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Using the method developed in paper I of this series, the thermodynamical properties at T=0 of a dilute
system of hard spheres are computed for small values of pc', where a is the diameter of the spheres and p is
the particle density.

1P S study ir this paper the thermadyuamieai
properties of a system of hard spheres at T=O.

We recall that at a finite temperature T the pressure p
depends on the chemical potential p and on T. The
thermodynamical relation,

dp= pdld+ (S/Q)dT,

enables one to compute the density p and the entropy
density (S/0) of the system. Once p is known as a
function of p and T, all other thermodynamical quanti-
ties can be calculated.

In Sec. I it will be shown that for a Fermi gas of hard
spheres, using the results' of paper II, one can compute

p at T=O as a series involving successively higher

powers of p'u. From this expression one obtains the
other thermodynamical properties of the system, such

as the particle density p and the energy density. The
energy density so obtained clearly represents the
ground-state energy per unit volume. It is expressed
in an asymptotic form valid for small values of I"Ia,
where I'p is the maximum Fermi momentum for free
particles.

The corresponding calculation of P at fixed fd and
at T=O is more dificult for a Bose gas of hard spheres.
The origin of the difhculty lies in the well known Bose-
Kinstein condensation which makes it dificult to take
the limit T~O. In this paper we circumvent this
difhculty by making the calculation for a Boltzmann

gas of hard spheres, which does not exhibit a transition,
and remark that at T=O the thermodynamical proper-
ties of a Boltzmann gas are the same as that of a Bose
gas. The calculation is outlined and summarized in
Sec. 2, the mathematical details being given in the
remaining sections of this paper.

1. FERMI STATISTICS

In this section' we calculate the pressure at T=O at
an arbitrary chemical potential p for a Fermi system

* Work supported in part by the U. S. Atomic Energy
Commission.

'T. D. Lee and C. N. Yang, Phys. Rev. 113, 1165 (1959),
and 116,25 (1959),referred to as I and II. We follow the notations
of these papers. Thus p=pressure, 4=1, re=mass of particles=q,
a hard sphere diameter, N =number of particles, 0=volume of
box, p=N/0, J=spin of particles, Pal=maximum Fermi momen-
tum for free particles=L6trsp/{27+1)]', iS=1/ttT, and X= (4trP)&.

of hard spheres with spin J, to the order a'. One first
writes down the fugacity series (II.35) computed in
paper II for finite T:

V (p/~T) =X' p fbi"s'
1 .

= —(2J+1)g;(—s) —2J(2J+1)[g,(—s)1'(a/)h)

—8J'(2J+1)g;(—s) [g-(-s)l'(a/) )'

where

+8J(2J+1)P (—s) (a/)h) '+0(a'/)h'), (III.1)

()=Zf ""
l=l

(III.2)

s= exp(fd/IrT). (III.4)

For fixed fd)0, as Th 0, clearly s —+ +oo. Equation
(III.1) enables one to compute thel imit of p in
successive approximations. In this computation the
asymptotic limits of the functions g;, g;, g„and F are
needed for arguments (—s) —+ —~. In Appendix A
these asymptotic limits are derived. Using these limits
one obtains, as T —& 0, for fixed p) 0,

(P)r=o= (2J+1)(15ir') 'p*—2J(2J+1)(9~') 'alt'

+4J(2J+1)s.—4[(2J/9)
—(11—2 ln2) (105) ')a'p'~'+ . (III.5)

The form of this expression suggests that the higher
order terms contain higher powers of ap'. For finite but
small values of T, the next order terms in the asymptotic
expressions for the g functions contribute to the pressure
p additional terms proportional to T', as can be easily
verified with the aid of (III.62), (III.63), and (111.64).

The particle density and the energy density at T= 0

F (s) = p (rst) l (r+s) '(r+ f) p'+a+—t (III 3)
r, s, t 1

One recalls that according to the general principles
of statistical mechanics, the fugacity s is related to the
chemical potential p, by
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for fixed ti) 0 are easily obtained from (III.S): The coefficients y~ and 8~ are computed in Secs. 3, 4,
and 5, where one obtains explicit expressions for these
generating functions F and D. Before discussing the
physical consequences we first state the mathematical
results of these computations. It will be shown that

—2J(2J+1)(3m') 'ay, '+14J(2J+1)or '

X[(2J/9) —(11—2 ln2) (105) ']a'ti'*

+ .
, (III.6)

(&/&)r-o=p —(P)r-o (P)r=o (2J+1)(10ir ) 'p'
dp,

where D(x) is defined by

It will be further shown in Secs. 4 and 5 that

(III.12)

(III.13)

—4J(2Jj1)(9or') 'ati'+10J(2J+1)or 4

X[(2J/9) —(11—2 ln2) (105) ']a'ti't' where

A(x) = Q c„(2ti)—'[—D(o")]&, (III.14)

