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Principles of the irreversible thermodynamics are recapitulated. Using the basic conservation principles
and the principles of irreversible thermodynamics, the fundamental equations and constitutive relations are
obtained for Quids, solids, and visco-elastic media. Equations for the entropy production and heat conduction
are derived for various special media and for a general medium having internal constraints. For the latter
case, a law generalizing Fourier's law of heat conduction is found.

INTRODUCTION

'HE principles of linear irreversible thermo-
dynamics have recently been used to obtain a

unified foundation for linear continuum mechanics. The
works of Onsager, "Onsager and Machlup, ' ' Prigo-
gine, ' DeGroot, Denbigh, ' Greene and Callen, ' Staver-
man "Staverman and Schwarzl, "Meixner ""Biot, ' "
and others may be mentioned as being some of
the major contributions in this field. The viscous
stresses in Quids and in solids are logically brought into
the phenomenological relations, and the symmetry of
the phenomenological constants are explained. In
Biot's work, the Maxwell-type internal friction mecha-
nism is explained in a natural way.

A satisfactory treatment of continuous media under-
going nonlinear reversible changes (such as large static
deformations) accompanied by linear irreversible
changes does not exist. Moreover, the relation of the
viscous Quid to the visco-elastic solid is not clearly
explained. ' Furthermore, basic equations of continuous
media are somewhat taken for granted rather than
being obtained as a result of the basic principles. For
example, either the equations of heat conduction or
the stress-strain temperature relations are obtained
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1. PRINCIPLES OF IRREVERSIBLE
THERMODYNAMICS

Irreversible forces that cause the irreversible changes
in a thermodynamic system may be introduced in a
simple way as follows. Consider a thermodynamic
system (8) which is imbedded in an adiabatically
isolated heat reservoir (E) (Fig. 1). The system (8)
may have a variable temperature T, and it is acted
upon by external forces p;. The total entropy change
dZ of (E)+(8) is the sum of the entropy change dS
of the system (8) and the entropy flow dS& from the
reservoir (R).

dZ =dStt+dS.

According to the second law of thermodynamics for
natural changes, we have

dz&0.
' M. Lessen, Quart. Appl. Math. 15, 105—108 (1957).

(1.2)

from the theory, leaving the other as an untold postulate
or as a result of thermostatics, Biot," Lessen. " A
systematic theory is expected to fulfill all three objec-
tives, and it is with this viewpoint that the present
paper is written.

%e And a need for a combined use of reversible and
irreversible thermodynamics, and rely on thermo-
dynamic functions that are somewhat diferent from
the ones usually used. A logical foundation based on the
principles of the linear irreversible thermodynamics
soon produces all basic equations of: (a) linear con-
tinuum mechanics, (b) deformable bodies undergoing
nonlinear reversible changes accompanied by small
irreversible changes, and (c) heat conduction; in all of
which no additional assumptions need be used.

The present analysis leads to an extended Fourier's
Law of Heat Conduction which involves hereditary
terms and which is believed to be new. Also, in the
special cases of isothermal, isentropic, and adiabatic
deformations, the relationships of the phenomenological
constants to each other are brought out in a natural
fashion.

Below, we first postulate the principles of the ir-
reversible thermodynamics, and then apply these
principles to obtain the basic equations of various types
of continuous media.
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The first law of thermodynamics tells us that

dStt= bQ—/Tit = —(1/Ttt) (dE—bW), (1.3)

where BQ is the heat fiow into (8), dE is the internal
energy change of (8), and bW is the work done upon the
system (8) by the external forces p, . Suppose system
(8) has rt degrees of freedom defined by rt state variables
S, Q2, Qt, , Q„measured from an origin. The state
variables Q, may be coordinates such as volume, concen-
trations, piezoelectric charges, etc., such that

BW= p;dQ; (i=2, 3, , rt), (1.4)

where repeated indices indicate summation over the
range (2, , tt). For example, when dQ2 is the volume
change dV, then —p2 is the pressure p, etc. From (1.3)
and (1.4), we will have

dStt BQ/T———tt —(1/——Ttt) (dF. p,dQ;).— (1.5)

Prigogine' by use of methods of statistical mechanics
has shown that Gibbs' equation, TdS=dE pdV, is-
valid for a system undergoing irreversible changes not
far from equilibrium. This equation in our notation must
be interpreted as

