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Magnetism of Interacting Donors
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The magnetic susceptibility of donor centers in semiconductors is calculated for the case of small inter-
actions between closely adjacent donors. A hydrogenic model is assumed for the donor centers. The random
distribution of the centers, as well as the variation of the energy of interaction with separation distance of
pairs of donors, is taken into consideration. A twofold modiication to the Curie law (which is correct for
independent donors) is predicted by the resulting expression, namely, a curvature as well as a decrease of
the slope of the Curie plot of the susceptibility versus inverse temperature. Both of these effects increase with
the donor density, becoming appreciable in silicon with 10"—10" donors/cm' and in germanium in the
range around 10"donors/cm'. The theory is in good agreement with results oi measurements.

I. INTRODUCTION

'HE magnetic behavior of semiconductors at low
temperature is very strongly dependent upon the

degree of doping. In highly doped material, after
merging of the conduction band and impurity levels
has occurred, the magnetism of the impurity centers is
completely overwhelmed by the band magnetism of
the merged band. This has been observed in heavily
doped germanium, ' where for donor densities greater
than 10" cm ' the conduction band diamagnetism
sufficed to explain the data. The other extreme case,
that of such low doping density that the overlap
between donor centers was negligible, has also been
observed, in this case in silicon' with less than 2)&10"
cm ' donor. Here the contribution of the conduction
band is absent below 50'K because all of the conduction
electrons are frozen out on donor centers. The magne-
tism of these centers is well represented by a Curie law
and is proportional to the number of donors. Both of
these extreme situations are reasonably simple, and
agreement between theory and experiment seems to
obtain. However, when the amount of doping is between
these extremes, a more complicated behavior is ob-
served. %e shall be concerned here with the magnetic
behavior when the doping becomes somewhat greater
than in the simple isolated donor extreme case. The
experimental facts which have clearly been observed
in the case of silicon' are that the slope of the Curie
curve of susceptibility versus inverse temperature
decreases as the temperature is lowered and that, even
at higher temperatures, as the donor density is in-
creased above about 2)&10' cm ', the slope deviates
more and more from that expected for independent
donor centers. In germanium there seems to be an
indication of a similar behavior'; however, it occurs in
appreciably purer samples (SX10"cm '). Because of
limitations on the sensitivity of the measurements, no
systematic data on impurity contribution have been
obtained for germanium.

* Oak Ridge National Laboratory is operated by Union Carbide
Corporation for the U. S. Atomic Energy Commission.

' R. Bowers, Phys. Rev. 108, 683 (1957).
~ E. Sonder and D. K. Stevens, Phys. Rev. 110, 1027 (1958).

Theoretically, there are two obvious approaches to
the treatment of this intermediate situation. One is to
start from ideas related to impurity banding and to
apply these to the magnetic properties. Such a calcu-
lation has been made by Mooser. ' There seem to be two
problems in this type of approach. The 6rst is that a
band resulting from a "random lattice" has not yet
been satisfactorily treated in a theoretical sense and
that, therefore, the impurity band is usually approxi-
mated by one for a direct lattice of appropriately large
lattice spacing. The second is that the one-electron
picture neglects the electrostatic repulsion between
electrons, which becomes appreciable as the band gets
narrower, becoming so great in the limit of weakly
overlapping atomic orbitals as to reduce effectively the
number of states in the band by a factor of two. (A
completely banded donor band has states for 2Nd
electrons, while for the separated donors there are
available one-electron states for only 1V& electrons. )
The other approach to the treatment of weakly inter-
acting donors, which is the one we shall use, starts
from the independent donors and permits weak inter-
actions of only two at a time. This approach was
suggested independently by Hedgcock4 and by Sonder
and Stevens' to explain the experimental results for
germanium and silicon, respectively. Hedgcock has
made an estimate of the effect by dividing the donors
into two groups, those which are independent and
therefore magnetically active and those which are
paired as diatomic molecules and are consequently
nonmagnetic. He has used the hydrogen molecule
equilibrium distance, corrected, of course, for the
dielectric constant of the semiconductor and the effec-
tive mass of the donor electrons, as the distance which
determines whether a given pair of donors is to be
considered a molecule or a pair of independent atoms.
The correct order of magnitude for the eGect was
obtained from this simple model, making it seem
worthwhile to calculate the consequences of interactions
of donors in pairs more carefully, taking into considera-
tion the variation of electron binding energy with