One can solve (III.6) for ti:.
+ . (111.7) 2(;) q,dq

I *=Pp+4J(3or)-'aPp'

8J' 4J (11—2 ln2)
a'P p'+ . (III.8)9'' m' 15

Substituting this into (III.7) and dividing by p, one
obtains the ground-state energy per particle:

(P//N) r= o = (3Ppo/5)+8map J(2J+1)
X [1+6(11—2 ln2)Ppa(35or) ']+ . (111.9)

The result (III.9) was quoted some time ago in a
short summary. ' This result agrees with that obtained
earlier from the pseudopotential method. '

2. BOLTZMANN STATISTICS (AND
BOSE STATISTICS)

In a Boltzmann system, to approach the limit T~ 0
at fixed ti)0 one must study the properties of p for
values of the fugacity z= exp(ti/~T) —& +~ . This
means that one must take into account all terms in
the fugacity expansion P biz' and not cut off the series
at any finite I. With this in mind we approach the
problem in the following way: We calculate, for each /,

the dominant terms in b~ for small values of a. These
dominant terms have the following form:

b, =X—'[yi(a/I, )'—'+ S, (a/I~)'+ . .]. (I11.10)

1 &t~ &0

Xexp f
—q[(tio —tio')+ (too t23 )

+ + (t„i—t io)]} (III.15)

et,c. (III.16)

The function D(x) in (III.14) was already defined in
(III.13).

The pressure is expressible in terms of the generating
functions, as a direct consequence of (III.10) and
(III.11):

p= Q biz'=4or(aX4) 'I'(x)+4vrh 'A(x)+ . (III.17)
1

P (g) ~ 1D2—(64 2)
—1~2) 4 (III.20)

The behavior of 6 as D —+ ~ can be studied from the
explicit formulas (III.14)—(III.16). This is carried
out in Appendix 8 where it is shown that as D-+ + oo,

@=2az/Ii= 2' ' exp[&X'(4&) ') (III 18)

For fixed p) 0, as T —& 0, x —+ +~. Thus by (III.13)
D~+oo. In fact, comparing (III.13) and (III.18)
one obtains

D-+ (4or) 'tiX'.

It is clear from (III.12) that

The coefficients yt and 6~ are pure numbers. One defines
the generating functions

I'(x) = g y, (x/2)',

Thus
A —+ —(16/15) (2/or) &D'.

A ~ —2—l (15or')—'tilIi'.

(III.21)

(III.22)

(III.11)

' T. D. Lee and C. N. Yang, Phys. Rev. 105, 119 (1957).' K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957). See
also C. DeDominicis and P. C. Martin, Phys, Rev. 105, 1417
(1957)

(III.1'7), (III.20), and (III.22) lead to the following
expression for the pressure p at T=0:

(P)r o
——(16m.a) 'p, '—8'(15or') 'I I+ . (III.23)

As remarked before, this expression for the pressure is
calculated for a Boltzmann system, but is valid also
for a Bose system.
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The particle density p and the energy density are
easily obtained from (III.23):

d
=—(p) r=o ——(Sea)-'p —2l(3vro)-'p3+.

dp

(E/Q)z o

(III.24)

= p——1 (p)z=o=(16~a) 'p' —2'*(Sm') 'pi
d'p

+ . (III.25)

(ii) lowest-order diagrams, in which one replaces

one of the B's jn BE by B2
and therest by Bi. (III.28)

These contributions are considered in the next section
in the calculation of 6~.

The procedure described above which involves
expanding B into powers of a is n'ot' one that can be
extended in a straightforward manner to all powers
of a. In fact, it can be seen that in the next order

4 Lee, Huang, and Yang, Phys. Rev. 106, 1135 (I95/}.
'The authors are indebted to Dr. T. T. Wu who 6rst raised

this question.

Eliminating p, one obtains the ground-state energy per
particle:

(~/X)r=o=krap[1+128(pa3) l(15+i)—'+ ]. (III.26)

The result (III.26) was quoted previously in a short
summary. ' Stimulated by this result, the authors
together with K. Huang had investigated the possibility
of obtaining the ground-state energy by the pseudo-
potential method. It turned out that this is indeed
possible. A description of these considerations has
already been published. 4

3. CALCULATION OF I
To evaluate y~ is to evaluate b~ to the dominant order

(i.e., lowest order) of a/X. Now bi is an integral of Ui
which in turn, as shown in paper I, is expressible as a
sum of integrals of powers of the binary kernel 8,
starting with the power 8' '. The diagrams that
correspond to integrals of B' ' will be called lowest
order diagrams, those that correspond to integrals of
B', next-to-lowest order diagrams. We expand Baccord-
ing to powers of a as in (I.71):B=Bi+B3+ where
B~ is of the order a, 82 of the order a', etc. To the lowest
order in a/X one need only include lowest order dia-
grams, and replace B by B& in them. One thus obtains a
term for b~ proportional to a' ', the coefficient of which,

by (III.10) is X 3&'(X) '+'. For the next order terms
there are contributions from.