TdS =dE p; "dQ, , — (1.6)

where p, " are the reversible parts of the forces p;. Thus,
we write

X;=TttBZ/BQ;, (1.14)

where the partial derivatives are calculated in the
usual sense by holding all other Q, =const, jWi Th.ese
expressions define the purely reversible forces p;" and
the Onsager forces X;. From Eq. (1.11), we also have

Tits/dt =X„Q;=X,J;. (1.15)

Here J,=—Q; are called cruxes. Consequently, the sum
of products of Ortsager forces tJrtd ftuxes give Ttt times
the entropy production.

The Ottsager prirtciple states that the Onsager forces
are linear functions of the Ruxes with the coe%cients
being symmetric.

X;=T (BZ/BQ~)=b;, J;, J;=Q;=b,; X;, (1.16)

The first of these indicates that we have an equation
of state of the form:

&=&(Q Q ",Q-), (112)
where Qi =—S. Thus, by adding the state variable S to
our collection of coordinates Q;, we have included the
thermal forces. The significance of this, as we shall see,
is that for i = 1, Eq. (1.11) leads to the heat conduction
equation. From (1.10) and (1.11),we see that

p;"=BE/BQ;, (1.13)

p, =p,"+X;, (1 7) where

(1.17)

dZ= p, "dQ;,

TQZ=X,dQ; (i =1, 2, ~, rt)

(1.10)

(1.11)

PIG. 1.Thermodynamic
system

where X; are the purely irreversible parts of the forces

p, . They are also called OrtstJger forces Substitu. ting
(1.5), (1.6), and (1.7) into (1.1), we get

T,du= (dz p,'dQ, )DT,—T)/Tg+X, d—Q, .

Using (1.6), this reads

Tits = (TIt T)dS+X;dQ;. — (1.8)

This equation suggests that Tz—T plays the role of a
purely irreversible thermal force while 8 plays the role
of a coordinate conjugate to it. From (1.6), it is clear
that T is the reversible part of the thermal force. Thus,
if we write

pi =Ttt, Qi —=S, pi T—, Xi= Ttt T——,
—

we find that (1.6) and (1.8) take the form

and b;;-' is the inverse matrix to b;,. These latter
relations are called the Ottsttger reciprocal relatiorts.

We are now in a position to pronounce the principles
of the irreversible thermodynamics, with reference to
the closed system (R)+ (8):

(i) The total energy is conserved.
(ii) The entropy production is positive definite (i.e.,

dZ/dt& 0).
(iii) Gibbs equation, (1.6) or (1.8) is valid for small

irreversible changes about a state of equilibrium.
(iv) In the neighborhood of an equilibrium state, the

Onsager forces X; are linear functions of the Quxes J;
LEq (1 16)j"

(v) The phenomenological coefFicients b,; that relate
Onsager forces to fluxes are symmetric tensors LEq.
(1.17)j, provided that the forces and fluxes are selected
in such a way that the sum of their products gives Tg
times the entropy production LEq. (1.15)j.
It has been shown that when a magnetic field B exists,
this symmetry condition is modified as b;;(B)= b, ;(—B).t

The G.rst two of the foregoing principles are the same
as those of the classical thermodynamics, the last two
being new. Let us note that (v) also gives a method of

' Some authors regard this as a restriction to Onsager's principle.
See, for instance, K. G. Denbigh, The Thermodynamics of the
Steady State (Methueti and Company, Ltd. , London, 1951l,
pp. 30, 31.%'e include this as a principle to complete the de scrip-
tion of linear irreversible phenomena.
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bg/M =dE p;—dg,

dc= pi "iraqi

X,= Tn(Bo/Bq, ) = b,,q;

b;, =b;;, b;;&0

By de6nition, we also have

(principle i), (1.19)

(principle ii), (1.20)

(principle iii), (1.21)

(principle iv), (1.22)

(principle v). (1.23)

calculating the entropy production which, in general,
is not possible through the principles of classical
thermodynamics. In applying these principles to
continuous media, we shall be working with thermo-

dynamic derIsities which are defined as the thermo-
dynamic variables per unit mass of (8), e.g. ,

o =Z/M, s= S/3II, e= E/M,
1/p= U/M, q;= Q,/M, (1.18)

where M is the mass of our system (8). Substitution of
(1.18) into some of the foregoing equations, with the
use of the principle of mass conservation d3E=O, leads to

(B'e/Bq, Bq;),&0 (2.7)

but, c is a function of q; alone and is independent of
the way the forces are applied. Therefore, (2.7) must
be valid generally.

