement factor across the Fermi
sea, we are in agreement with this angular correlation
data.

We see that both the exclusion principle and screening
are indeed important features in the calculation of a
positron-electron correlation function in an electron

( 9?.)Berko and F. L. Hereford, Revs. Modern Phys. 28, 299
1956).

0 A, T. Stewart, Can. J. Phys. 35, 168 (1957) and Lang, de
Benedetti, and Smoluchowski, Phys. Rev. 99, 596 (1955).
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gas. If one ignored both of these but took into account
the pure electron-positron Coulomb interaction one
would have found far too many electrons annihilating
near zero momentum, and too few near the Fermi
surface. The exclusion principle by itself reduces the
annihilation rate at zero momentum and enhances
the rate near the Fermi surface. The latter increase
can be understood by considering a perturbation
calculation involving only the inhomogeneous term
in (7). The energy denominator in this term would be
sometimes negative sometimes positive in the pure
Coulomb case. The exclusion principle eliminates that
region of relative momenta in which the energy de-
nominator is negative. The destructive interference
amongst the various relative momentum contributions.
to the amplitude ¥ (0) is not permitted by the exclusion
principle. This is an effect distinct from the suppression
of scattering which is a restriction on the configuration
wave function at r=o0.

However, the exclusion principle by itself is not
sufficient to account for the observed data. The screen-
ing reduces the annihilation rates to more reasonable
values and is especially important in smoothing out the
variation of the Sommerfeld rate with electron density.

Finally we would like to say something about the
effect on our results of the long-range interactions.
Ferrell' has concluded that all plasmon effects have a
negligible influence on annihilation rates. However,
since we are using a momentum cutoff on the plasmon
spectrum appreciably higher than that of Ferrell, there
is some reason to believe the long range interactions
may play a larger part in our calculations. For this
reason we intend to consider this problem in more
detail later.
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