(i) next-to-lowest order diagrams,

in which one replaces B' by B,', (III.27)

beyond the terms explicitly written down in (III.10),
complications will already be encountered. The origin
of these complications lies in the fact that in coordinate
space, for fixed r~, r2, . r~', r2'-, the matrix element

can be expanded in powers of a, starting with the power
a' ', but the expansion does not apply to regions in
which, say, ~ri —r3~ a which contribute terms of
order a'a' '= a'+' to the coefficients b~. The calculation
in Appendix A, paper II, illustrates this point for the
case of b2.

We now concentrate on the lowest order diagrams
and replace B by B&. We use the momentum representa-
tion. As an example, let us first consider b3, and take
the first diagram for V3 in Fig. 5, paper I. Conservation
of momentum forces k, =ki, k, =ko in this diagram.
The contribution to U3 (to the order a') from this
diagram is, according to the rules in paper I,

I' Pl

dP' ~ dP"(a~ ')'~l dokoexp[ —(P—P")k,'
~0 ~0

—(p —p')k, .'—(p —p')k, .']b'(k, +I,.—k, —k,)

Xexp[—(p' —p")k '—(p' —p")k 3]

Xb'(ki'+ko —ki —k,)

Xexp[—P"ki' —P"k, —P"k '] (111.29)

The 6 function can be used to evaluate the d'k~
integration. One thus obtains, by (I.54), the following
contribution to (kl')ko')k3'~ No~ kl)ko)ko):

pP pP'

(a~ ')'~ dp'~l dp" exp[
—(p —p")k, ' —p"ki3

0 0

—(p —p')ko' —(p' —p")kb' —p"ko'

—(p —p')k3/3 —p'k 3] (III 30)

where ko=ki+k3 —ki. To obtain the contribution to
bo one puts k, =k, , as explicitly shown in (I.55).
Therefore ko=k3, and the exponential factor in (III.30)
becomes greatly simplified:

exp[ —Pkio —Pk33 —Pk,3],

which is independent of P' and P". The contribution to
b3 is thus

(3[8-3) i(a- 3)3~I exp( —Pk 3—Pk 3—Pk 3)

P I'1

Xdokidokodoko I dP' ' dP"

=(3!Sm') '(m ')'(m-/P)'" —,'P'. (III.31)

The considerations above hold essentially unchanged
for higher values of l. One arrives at the following
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contribution to b~ from each lowest order diagram:

(l! 8m') '(—am ')' '(~/P)""P' '/(l —1)!. (III.32)

Defining A ~ to be the number of lowest order diagrams,
one obtains

li =l~ '(l ~) '[(l—1) ~] '(—2a/li)' —'2 +0(a')
(l~ 2). (III.33)

Thus,

Ke define A~=i, so that this equation is also valid
for l= i.

As will be explained in Fig. 4, the number A~ is the
number of "tree skeletons. "The mathematical problem
of calculating 3 g by generating functions will be solved
in Appendix C. Equation (III.99) there together with
(III.11) gives

I'(x) =-',D+ ~iD',

which was used before in (III.12).

FIG. 2. Skeleton that corresponds to Fig. j.. Each line between i
and j represents a 8 operator between the particles i and j.The
order of the operators 8 are speci6ed by the P 's that label the
lines. Each next-to-lowest order diagram corresponds uniquely to
one skeleton with l lines, p, of which forms a simple loop while the
rest do not form loops. In this skeleton p=3. The case of p=2 is
special and is discussed in detail in the text. See also Fig. 3.

and 0 for the other lines. As an example, take the
skeleton shown in Fig. 2. The momentum transfer from
4 to 2 during P4 is the same as that from 2 to 3 during
p3 and also the same as that from 3 to 4 during p2 and
will be denoted by p. ln Fig. i, this means that the
momenta of the points a, b, - . l are given by

4. CALCULATION OP A

As already discussed in the last section, the contribu-
tions to 5i come from (III.27) and (III.28). We shall

k.=k,+p, kg ——k, ) k, =k,—y) k,i ——k„
k, =k,+p, kf ——k,—p, k, =k, , ki, ——k„

k;=k, , k, =k„ki=k„ki=k2. (III.35)

FIG. 1. Example of a next-to-
lowest order diagram for l =4.
The intervals !81, p2, . ~ pl are
always labeled from the top down.