Let us now expand ~ into a power series of q; and
retain only the 6rst three terms

~o=A~+ 2iiVq'qi
1 (2.8)

where eo, P;, and a;,=a;; are constants, and according
to the foregoing argument, a;;&0. Through (1.13),
we get

to take the system away from the point of equilibrium
an infinitesimal amount, while the forces p, are kept at
their equilibrium values. From (2.5), we will have

2' ~~+ (B~/Bq') &q'+ l (B'~/Bq'Bq )~q'~q =P"dq'.

Using (2.6), this reduces to

Tiido= —'g (B c/Bq, Bqg')84'qidqj.

Since rondo. &0 for an unnatural process, this shows that

X'=p' p"=p' —(B~/Bq')—

For principle (v) to be valid, we must also have

(1.24)
pi =Pi+aijqj& jii=ijia&0. (2.9)

This shows that P; are none other than the values of the
reversible forces at the origin q, =0

T&i =X,j;=b;,q,j;=b,,—'X;X;. (1.25)

In dealing with continuous media, we must, of
course, use the usual conservation principles, such as
conservation of mass, momentum, and energy (the
first principle) and all other principles enunicated
above.

p, "=p; at q, =0.

Carrying (2.9) into (2.2), we obtain

b,,j,+a;,q, =P,, a,;&0, bg&0,
where

P,=p; P;. —

(2.10)

(2.11)

(2.12)

2. DIFFERENTIAL EQUATIONS OF STATE VARIABLES

From Eqs. (1.22) with the use of (1.24), we get

Tn (Bo/Bq, )+Be/Bq; =p; (2.1)

Two other versions of this system are

where

biiqr+B~/Bqi= p'~

(Bd/Bq, )+Be/Bq; =p;,

(2.2)

(2 3)

Trico+ A =pidg, .

At a state of equilibrium do-=0; hence,

p" = (B~/Bq').

(2.5)

(2.6)

where the index e represents the equilibrium value of
the quantities. Let us imagine that q; are changed so as

2d=Tnd=X;J, =b;;q;q;, (i, j=1, 2, , n) (2.4)

is the well-known Rayleigh dissipation function per unit
mass whose positive definite character is guaranteed by
the Onsager relations (1.23).

We now would like to see how the function e changes
in the neighborhood of equilibrium. We write (2.1) as

P;=aq+bq, , P,=p, P;, —(3.2)

Differential equations (2.11) are, in form, identical to
those obtained. by Biot in a different way. ' Here,
however, I'; is much more general and is time-
dependent. Moreover, our a;; are diferent from those of
Biot. The logical extension of the present quantities to
systems and to continuous media makes one believe
that the variables used here are natural ones. Let us also
note that in Eqs. (2.2), by considering e as any function
of q; rather than a quadratic function, the formulation
of small irreversible changes superimposed on large
reversible changes can be made. An example of this
is the large deformation of an elastic solid accompanied
by small irreversible changes (internal dissipation, etc.).

3. PHENOMENOLOGICAL RELATIONS FOR
INTERNALLY CONSTRAINED SYSTEMS

The principles of irreversible thermodynamics lead
us to the phenomenological relations

p'= (B~/Bq')+b' g~ (3 1)

In this form, the phenomenological relations are capable
of expressing the large reversible changes through the
term Bc/Bq, . When the equilibrium state is reached by a
small change from an initial state, we have found that
(3.1) gives
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where

a;,=a,;&0, b,;=b;;&0 (i, j=1,2, , e).

(ii) Any two modes P;" and P corresponding to two
distinct roots —X„and —X, are real and orthonormal,
1.e.q

We try a solution:

e;jqj+b;;q;=0

qj=C&je '

(3.3)

(3.4)

where C and g; are constants, C being introduced for
convenience. From (3.3) and (3.4), we get

If some of the forces, say P~&, P~2, ~ ~, P„are zero,
we see that the number of degrees of freedom of the
system can be reduced to k by eliminating qj,+&, , q
from (3.2). This situation is the same as having internal
constraints so that the system is nonholonomic.