3 E. Mooser, Phys. Rev. 100, 1589 (1955).
4 F. T. Hedgcock. , Can. J. Phys. 37, 381 (1959).
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distance between donors as well as the change with
temperature in the ratio of bound-to-unbound pairs
of electrons.

distance. This information will then make it possible
to obtain the magnetic susceptibility as a function of
donor density and temperature.

ri E i/ttti

rs Es/ms
(1-b)

where the subscripts 1 and 2 refer to two particles,
respectively, of mass no~ and m2 in media of dielectric
constant E~ and E2. r refers to the mean radius, while
E refers to the energy of a given state of the system.
In the hydrogenic model of the donor center in a semi-
conductor, this type of comparison is made between
the donor (electron mass, m*, in a medium of dielectric
constant, E) and the hydrogen atom (electron mass, ttt,
in vacuum). The assumptions that are implicit in this
derivation should be kept in mind, however. A semi-
conductor is not really a continuous medium; neither is
the concept of a dielectric constant perfectly valid in a
region containing only a few hundred atoms. If these
assumptions are accepted, however, then the model can
be used to treat the interactions of two centers. Solutions
for the energies and separation distances of the lowest-
lying eigenstates of a hydrogen molecule or molecule
ion have been calculated' " or deduced from spectro-
scopic data. "These, in conjunction with Eqs. (1), will

yield the energies of the magnetic and nonmagnetic
states of donor pairs as a function of their separation

5 See, for instance, G. Hertzberg, Atomic Spectra and Atomic
Structure (Dover Publications, New York, 1944), p. 15 6.' See, for instance, L. I. Schiff, Quantum Mechanecs (McGraw-
Hill Book Company, Inc. , New York, 1949), p. 80 ff.' E. Teller, Z. Physik 61, 458 (1930).' H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933).

'H. M. James, A. S. Coolidge, and R. D. Present, J. Chem.
Phys. 4, 187 (1936)."J.C. Slater, Technical Report No. 3, Solid State and Molecu-
lar Theory Group, Massachusetts Institute of Technology,
Cambridge, 1953 (unpublished)."O. W. Richardson, Proc. Roy. Soc. (London) 152, 503 (1935);
Molecular IIydrogen and its Spectrum {Yale University Press,
New Haven, 1934).

'e R. Rydberg, dissertation, Stockholm, 1934 (unpublished);
reproduced by G. Herzberg, Molecular Spectra and Molecule
Structure I. Deatomec Melee.utes (Prentice-Hall, Inc. , Englewood
Cliffs, 1939).

II. THE HYDROGENIC MODEL FOR THE
DONOR CENTER

The problem of equilibrium energy levels of a particle
in an inverse square force field (the hydrogen atom) has
been solved exactly both semiclassically' and quantum
mechanically. Using these solutions, it is quite simple
to compare the expressions for the energy levels, as well
as the mean radii of the wave functions (Bohr orbits
in the semiclassic treatment) for particles of unit elec-
tronic charge but different masses moving in a media
with different dielectric constants. The following ex-
pressions result:

E~ mi/Ei'
7

Es ms/Est

M = kT(d 1nZ/dH), (2)

where H is the magnetic held strength, k is the Boltz-
mann constant, and T is the absolute temperature. The
system which we shall consider will consist of unit
volume of the crystal containing N&/2 two-donor
systems, in which we shall assume that all electrons
are frozen out of the conduction band. The grand
partition sum in the presence of a magnetic field will
then contain only terms for zero-, one-, and two-electron
states of the two-donor centers, giving

pT tj/2 N d(2

Z g Z' g I ps+ P e~ '(ePH/kr+e PH/kT)—
i=1 i=1 1

+g esp sk(espH/k—t+1+e 2pH/kT)+—Q ese—ek'j (3)

Here ~ and q are the energy of a given eigenstate and
the Fermi energy, respectively, both in units of kT, and
P is the Bohr magneton. The sum over j refers to a
sum over-all one-electron states of a single two-donor
center, while the sums over k and k' refer to sums over
triplet and singlet two-electron states of one molecule,
respectively. The two lowest one-electron molecule ion
orbitals (1so and 2pa.) sufFice to describe atom and bare
donor, and the lowest singlet and triplet two-electron
states ('Zo and 'Z„) sufFice to describe all neutral atoms
in the ground state. All other excited states are much
higher in energy" for the conditions which we are
considering. Our two-donor grand-partition function
can thus be approximated by a sum of 6ve terms.