Py

t 2 3 4

discuss (III.27) first. Each next-to-lowest order
diagram contains l8's. These 8's carry with them
factors of 8 functions showing the conservation of
momentum. To see the eGect of these 6 functions we
draw a skeleton (Fig. 2) for each next-to-lowest order
diagram (Fig. 1). As Fig. 2 shows, each skeleton
consists of l numbered points connected by / lines, p,

of which form a simple loop, the rest not forming loops.
The lines are labeled by Pi, P2, Pi. Different labelings
give rise to diGerent skeletons. For the case of p, =2,
one line is doubled, and must be labeled twice, by two
intervals p, p„. Notice that ~m —e~ W1 in order that
8 does not operate between the same two particles in
immediate succession. See Fig. 3. With this provision
in the definition of a skeleton, there is a one-to-one
correspondence between a next-to-lowest order diagram
and a skeleton. Some additional examples of skeletons
are shown in Fig. 3. Now each 8 between i and j
produces a transfer of momentum between particles
i and j. For diagonal elements of U'&, the momenta of
all particles after the l transfers of momenta must be
the same as their original values. Hence the momentum
lransfer y must be the same for all 8's within the loop,

The above reasoning shows that for a particle
i (e.g. , i=1 in Fig. 1) not in the loop, no momentum
transfers ever occur so that the momentum is always
k,. For a particle i in the loop, as one proceeds up
vertically in the next-to-lowest order diagram, the
particle may first receive a momentum p and then lose
it (e.g. , i=2 or i=3 in Fig. 1), or vice versa, (e.g. ,
i=4 in Fig. 1). In the former case, its momentum
starts out as k;, becomes k, +p, and then changes back
to k„. In the latter case, its momentum starts out as
k, , becomes k,—p, and then changes back to k, .

Now by (I.71), Bi contains an exponential factor and
a 6 function. To calculate the contribution to b~ due
to a next-to-lowest order diagram, one uses (I.54) and
(I.55). The 8 functions can be used to reduce the
k integration for intermediate k s in the manner dis-
cussed above. One obtains thus a contribution to b~

equal to

b,'= (l!8~') '( —a/m')' t dPi dPi

X d'p d'kid'k2 d'ki

X exp[ —Q P„E, Eo(P PP )$, (III.36)— —

where Eo=ki2+k22+ +ki2, and E =the energy in
the diagram at the horizontal level corresponding to
the bottom on the p interval. The p integration extends
over positive values of p for which pi'p ~p. For
the example in Fig. i,
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(a) (b)

FIG. 3. Further examples of skeletons. Notice that if the labels
P» and P2 are interchanged in skeleton 3(a), the result is not a
skeleton because the 8 operator between particles 2 and 3 would
in that case act in the intervals p2, P3. No next-to-lowest order
diagram corresponds to such a case.

Ei——k '+ki, '+k'+k '= kp+k22+k32+k42

E,=kp+kg'+k, '+kf' ——kp+k22

+ (ka+ p)'+ (k4 —p)'

Ea ——kp+k. '+ki, '+kg =kp
+ (k2+ p) 2y k 32+ (k 4

—p)
2

d'k; exp[ —s, (k,+p)' —(P—s;)k']

The exponent of the integrand in (III.36) is a sum of
terms k,2, (k,~y)'. The d'b, integration is thus a
Gaussian integral:

s,=0 for i not in the loop; otherwise

s,=
~

difference of the two P's labeling the two

lines in the loop touching the vertex i
~

. (III.43)

(III.43) gives, for each rela. beled skeleton, s., as explicit
functions of $ .

Ke now take an "unlabeled skeleton" with y&3
and consider all the l t ways of labeling it. Each gives
rise to a skeleton and contributes a term b~'. These I t

contributions are in general different. The sum of
them is, by (III.42) and (III.43),

Oi, „=(t!Sm') '(—Sea/li')' dpi d$t~ d'p
~P)ta)o

Xexp[ —P 'p' & s'(P —s')] (III 44)

where s; is given by (III.43) for any particular way
L, of labeling. [Notice that the region of $ integration
in (III.44) is much enlarged compared with that of
(III.42).] We choose I. so that the lines in the loop
are successively labeled $i, $2, . $„. The integrand in

(III.44) is then independent of $„+i, f„+~, $i. Thus

0'i, „=(t ~ 8~') '(—Sea/X')'P' " dpi d$„
&cog &p

X f d'p exp( —P 'p'[($12P $12')+($23P $2p)

= (2~/l~)' exp[ —P
—'p's, (P—s,)], (III.38)

where
+" +(r P —r ')] (»145)

where s,=g P over all n for which E,contains (k.&y)'.
For example, from (III.37), one sees that for the diagram
of Flg. 1)

(III.46)

Introducing the variables t =),P ', q= p'P, one obtains

si ——0, s2=P3, s3 P2) s4=Pg+P, (III.39). O~, „=X
—'(t!)—'(—2a/X) 'c„, (III.47)

A simple rule for writing down s, will be given below.
Combining (III.38) with (III.36), one obtains

bi' (t!S~') '( —Sm——a/X')'! dpi dPi

~ d'p exp[—P ip2+ s, (P—s;)]. (III.40)

Now let us introduce the variables

h=pi+p2+ . . +pi, b=p~+pa+. . .