An example for internal constraints may be provided
by a simple linear Maxwellian solid. This solid is
represented by a linear spring and a dashpot in series
(Fig. 2). Let Qi, Q2 be the displacements of the end
of the spring and dashpot; P the external force; and k
and c the spring and dashpot constants. We have

~= kQi &=e(Q~-Qi).

Eliminating P from these equations we get

kgi ——P, kgi+c(Qi —Q2) =0,
which upon comparison with the form (3.2) shows that
P'~ ——P, P2——0. Hence, the simple Maxwell solid has one
internal constraint. Note that this situation does not
arise for the Voigt solid (parallel spring and dashpot)
where we have a single degree of freedom system.

We now return to the set of Eqs. (3.2) and, using
time domain analysis, give a quick solution. To get the
general solution of the system (3.2), one solves the
homogeneous equation

b; @'qh'=b" X b"=u Q'$ * (s not summed). (3.8)

To prove (i), one assumes that X, is complex, and hence
its complex conjugate X,* is also a root of (3.6); corre-
sponding to these two roots, we have

(o,j—X,b;j)Pj'=0 (a;j—X,*b,j)@j*'=0.

Now, multiply these equations by p,*' and P,', respec-
tively, and subtract one from the other. Since a;; and
b;; are symmetric and b& P; ~&

0, we get X,—X,*=O,
which proves that ), is real. We also solve this way for
X„giving us

qi=Q, '$r, Z, =I i4,'
from (3.2) we get

(3.9)

$,+'A, $,=Z. (not summed over s). (3.10)

which is the ratio of two positive quadratic forms. Thus
X,)0 which proves (i).

To prove (ii), write (3.7) for two distinct roots
X.AX„, multiply them, respectively, by P;" and pj, and
subtract one from the other. This gives the ortho-
gonality of @," Li.e., the first of (3.8) with res]. Since,
through (3.7), p are determined up to a constant factor
for each s, we can choose these constants to make
b,;ib ib,'=1 for each s, thereby, orthonormalising g,'.
The second of (3.8) follows by using the first in one of
these equations t i.e. (3.7)) multiplied by p,".

Introducing the riorrrjal coordinates $„and expanding
P; into an expansion in terms of the normal modes

( ';+pb, ;)~;=0, (3 3) When this is solved and substituted into (3.9), we get

which may have a nonzero solution if the characteristic
equation is satisfied, i.e.,

/a, ,+pb, , /
=0.

For each root p= —X, of (3.6) we must have (3.5)
satisfied, i.e.,

(a;; 'A, b;;)ib =0 (n—ot summed over s), (3.7)

where P,' is a mode corresponding to the root —X,.
Next, one can prove that:

(i) The roots —X, of the characteristic equation are
real and negative.

K; =g@j, (3.12)

which, incidentally, is valid for repeated roots as well.
Here, K,j' are completely determined since g are all
known through (3.7) and (3.8), while C, are constants
of integration to be determined from the initial condi-
tions. This part, of course, dies out quickly with time.
In the case of internal constraints, this result may be
modified as follows. Write (3.2) as

(oijqj+ bij qj)+ (oi'aqa+ biaqa) =+i
(i, j=1, 2, , k), (3.13)

q = P Cy'e —"+Q I ' P (r)e "&' '&dr, (3.—11)—
40

where

Q
c

Qp

I'"rG. 2. Simple Maxwell solid.
(+aeqe+ baeqe) = (oaiqj+ bajqj): &a

(n, P= k+1, , n), (3.14)

where we assume that the Greek indices take the values
(k+1, , ri) and Latin ones (1, 2, , k). Then, the
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solution of (3.14) is identical in form to (3.11).Hence, parts of the forces in (3.18) and those of the internal
constraints and write

ICy ee Q—t

where
p'= p'"+X' p-= p-"+X- (3.20)

t

-Z.,-~i [a„q,(r)+b„q, (r)7e ~ & &d.-. (3.15) P "=t'+~'q P-"=t'-+a-'q+a-«e (3.21)

We thus expressed qi~i, , q [the left side of (3.15)7
in terms of qi, . . . , qi, . Now, substitute (3.15) into (3.13)
and use the identity: X-=b-'q'+b-eqe (i, j= 1, 2, " , k),

X;=B;;q,+Q t C~pq, (r)e &&' '&dr,
0

(3.22)

(n, P=k+1, , n),~t I ~t
q, (r)e &&' '&dr= —— q;(r)e ""'dr

J0 X.~ 0

in which

q-= & (1/l&.)C-e —aejq (t)
+—[q (t)—q'(0)e "'j.