It should be pointed out here that the terms Z;
within the product in Eq. (3) are not all the same since
the electronic energies 8=kTe differ for different
separation distances of the molecules. However, the
partial potential of the electrons (Fermi energy)
p, = kTq is a constant throughout the whole sample and
is determined by the number of electrons present, which
is, of course, equal to the donor concentration Ã~. The
relation between this number and the Fermi energy
is given by

Ne kT(d 1nZ/dtt) = (d——lnZ/dr/). (4)

Performing the differentiation indica, ted. in Eqs. (2)
and (4) and expanding terms of the form exp(/3H/kT)

"The lowest excited singlet two-electron state, for instance, is
the 'Z„which in hydrogen is more than 11 ev above the round
state. (See diagram by G. Herzberg, reference 12, p. 340. This
would correspond to about 0.03 to 0.04 ev in silicon or a tempera-
ture above room temperature.

III. THE MAGNETIC SUSCEPTIBILITY OF
TWO-DONOR MOLECULES

The magnetization, 3f (magnetic moment per unit
volume), may be defined in terms of the partition sum,
Z, of a system by the expression
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to first order in PH/kT'4 yields for Nd and M the
following expressions:

N. = Z (Nd)'

2(e '~+ev 'n)+6e v '~+2e v '~

(5)
]+2 (ev-E g+ e 2 cn) +3e22-ca+ e2v-s&

2(e «ye ~n)+ gestP'H
M=

i f+2 (cate+ e-w
—

8y) +3e2g 83+e2~8j

where e, and e„are the energies of the one-electron
states and e~ and e3 are the energies of the singlet and
triplet two-electron states, respectively, all in units of
kT. If it is noted that the denominators in Eqs. (5)
and (6) are identical, these expressions can be combined
as follows:

p2H
M= P ( (Nd);

kT
2 (esv-o e2~~~—)

]+2 (en 8+p n) +—3ese 2—+e e a)— —

The 6rst term in this sum is, of course, simply the total
number of electrons.

IV. DISTRIBUTION OF SEPARATION DISTANCES
FOR TWO-DONOR SYSTEMS

Equation (7) can be simplified by defining the energy
difference &~~= &3—e~ and assuming that the compen-
sation, if it exists at all, is not of very great magnitude
(e.g. , is less than 25%), permitting the neglect of zero-
and one-electron states. "The resultant expression for
the magnetic moment is

p'H ~d~'
t 2(].—e ~»)y

) (N.),—
kT ~& 0 1+3e "' )

element 4mr'hr at r. This will give the probability of
finding a nearest neighbor in hr at r. We use the
Poisson distribution, which gives the probability P(N),
of exactly E events in terms of the expectation value,
G:P(N) = (N!) 'G" exp( —G). The expected number of
donors in a volume V is /~V, where Z~ is the donor
density. This gives for the probability of no neighbors
closer than radius r, P(0,0:r) =expL —(42r/3)Ndr'], and
for the probability of ending one neighbor in a shell of
thickness hr at r,

P(&,r:r+&r) =Nd42rr'Ar exp) —(Nd42rr'&r) j
The product of these two probabilities will yield the
expression applicable for our case, which for in6nitesimal
dr is given by

dP =42rNdr dr expL —(4/3) rrNdr'$ . (9)

The relative probability dP/dr of finding the nearest
neighbor at r is graphed in Fig. 1.

The remainder of this section will be devoted to a
discussion of the validity of the assumptions made
concerning the above distribution function; the reader
may wish to go directly to Sec. V, where an approximate
expression for the magnetic moment is obtained.

Equation (9) is strictly correct only for the donors
which make up the erst pair. It would be correct for
all pairs if already-paired donors were still available
for further pairing. This is obviously not the case.
However, let us point out that we are here interested
in the situation where only a fairly small fraction of
donors are close enough to be considered effectively
paired (i.e., such that some of the magnetism is re-
moved). The fraction of groups of three in such cases
will be even smaller. Moreover, if we pick our pairs
in such a way as to remove from consideration first the
pairs of closest spacing, then by the time deviations
between Eq. (9) and the actual distribution of distances
becomes significant, we will be dealing with pairs that

The sum in Eq. (8) may be converted to an integral,
since Nd/2 is a very large number. However, it must
be recalled that the triplet-singlet splitting energy, ~»,
may be a strong function of the donor-pair separation so
that, if our integral is to be over the separation distance,
r, a weighting function, or probability of finding a
donor pair with a given separation distance, must be
determined. This we shall now do.