+Pi . &=Pi (III 4»)
One finds

1'

b i' (t!Sm') —'( —S~a/g——') '

p &p» )g2 ~ ~ ~ )pt )O

X ~ d'p exp[ —P 'p' 2 s, (P—s,)]. (III.42)

We also change the labeling of the lines in the skeleton

P, ~ $,. The important observation is that s, can be
read off the relabeled skeleton according to the following
rule:

where c„was defined before in (III.»5).
We have shown above that each "unlabeled skeleton"

(or rather, all the skeletons with @~3corresponding to
one unlabeled skeleton) contributes to bi the expression
O~i „given by (III.4'I). The total contribution from all
unlabeled skeletons for given t and p (l~ p, ~3) is thus

) '(t!) '(—2a/X)'c ™(tit) (III.48)

where "(p,t) is the number of unlabeled skeletons with
t numbered points, and E (unlabeled undirected) lines,

p of which form a simple loop while the rest do not form
loops. Comparing (III.48) with (III.»0) we obtain the
contribution to 6~ from all skeletons with p, & 3:

(III.49)

We must now add to this the contribution from
skeletons with p, = 2. For this case (III.42) and (III.43)
still hold for each skeleton, but not all labelings of an
unlabeled skeleton are allowed, as discussed in the first
paragraph of this section. One therefore obtains
(III.44) taken at ted=2, minus the contribution that
corresponds to consecutive labeling of the two lines in
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the loop. The result must be divided by two because,
e.g. , in Fig. 3(a), switching the labels Pi and P3 do not
generate new skeletons. Thus, each "unlabeled skeleton"
with p= 2 gives the following contribution to bl.

O~ i, 2
——(I!8~')—'(—8ira/Ii') '— dpi dpi

2~ pR4~0

(I!8m') '—
( —ar7')—' '~— 'l—'a'(T/P)'" ""

X)t dPi(P —Pi)' '[(I—2)!] 'Jf)t d'kid'kg
0

X [exp (—Pki2 —Pkg) ][2kM((2Pi) 'k)

—(2/i) l exp(2Pik')], (III.54)

1—(t! 81r') '(—8~a/Ii')' — d(i dye
2&I,

where k=2 ~ki —k2~ and M was defined in (I.68).
Different ways of marking the same diagram lead to
the same contribution (III.54). We should therefore
multiply (III.54) by (t—1) which is the number of
ways a diagram can be marked. We should also multiply
by A l = the number of lowest-order diagrams, a number
already introduced in Sec. 3. The contribution of

X ~ d3P[ 2p
—ip2(„(p („)] (III 50) (III.28) to bi is thus

(1 1)A iX (II—I.54). (III.55)
where pi2 is defined in (III.47) and (R is a region in

$ space corresponding to P~P ~0, but with no
falling in the interval between $i and (2. The p integra-
tion in (III.50) can be carried out. Changing variables
from ( to t, $ =Pt„, one obtains

The integral in (III.54) can be evaluated by first
transforming ki and k2 into the center-of-mass momen-
tum K and relative momentum k:

K= k,+k„k=—,'(k, —k,).

where

O~i, g
——X

—'(I!) '(—2a/Ii) 'yi,

[2tig(1 —ti2)] '

0 0

X[1—(1—ti2)' ']dtidt,

(III.51)

(III.52)

The K integration is then performed and one is left.
with the following k integration:

c
k'[exp( —2Pk')][2kM((2P, )~k)

—(2/i)
'
*exp(2Pik')]dk,

which one evaluates by writing

M((2Pi)'k) = (2P,) * exp(2Pip')dp,

We thus obtain

+contribution from (III.28). (III.53)

"0

and then switching the p and k integrations. One is
left after these integrations with only the Pi integration.
After the transformation Pi Pt one arrives ——at

(III,54) = —[it2X't! (t—2) !] '(—2a/I%, ) 'Xi)

where
We shall now explicitly calculate the contribution

from (III.28) to bi. We consider a lowest order diagram
in which one specific 8 is replaced by 82, the other
8's by Bi. We call this a marked diagram [the 82
being marked]. For every marked diagram, by the
same reasoning that led to (III.31), one concludes
that in the diagram all the intermediate momenta of
particle i are the same as the original value k, . The
contribution to b& from the diagram is, by (I.54) and
(I.55), given by an integral over d'ki . .d'ki, the
integrand itself being given by an integral over dttidP,

~ dPi i. Using the explicit forms (I.71) for Bi and II~,
one sees that all d'k integrations can be immediately
carried out except for the two involved in 82. Also the
dP integrations can be carried out except for the one
involved in 82. One arrives thus at the following
contribution to bl'.