X,
This gives

+~" (ae~—l&.bet)qt( )
— " 'd . (3.23)

0

t

P;=A;,q, +B;;q;+g C;,'q;(r)e "'&' '&dr
- ~0

According to (1.15) we may now calculate the entropy
production by

where

+2 {I"/(~.)-:7—(l.):b..&

Teo=X,q,+X q
.. (3.24)

'+q" ' '' ' "7 ' ' ' ) Inthefollowingsection, weshowhowthisresultmaybe
applied to the mechanics of continuous media.

A,;=a;;—P (1/X.)a,'a,',

B,;=by Pb, b, ,
—

4. 'THERMODYNAMICS OF HOMOGENEOUS FLUIDS

We define a homogeneous ftuid free from chemical

(3.17) and electrical phenomena by the equatioN of state:

C'~'= ([a"/(l .)']—(li.)'b' & e= e(s, 1/p). (4 1)

a;=@ a;, b;=tt'b;.

In the expression (3.16), the terms containing the
coefficients A;;, 8;;, and C,;, respectively, correspond
to elastic spring, Voigt damping, and Maxwell damping
elements. Ignoring the transient eGect of the initial
conditions, we may write

I"=p' P'=~'~q~+B'~4—
t

+Z II C i'qi(r)e "&' ''&dr, (3.18)
~ ~a

where from (3.17) we see also that the phenomenological
coeKcients A;;, 8;,, and C;; are symmetric, i.e.,

A;, =A;;, B;;=B;;, C; =C;, . (3.19)

Thus, in a thermodynamic system with internal con-
straints, in addition to elastic and Voigt elements [the
first two terms on the right of (3.18)j, we must super-
pose a functional term representing the Maxwell Model.
let us note that the eGect of the forces at the point
q, =0 is taken into account by the term P, which enables
us to treat initial stress problems. Finally, it is meaning-
ful to separate the purely reversible and irreversible

Thus, our coordinates (state variables) are qi ——s,
q2

——1/p. Gibb's equation for densities now takes the
form

de= Tds pd(1/p), — (4.2)

p+ pv;, ,= 0 (conservation of mass), (4.4)

o'~;.+f~= pa~& oe = o~'
(conservation of momentum), (4.5)

p~= o.;,d;;—g;, ; (conservation of energy), (4.6)

where the time rate is now interpreted as the sub-
stantial derivative, and a subscript after a comma
represents differentiation, i.e.,

F,=BF,/&tt+ (&tF;/Bx, )v;, —v, =dr, /dt, v, ,= av, /Bx, ,

and o,;, f;, a;, and q, are, respectively, the stress tensor,
the body force per unit volume, the acceleration vector,
and the heat input vector per unit surface area, and

which defines the thermodynamic temperature T and
pressure p [just as in (1.13)j by

T= (&&e/&&s)„ i, p= —(&te/Bp '), (4..3)

We would now like to compute the entropy production.
To this end, we must use the well-known conservation
equations of continuum mechanics:
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d,; is the deformation rate tensor; then,

2dij =Pi, t+ej, e. (4.7)

according to Onsager's principles, we have

b;; =b;;&0, b;;~)——bl, g;;&o. (4.17)

Eliminating e between (4.2) and (4.6) and using (4.4),
we have

(4 8)pTs= (p —p) o;,+s;, d,,—g;;,
where we wrote

o "=—pb +s 3p= —o " (4.9)

in order to introduce the deviator stress s;; and the
mechanical pressure p.

We may further write (4.8) as

where

and

p&+ (0 /T). '= pa,

pTo = r,,d;; (1/T) j—,BT/Bx;,

r,s pb;;+——air sb, ,+——s;;, w=—p —p.