If the donors are distributed at random, then we can
fasten our attention on one donor and determine the
probability that there is 1zo nearest neighbor closer than
r and also ore neighbor in the spherical shell volume

I
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"The assumption PH«kT is good above 3'K, since for the
magnetic fields usually used in susceptibility measurements
&&20 koe or flH/k 3'&0.4.

~5 In e-type silicon, for instance, at temperatures in the neighbor-
hood of 10'K the Fermi level is ~0.025 ev below the conduction
band edge, while the energies of the one- and two-electron states
of a pair of donors of intermediate separation are —0.06 and—0.10 ev, respectively. The exponents p —e, and 2q —c& at this
temperature are accordingly 41 and 58, respectively.

L
0
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REDUCED NEAREST NEIGHBOR DISTANCE p =(/I/d 4/~2r)»r

Fro. t. Relative probability, ZI'/dr, of 6nding the nearest neighbor
of a given donor at a distance r from it.
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where V= (4/3)mrs is the volume. For small V, which
is now the range of interest, D= (NeV)s. Comparing
this with the total number of pairs which have already
been picked,

g= dP=
J, exp( NeU)NedV =Ng—V (12)

we find for the ratio D/g =NeV. This shows that the
relative number of discards to the number of pairs
picked is, for V(1/Ne, =NeU or Ne(4/3)err'. There-
fore, if the criterion E3~=2kT is satisfied when r is
approximately 3 of the maximum of the distribution
given by Eq. (9), as is the case here, then the error
resulting from the use of Eq. (9) will be only a few
per cent.

It might be pointed out from the foregoing discussion
that, when r approaches r, too closely, the number of
rejects becomes appreciable and the present calculation
may overestimate the eGect of pairing by a factor of
two. This is also evident from a qualitative considera-
tion of the pairing process.

The assumption of a statistically random distribution
of donor centers is, strictly speaking, not exact because
there is an energy of interaction between every pair of

have such large separation that their contribution to
the magnetic moment is exactly what it would be if
the donors were unpaired and is thus independent of
the separation distance.

In order to make a more quantitative estimate of
the error resulting from use of Eq. (9), we can define
a separation distance, beyond which pairs will act like
independent donors by such criterion as E»=2kT.
Then let all the Ne(Nq —1)/2 inter-donor distances be
listed in order of increasing magnitude, and use them
in this order to 611 in the low separation tail of the
distribution given by Eq. (9). Eventually one of the
members of the pair currently being chosen will be
found to have been paired with another donor pre-
viously. An estimate of the possibility for this event is
given by the probability that the neighbor at distance
r is a next nearest neighbor, i.e., that there exists one
atom within the sphere of radius r and, also, one in the
vicinity of the surface. This probability is given by

dP'= (4/3)rrNer'4rrNdr'dr expL —(4/3)sNer'j. (10)

The over-all probability for this should be doubled
because either of the atoms of the pair we are currently
picking might have been chosen previously; the
probability that both have been selected previously
is neglected. Summing over all of the pairs as we pick
them, starting from the erst, will give an estimate of
the total number which have been discarded due to
prior pairing. This total number discarded is given by

yI

D=2)rdP'=2 ~ N V p( —N V)N dV, (11)
Jo
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I'IG. 2. Energies of the singlet and triplet ground states of the
hydrogen molecule with 6xed atoms and the energy difference
between the two states as a function of atom separation. The
points on the two upper curves were obtained from the literature
as follows: y James, Coolidge, and Present, reference 9; g James
and Coolidge, reference 8; ~ Slater, reference 10; O Herzberg,
reference 12. The points on the difference curve were obtained
from the difference between the singlet and triplet curves, while
the dashed line is of the functional form shown.

donors. This energy rises sharply for small internuclear
distances for the same reason that the hydrogen
molecule and hydrogen molecule ion have high energies
in the corresponding case of small internuclear distances.
If the energy of electrostatic interaction e'/Er rs of the
two donor ions be equated to a multiple of kT, say
2kT, and the volume corresponding to this radius be
excluded from consideration, the effect on the final
results is slight (less than 1%) for the conditions of
validity of this theoretical analysis. Such an e6ect
will be neglected in the following.

where V = (4/3)mrs. If it is recalled that the magnetic
moment for isolated donors is P'IINe/kT, then it is
evident that the value given by Eq. (13) is that for
isolated donors multiplied by the correction factor
(1—I), where

I 1—exp( —est)I= exp( NeV)Ned U. (14—)
1+3 exp( —est)

This latter expression, of course, has the correct

"Actually, the ions are screened by the conduction electrons
with a Debye length of Xn= (4mNee'/EAT) & However, near the.
melting point X~=100A, which is much larger than the pertinent
distances here ( 5 A).