(III.56)

Substituting this into (III.55) one obtains the following
contribution to bi from (III.28):

—(I—1)A ([%21!(t—2) !]—'(—2) 'Xi, (III.57)

which, together with (III.53) gives the complete
expliCit expreSSiOn fOr 6l.

We shall now show that (III.57) exactly cancels
the first term on the right-hand side of (III.53) so that

(III.58)

To show this cancellation we compare the definitions
of (2,t) and Ai. Their differences are: (i) For one
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considers unlabeled skeletons, while for A ~ one considers
labeled ones. (ii) For skeletons counted in (2, l) one
of the lines is doubled Li.e., one may think of (/ —1)
lines with one of them drawn twice over]. These two
differences give rise to factors (1 1)!—and (t 1), —
respectively. Thus

the series (III.3) can be expressed as integrals:

Thus
—Z't —$(r+s) g(r—+t)]dXd VdZd/dg

(rst) '(r+s) '(r+t) =8m ')l expI —X'r —F's
0

"-(2,t)

/ —1 (t—1)!
(III.59) —I'(—.) =8~—:!

~ o s+exp(X'+$+q)
The integrals in (III.52) and (III.56) can be evaluated
by putting /=sin'0. One obtains thus

g, =@2 '(/ 1)x—,. (III.60)

Using (III.59) and (III.60) one easily proves the
cancellation, and therefore (III.SS).

The cancellation in terms of diagrams means that
next-to-lowest order diagrams with two B~'s interacting
between the same two particles i and j are exactly
cancelled (to the order considered) by contributions
from the lowest-order diagrams. This is a simple
result which probably has a simple interpretation and
a derivation more deeply rooted than the above
brute-force explicit evaluation.

To evaluate the generating function 6 defined in
(III.11) from the 8& of (III.58), we use Eq. (III.105)
derived in Appendix D. The result is Eq. (III.14)
used above in Sec. 2.

APPENDIX A

X'+$+rt & lns,

7'+$ ~lns,

Z'+rt ~ lns

(III.66)

and is 0 outside. The dominant term is therefore
given by

—I'( —s) ~ Sm
''~ dXdVdZd(dq.

This integral can be evaluated in a straightforward way,
yielding

X
s+exp(V'+() s+exp(Z'+g)

&&dXd YdZd)drt. (III.65)

The asymptotic form of this integral can be obtained
in the same way as that for the integral in (III.61):
For large s, the integrand is 1 in the region R:

We shall find the asymptotic limits of g;, g;, g;, and
F for arguments —s ~ —~. Now t ( s) = 16(11——2 ln2—) (105) 'm l (lns) t

+O(Llns]l). (III.67)
s exp( —k')—g;(—s)=s l ' d'k

1+s exp( —k')
APPENDIX B

De~= x,

To study the limiting form of A(x) Ldefined in
(III.14)—(III.16)] for large x, we first notice that D

=7r 2 d k. (III,61) was defined by
o s+ exp (k')

For large values of s, the integrand is 1 for k(((lns)*'
and is 0 for k))(lns)'. The range of values of k in
which the integrand is diferent from its limiting value
is (lns) &. These considerations lead easily to the
following asymptotic limit:

—
g (—s) =4(9s-) l(lns)i+6 's. :(ins)—

+O(I lns] '*). (III.62)

By diGerentiation one obtains 0

(III.69)

so that as x ~ + co, D —+ +~ . Defining a Hermitian
operator

«'I tflI »=expL —
qI t—t'I+q(t —t')'], (111.68)

where t and t' range from 0 to 1, one can write (III.15)
as

Substitute this into (III.14). One obtains—g, (—s) =2s. '(lns)& —(12) 'm'(lns)

+0(Llns]
—"'). (III.63)

6= —m mjl q2dyk,
0

(III.70)And by integration one obtains

—g;(—s) =8(15':)—'(ills) l/3 —' '(lns)&+O(1). (III.64)
P = traceI ln (1+SD) —SD+~~D'S']. (III.71)

To find the asymptotic behavior of P for arguments Clearly
—s —+ —~ we first observe that the coefficients in Lin(1+DR )—D) +-',D9 '], (111.72)
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where X are the eigenvalues of S.Since by definition one has
(III.68) is a cyclic matrix, the eigenvectors are e'~'

(m= &integer or 0), and the eigenvalues
P.P.„(1+Dr„)-'—Z„+Dr „']

[A (1+DA ) ' A—+DA ']
1

dt[cos2~mt] exP[ qt(1 —t)]. (III.73) uniformly with respect to D (D &0)
I'roo .—

Ke first study the convergence of the sums and
integrals in the definitions of It and in (III.70). It is
clear that

(1+DR ) '—X +DR '=D9, '(1+DR ) '.

One can then prove the theorem with this formula.
Theorem 3.—

(III.74)

(III.75)

X =trace$=1,

X '= traceOP (2/q.

