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Radiation Damping of an Electron in a Uniform Magnetic Field*
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The analytic solutions are given for the pair of differential equations obtained from classical theory
which express the time rate of change of the angle between the momentum vector and the magnetic field
vector, and the time rate of change of the energy of the electron.

I. INTRODUCTION

NERGETIC electrons (~1 Mev), which coexist

with low-temperature ions and neutral molecules
to form a tenuous plasma (Lorentzian gas), can be
kept under observation for extremely long times!
(many seconds) when they are trapped in a constant
magnetic field geometry such as is utilized in controlled
fusion research, e.g., the mirror machine. If radiative
effects are negligible, then a minimum vacuum-
containment time of ions, under certain conditions,
can be inferred from the observed electron containment
times since for a given magnetic field configuration
charged particles moving in the same direction at a
given point in space and having the same Larmor
radius will follow the same trajectory. This can be
shown in the following manner. The force acting on a
charged particle is given by

dp/di=(¢/c)vX B. 1)

Neglecting radiation this equation can be rewritten as
adyv

o (2) = (/x B/3), @
ds\ v

where po=pc/eB=p/|(v/v)X (B/B)| if p=pic/eB is
the Larmor radius, S is the distance measured along
the trajectory, and v/v and B/B are the unit vectors.
The conclusion that ions have long vacuum-containment
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Fi16. 1. Qualitative picture of the change in the velocity
and momentum vectors with time.
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times is important for some of the schemes proposed for
creating a plasma by high-energy injection? since the
plasma buildup times are equally long and during the
early stages of the buildup a single particle model is
applicable. However, for comparable momenta an
electron traverses a trajectory much faster than an
ion, and consequently radiates more. The purpose of
this paper is to determine the importance of radiation
damping on the motion of an electron with regard to
its energy and containment time.

The vector potential for the magnetic field of a
mirror machine may to a close approximation be
written analytically; however, the equations of motion
for a charged particle in such a field have not been solved
analytically. Theoreticians have approached the prob-
lem in several ways.

A direct method of attack is to solve the equations
of motion, for a given field configuration and given
initial conditions, numerically over a length of the
particle path where accumulative errors are negligible.?
This can be done for the order of 10? reflections in a
mirror machine, whereas observed containment times
correspond to 108 reflections.

It can be shown rigorously from a Stormer type
analysis, where radiation is neglected, that a certain
class of particles, all of which encircle the axis, is
absolutely confined within the mirrors.

Approximate solutions may be obtained when the
physical situation warrants making the assumption
that the relative change in the magnetic field is small
over a Larmor diameter. This approximation yields
the adiabatic invariants. One of the adiabatic invariants
is the magnetic moment of the particle, and this
property of the particle motion leads to the loss cone
concept,? i.e., if the velocity vector of a particle at a
given point makes an angle, 6, with the magnetic field,
B, which is less than some critical angle, 6., the particle
is not contained within the magnetic mirrors; whereas
if #> 6. the particles are contained.

A loss mechanism for trapped adiabatic particles is
the scattering of their velocity vector into the loss cone.
In a sufficiently good vacuum the effects of radiation
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due to the helical motion of the electrons about the
field may also contribute to the loss of the electrons
which have a kinetic temperature of interest for
thermonuclear work. Indirectly radiation affects the
containment time of the electrons since the scattering
cross section increases as the particle energy decreases.
It may affect the containment time directly if the
reaction force due to the radiation affects the orientation
of the velocity vector relative to the field. In a dense
plasma of course, aside from the complicating effects
associated with cooperative effects (instabilities, etc.),
the absorption of the radiation must be considered,
since it may reduce the effects mentioned above. A
relativistic effect is the emission of the radiation in
the higher harmonics of the basic gyromagnetic
frequency, and it has been shown® that this radiation
may escape from the plasma.

To ascertain the importance of the radiation damping
without absorption in the various containment geome-
tries the motion of a single electron ina uniform magnetic
field is investigated.

II. EQUATIONS

From the expression for radiation damping in terms
of the external field (which is found in several tests®)
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the following equations may be derived?:
d8/dr=—sind cosf/e, 3)
and
de/dr=— (e—1) sin%, 4)

where 6 is the angle between the magnetic field and the

momentum vector, e is the total energy of the electron

in units of mc? (the rest energy of the electron=0.51

Mev), and 7 is the time in units of £ (moc/72H?)=5.1

X102 sec/[ H?/ (kilogauss)?], where H is the magnetic

field strength, and 7, is the classical electron radius.
The analytic solutions to Egs. (3) and (4) are

1
6(r)= cot—l[(B )

and

sinhBr-+coshB T) cotf (0)], 5)

1 sinhBr+4 Be(0) coshBr
Be(0) coshBr—+Be(0) sinhBr

e(r)=¢(0) (6)

where
B=(1/¢(0)) sin6(0){[(0)]*+[cots(0) *}?

and €(0), 6(0) are the initial values. As 7— © ; §—0
and e — 1/B for 0%7/2.

F1c. 2. 6 vs time for different
initial energies and velocity orien-
tations.

6,RADIANS

| 1

04

06 08 10 12 14 16 18
3 moc
LUNITS OF 3 2%z

5 B. A. Trubnikov and V. S. Kudryavtsev, reference 3, A/Conf. 15/P/2213.

¢ For example, W. Heitler, Quantum Theory of Radiation (Clarendon Press, Oxford, 1954); or L. Landau and

E. Lifshitz, The

Classical Theory of Fields (Addison-Wesley Publishing Company, Inc., Reading, 1951).
7 G. Gibson and E. J. Lauer, Lawrence Radiation Laboratory Report UCRL-4942 Rev. I, 1959 (unpublished).



1190

G. GIBSON AND E. ]J.

LAUER

€,UNITS OF m, 2

Fic. 3. Energy vs time for
different initial energies and
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III. DISCUSSION

At nonrelativistic speeds the reaction force on the
electron is normal to the field, however, the damping
force more nearly approaches the direction opposite
to the velocity vector as the electron becomes more
relativistic. For all speeds the velocity component in
the direction of the field is constant. At ultrarelativistic
velocities the angle between the velocity or momentum
vector and the direction of the field does not change
appreciably with time; however, the magnitude of the
momentum vector decreases because of the mass
change resulting from the radiation of energy, whereas,
the magnitude of the velocity vector is essentially
constant (~c). At other than ultrarelativistic velocities
the momentum and velocity vectors decrease in
magnitude and move in the direction of the magnetic
field in the manner illustrated in Fig. 1.

Because of radiation the magnetic moment of the
particle motion is reduced, and no particles though
they interact only with the magnetic field can be
absolutely bound in a mirror machine except for those
special cases of ;=0 in the central plane and the
planes of the mirrors. The motions of electrons started
with different initial conditions are shown in Figs. 2
and 3. For these cases the velocity vector would enter
the loss cone in a time of the order of r=1. During
this time the kinetic energy of these particles may
decrease more than an order of magnitude because of
the radiation. For a field of 22.5 kilogauss r=1 corre-
sponds to 1 sec.
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