V. EVALUATION OF THE MAGNETIC MOMENT

From Eq. (8) we get for the magnetic moment of
the crystal, using Eq. (9) and the appropriate normali-
zation to a total of Ne/2 two-. donor systems,

P'II p Ne ( 2/1 —exp( —e») jq

kT& 2 & 1+3 exp( —est) )

X exp( —VNe)Ned V, (13)
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1.2— bility per gram, 7f=3II/pK

where
(16-a)

0.8
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Fzo. 3. The function [1—exp( —e)j/[1+3 exp( —e)j vs e and the
approximation to it (dashed curve) used.

(3.7kT/m*A).
(15)

where u =Eq/B (m*)', A =A lr/E'(= 0.068 ev for

silicon), and B=BII/E'(=4.65X10" cm ' for silicon).
These expressions give Gnally for the magnetic suscepti-

'~ A Heitler-London calculation LSee, e.g., L. Pauling and E. B.
Wilson, Introdnction to Qnantnnt Mechanics (McGraw-Hill Book
Company, Inc. , New York, 1935),p. 340 ff.j gives for the splitting
E3$—f(r) exp (—2r), where f(r) is a moderately complicated
function. However, as Fig. 2 shows, the fit of A exp( —BU) is
quite satisfactory in the range of greatest importance. The use of
this latter function makes it possible to perform certain inte-
grations which occur later.

asymptotic behavior, vanishing for small e» and causing
the paramagnetism to disappear for large e».

In order to evaluate the correction I, it is necessary
to know how E3~ varies with separation distance. This
can be obtained from calculations on the hydrogen
molecule. Figure 2 shows the variation with inter-
nuclear distance of the energies of the singlet and triplet
states of a hydrogen molecule, as well as the difference
Es—Et=(Est)rr. The points shown on the difference
curve of Fig. 2 are obtained from the calculated values
of E3 and E~ shown, while the dotted curve shows
the approximation to be used later, (Est) rr ——A Ir

Xexp( —BrrU)" where Air=9. 66 ev and Ba= 7.84X10"
cm '. The hydrogenic expression must be scaled for
dielectric constant and eGective mass, giving
Est=(m*/Z') (Est)I, (m*/Z——')AH expL BIr(m—*/Z)sU]
where the effective mass, m*, and dielectric constant
E have been left in the equation explicitly as
parameters. In Fig. 3 is shown the function f(e)
= (1—exp( —e))/$1+3 exp( —e)). As can be seen from
the figure, the broken line is a reasonably good approxi-
mation ( 10'Po) and will be used in the integration of

Eq. (14). (The explicit form is f(e) = e/3. 7 for 0(e (3.7
and f(e) =1 for e)3.7.) These approximations lead

finally to the following simple expression for the
correction factor:

1VsP'
C= (3.7k/m*A)

( 1+
~

. (16-b)
pk Bm*s)

VI. DISCUSSION AND COMPARISON WITH
EXPERIMENT

A. SiHcon

It is found experimentally' that the plot of z vs 1/T
is curved and has a smaller slope than XoP'/tok. These
two effects are both predicted by Eqs. (16). The power
of the inverse T dependence is diminished by the term
Ed/Bm*s, and the constant C, which for no interactions

(x10 )
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Fzc. 4. The paramagnetic susceptibility of donors vs reciprocal
temperature plotted on log-log paper. The data are obtained from
reference 2. ~ Specimen 743 (5X10"); ~ Specimen 1407 (12—20
X10' ); + Specimen 1262 (6-10&10'7) ' Q Specimen 329
(2-4X10'r).

is simply 1l/zP /pk, is diminished by two factors, both
increasing with N~. Figures 4 and 5 show an attempt to
6t the temperature dependence of the derived expression
to the experimental data reported for silicon. ' The data
of Fig. 5, reference 2, have been replotted in log-log
form, so that the slope of the resulting curve is
1—Xo/Bm*s. The factor 1t'/a/Bm*s thus obtained has
then been compared with 37d reported from Hall
measurements. It should be pointed out that there is a
rather large uncertainty in the values of E& obtained
from Hall measurements, depending upon the assump-
tions which are made concerning the mode of electron
scattering and degree of degeneracy of the sample. '