X '=traceS'(16/q'

[A (1+DA ) ' A+D—A ']
lim = 1, (III.81)

1+(2D/q)-' —1+(D/q)Similarly,

Furthermore by (III.73), it is easily seen that

)0 for q)0,
0 for q= 0.

Using these properties and the fact that for x)0, (III.82)

uniformly with respect to D (D)0).III.76

Proof It is.—straightforward to calculate

P „A„(1+DA„)-i,
using (III.SO) and the formula

III.77

(m'+A') '=mA 'cothmA.

0 (ln(1+x) —x+-,'x' (-,'x',

it is easy to show that for D)0,

0 (P(—',D' Q X ' (16D'/(3q'). (III.78)

Similarly one can calculate Q A and P A ' using the
derivative of (III.82) with respect to A. One obtains
thus

[A (1+DA ) ' A+DA'—].
Thus A as defined by (III.70) is convergent at large
q. Furthermore since the ) 's are all positive and ~1,
P X ' (P X = 1. Hence

8$= t(q, x) —$(q,O) —x—(q,O), (III.83)
Bx

((q,x) 5(q,O)—x(~El—») (q,O)
lim = 1, (III.85)' "g(~,x) —&(~,0) —x(8&/Bx)(~, 0)

0 (—a~'&ED',

where x=D/q and$(lD8 (III.79)
$(q,x) = (1+2x) ' coth[-,'q(1+2x)*]. (III.84)

Hence 6 is also convergent at small q. In fact, by
(

To prove (III.81) is therefore equivalent to provingIII.78j and jIII.79' one easily proves that for all
D)0,

'

A =2q(q'+4vr'm') ' (III.SO)

where E is some number.
To study the value of 6 for large D we prove succes-

sively the following theorems:
Theorem l.—

X /2q[q'+4m-'m'] ' —+1, as q
—+ ~.

Furthermore the approach to the limit is uniform with
respect to m.

Proof. We take (III.73) an—d write it as

1
(% 2

[exp (—qt+ qt'+ i2~mt) +complex con j.]dt,
0

in which for large g, only the region, where t is small,
contributes. Writing

exp( —qt+i22mt)dt= (22mi —q) 'd[exp( —qt+i22nzt)],

one can integrate by parts. It is then easy to prove the
theorem.

Theorem Z.—Defining

uniformly with respect to x (x 0). It is trivial to
prove (III.85) for any given x)0. To prove the
uniformity of convergence, however, one must remember
tha, t the denominator vanishes at x=O. The region
near x=0 therefore needs special treatment. Such a
treatment is however, not difficult to formulate upon
using the mean value theorem on both the numerator
and denominator of the left side of (III.85).

Theorem 4.—
lim P '[(q'+2Dq) '

q D+ (D'/2q) ]—= 1—, (III.86)

uniformly with respect to D. [D)0. P is defined by
(III.72).]

Proof. One uses Theorems 2—and 3 and obtains, for
every Q) 0, a Eo)0 such that for D~0,

+[X„(1+D) ) ' —X +D'A '])([1+(2D/q)] 1+(D/q)) (1 ICo) (III.87)
+[X„(1+DR ) '—X +DR„']

& ([1+(2D/q)] '—1+(Dlq)) (1+&0),
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for aH q&Q. IIere Eqd'epends on Q and —+0 as Q
—+

+oo. Integrating both sides of (III.87) with respect to
D from D=O to D=D, one obtains

i/ & I (q'+2Dq)' —
q
—D+ (D'/2q) 7I 1—Eq7, (III.SS)

i/« I
(q'+2Dq)-'* —

q
—D+ (D'/2q) 7L1+Eq7,

which is identical with (III.86). This completes the
proof.

We are now in a position to calculate 6 for large D.
We break the Je"dq into J'eqdq+ J'q"dq. Now

pQ pQ

q:dqI Z--Drz'~-'7.
0

ap
I 2 3 4

LOWEST ORDER DIAGRAMS TREE SKELETONS

Using (III.75) one obta, ins

pQ
0& )I q~dqg&2DzQ

0

Using (III.SS) one obtains

(III.89)

FIG. 4. One-to-one correspondeTice between lowest-order
diagr. ams and' tree skeletons. Each tree skeleton consists of I
points 1, 2, ~ l connected by (/ 1) line—s without loop formation.
The lines are labeled by pi, p/ 1. A line in the tree skeleton
between points i and j represents an operator 8 between i and j
in the lowest order diagram, its label P represents its vertical
duration in the lowest order diagram. The order of the operators
8 are specified by the labeling P 's. Different labelings give
diRerent tree skeletons.

pqo CO

dq i/ & (1 Eq) q 'dqtt(q'+2Dq) '

Q dq

f D+ (D'/—2q) 7—,
(III.90)

q :dq i/«(1+E-q) )I q3qdf(q'+2Dq) i

—
q
—D+ (D'/2q) 7

The right-hand side of (III.90) is evaluable explicitly,
yielding

'
qqdi/&( —1 Eq)L(4/15)(Q+2D)'

—sQ(Q+2D)'+ sQ'+ sDQ' —D'Q'7
(III.91)

qidq i/«(1+Eq) L(4/15) (Q+2D) '

—sQ(Q+2D) '*+sQ'+~sDQ' —D'Q'7

For D))Q, the term (Q+2D)*' dominates, From (III.91)
and (III.89) one concludes that, according to (III.70),

6 —+ —zr '(4/15) (2D)
'*as D &+~. —

This is the result (III.21) used in the text.

We define

A, =—A, L(/ —1)!7-i, A,"=A,L(/ —1)!7-z. (111.92)

Az' is the number of zzzz/abc/ed tree skeletons (i.e. ,
t;ree skeletons without the labeling //r, P~ i of the
lines). Now each unlabeled tree skeleton can be broken
into two disconnected pieces I

in 2(/ —1) ways7 by (i)
breaking one of the (/ —1) lines, and (ii) marking one
of the sections of the broken line with a star. An example
of such a breaking process is shown in Fig. 5. The A~'

diferent unlabeled tree skeletons can be broken in
this way into a totality of 2(/ 1)A&' differe—nt graphs
of the type of Fig. 5. Now each graph consists of (a)
an unlabeled tree skeleton of m points with a broken
section of a line attached, and (b) an unlabeled tree
skeleton of (/ —m) points, with a starred, broken section
of a line attached. For each fixed way of partition of the
numbers 1, 2, .l between the two parts, there are
mA

' possible parts (a) and (/ —m)A~
' possible

parts (b). These statements are also correct for m= 1

if we dehne

2(/ —1)A,'= g (mA„')L(/ —m)A( '7

APPENDIX C

The number A~ first introduced in (III.33) is the
number of lowest order diagrams for bI,. Now the lowest
order diagrams have a one-to-one correspondence with
"tree skeletons" as explained in the caption of Fig. 4.
Ag is therefore the number of tree skeletons for 1 points.
One has by direct enumeration

A2= 1, 33——6, A4 ——96

2 (/ —1)/ "A t"= Q A "A (
m=1

(III.94)

Multiply both sides by (—x)' and summing over /,

X (III.93)
m! (/ —m)!

In terms of the A~" defined in (III.92), this equation
reduces to
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one obtains

where

—2x (dlz/dx) +2lz = (xdlz/dx)', (III.95)
=6 p. =5

(III.96)

Equation (III.95) can be easily solved, giving

x(dlz/dx) =D, (III.97)

Fto. 6. Example of the
breaking of an unlabeled skele-
ton belonging to (3,6).

lz = -',D'+D,

where D was defined in (III.13) as given by

De~= x.

a 4

(III.98)

i.e.,

zz& "(zz,&) z—» A ' .(Iz, f—m)
(III.1OO)

I) (I—1)! =i (m —1)!(I—m —1)!
FIG. 5. Example of the breaking of

an unlabeled tree skeleton. By introducing the lz(x) function defined in (III.96),
and the new generating function H„(x) for

Combining (III.92), (III.96), and (III.98), one obtains

—Q I '[(I 1)!)—'—A )(—x) '= D+-'D' (III.99)

APPENDIX D

We study the properties of (zz, l) here for zz)2.
)The case for zz=2 was already discussed in (III.59).)
We recall that (zz, l) was defined immediately after
(III.48) .

Each unlabeled skeleton with / points 1, 2, 1 can
be broken at a nonloop line in (I—zz) ways (see Fig. 6).
The two resulting disconnected parts are of the general
type of (a) an unlabeled tree skeleton with m points
(see Appendix C) and (b) an unlabeled skeleton
belonging to the type (zz, I—m), each of the two parts
having a segment of the broken line attached to it.
There are Lm! (I—m) !) 'l! ways to partition the
points 1, 2, 1 to these two pieces. For each partition
there are mA ' possible parts (a) and (I—m) (zz, l—m)
possible parts (b). Thus

(I zz) (zz,l)=—P (mA ')L(l—m) (zz, I—m)]

one obtains from (III.100) the relation

d ( dlz) ( dH»)
x—H» —pH»= —

] x—
) ] x [, (zz) 3). (III.102)

dx ( dxJ k dxP

The function lz(x) was explicitly found in ('III.97) and
(III.98). With the aid of these equations, (III.102)
can be integrated, resulting in

H„= (constant) LD(x) ]», (III.103)

where the constant is independent of x. As x —+0,
D~s and

( ') '(—)"-"(, )=(2 ) '(—*)" ( =3)
(III.104)

With this condition, (III.103) becomes

H. =(2z) 'L-D(x))", (z )3).
In other words

X
m! (I—m)! (zz~ 3). (III.105)