' To obtain the donor density, Nd, from the Hall coefBcient, R,
the equation Ez= (pz/p)/Rec is used. (arr/p) is the ratio of Hall
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In Fig. 5 the values of S~ determined on the basis of
assuming phonon scattering (circles) and impurity
scattering (squares) have been plotted versus the factor
Ns/Bm*' obtained from the slopes of the curves of
Fig. 4. A straight line connecting the points should be
proportional to 1/Bm*'. If the model is good, m* should
be the effective mass of an electron frozen on an arsenic
donor in silicon. Lines for m*=0.51, 0.53, and 0.55
have been drawn on Fig. 5. The m* calculated from
the donor activation energy" and Eq. (1a) is 0.513. As
can be seen, the agreement is fairly good for samples
having less than 10" cm ' donor. The deviation in a
sample having 5&&10IS cm ' donors is quite large, but
in this range the assumptions which entered this theory
are not satisfied. (It might be pointed out that in the
sample with 10" cm ' donors the maximum of the
distribution of distances LEq. (9)j occurs for such
interatomic distances that the splitting energy is

~ (x&0'")
I-

28X
LLI

X
20

24. —

5x&0"
OFF SCALE: AT 50—

16 Yyl
//

0 ///
0

0.0007 ev, which, together with the criterion E=2kT,
gives a temperature of about 4'K, below which this
theory would tend to break down. }

B. Germanium

In germanium the effective mass is much smaller
than in silicon, and the donor levels are much closer
to the conduction band. Moreover, the dielectric

to conductivity mobility, equal to 3v/g for spherical energy bands
and phonon scattering. For the more complicated conduction
band of silicon and for an admixture of thermal and impurity
scattering, the ratio may vary between 0.8 and 1.9. See reference
2 and references 28 and 29 therein for a fuller discussion.

"Morin, Maita, Shulman, and Hannay, Phys. Rev. 96, 833
{1954).

0
0 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.52

A'd

8m "&

FxG. 5. The donor density, Sd plotted vs Xd/Bm*'. The points
are from the experimental data shown in Fig. 4, while the straight
lines are predicted by the theory for different values of the effective
mass of electrons in donor states.

TABLE I. Comparison of constants used in the expression
of the magnetic susceptibility.

Si Ge

Ionization energy, Z(ev) 13.6
Dielectric constant 1
Effective mass

(electron masses)
m*2~/K' (ev)
(m*)'Brr/E'(cm ')

0.012
16

0.049
11.9

1 0.51 0.23
9.66 0.0348 0.0087
& 84&1o"

SUMMARY

The magnetic susceptibility of donor centers distri-
buted at random in a semiconductor has been calculated
for the case in which interactions between pairs of
donors is small but not negligible. A hydrogenic model
was assumed for the donor center; the energy difference
of singlet and triplet donor-molecule states was scaled
from corresponding values for the hydrogen molecule.
The difterence, or splitting energy, was approximated
by a mathematical expression which permitted the
evaluation of certain integrals. Only the singlet and
triplet ground states were retained in the partition
sum, which included terms for a range of values of
internuclear distances. Summing over the distance
between donors and differentiation of the partition sum
gave the final expression for the susceptibility.

Even though there are no adjustable parameters in
the theory, agreement with experiment seems fairly
good in the case of silicon. The theory predicts an
onset of pairing in germanium at a value which is also
in qualitative agreement with experiment.

One of the results of this calculation is to raise some
questions about the procedure of using the temperature-
limiting slope of the Curie plot to obtain the donor
density of the specimen. A sizeable correction factor, of
the order of 10 to 50'Po, seems to be required even when
no large curvature is apparent in the data.

constant is greater; and so the donors interact at larger
distances. In Table I is shown a comparison of the
constants trleA~/E' and (m*)'Brr/Es for silicon and
germanium. Since it is the ratio of S~ to the second of
these which determines the deviation from a linear
dependence on 1/T, it is evident that the situation in
germanium corresponding to that which we have
discussed in silicon arises in samples which are purer
by a factor of 25. This means that the present discussion
applies to germanium only when the concentration of
impurities is less than about 5&(10"cm ' donor. It is in
just such a specimen (5.5&(10"cm ') that Bowers' has
observed a slight paramagnetism at low temperature,
with a slope less than one would expect for non-
interacting donors. There actually seems to be a slight
curvature in the data presented by Bowers, ' which also
is in qualitative agreement with the foregoing.