(4.10)

(4.11)

(4.12)

Note that in this form ~ is the entropy production per
unit mass. In order to get back into macroscopic
irreversible thermodynamics, we must multiply both
sides of (4.10) by the volume element d V and integrate
over the volume. Using the Green-Gauss theorem, the
second term on the left of (4.10) is converted to a
surface integral. Hence,

8+ ~ (tI;y,/T)dA=dz/dt, (4.13)

where A is the surface of 8, v, is the exterior normal, and

S= I psdV, Z= t podVJ, (4.14)

are the total entropy of our system (8) and the universe
(8)+(E), respectively.

Clearly, dZ/dt)0, according to principle (ii) of the
irreversible thermodynamics; then from (4.13) there
follows the well-known Clausius-Duhem inequality:

8+ "t (g;v;)/TjdA&0 (4.15)

T,,/T = —b,rib+ cis kdr k,

&ii dijkgk+bij k tdk tq

(4.16)

where b;;, c;;~, d,;I„and b;;~~ are phenomenological
coeKcients of the Onsager theory and for which,

"C. Truesdell, J. Rational Mech. and Analysis 1, 163 and 228
(1952).

Truesdeliis includes (4.15) in the definition of homoge-
neous Quids.

From (4.11), it is clear that r;; and T ' r)T/Bx, play
the role of Onsager forces and d;; and —j; that of the
Quxes. Phenomenological relations accordingly should
read

y;= (z/T)—(aT/ax, ), (4.19)

o.;,= ( p+X„dkk—)o;;+2p,„d,;. (4.20)

The first relation is the well-known Folrier's law of
Heat Coedlctioe and the latter is the stress-deformation
rate relation of the Newtonian Quids. It is interesting
to note that in (4.19) «/T appears as a coeKcient
instead of ~.

In Quid dynamics often it is argued that x=0 or
p= p. This is known as the Stokes conditiort "We. would
like to see precisely when this is permissible. From
(4.20), writing i= j, we get

m =P—p= (X+-'tt)o (4.21)

In incompressible Quids o;,=0; hence, p= p. Now, the
argument that for a compressible fluid X= —2tt/3 is
contradictory to experimental facts. There is one more
case in which p= p; that is when the Quid is undergoing
a reversible change only. In this case, Onsager forces
r;; =0 which according to (4.12) is satisfied if

(4.22)

where superscripts r represents the reversible value of
the stress tensor o,;. From (4.9), it now follows that

o,,'= —pb;;= —pb,; or P= p'. (4.23)

Therefore, the Stokes condition is justified in two cases:
Incompressible Quids and Quids undergoing reversible
changes.

Next, we calculate the entropy production by simply
substituting r,; and T,/T back into (4.11).This gives

(4.24)
where

pTo'e=bijkldis'dktg PT&T bijgigjy (4.25)

and Od and O.p are the entropy production due to
deformation and heat input, respectively. They are
positive definite on account of (4.17). Substituting
(4.18) into (4.25) we get

pTrre =X (dkk) j2tkdiids'iy

pTor (1/h) g;j;= (.z/——T') (i)T/Bx, ) (r)T/&xi).
(4.26)

"This is sometimes known as Curie's theorem LP. Curie,
Sar la syrametree darts Les Phertoraertes Physeqtte, Oevres (Gauthier-
Villars, Paris 1908), p. 127)."For a discussion of this condition, see reference 19, p. 228.

The Onsager theory does not tell us anything about odd
order coeS.cients c,;~, d;;~. In order to simplify the
discussion, we consider only the isotropic Quids. In this
case, the terms containing c;;~ and d;;~ drop out on
account of symmetry conditions, "and

b,s=tt 8;;,
—

b,;ki X.o,;——bkt+ts. (8,kb;t+8;tb, k), (4.18)

where 8;; is the Kronecker delta and ~, ), and p„are
constants. Substitution of (4.18) into (4.16) gives
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The pressure p can be determined from (4.3). For a van
der Waal's gas, one has

where a and b are constants. A few manipulations
through classical thermodynamics produce

' e,dT ttp—+constant,
~J

stresses t;; as

T= (Be/Bs) ej& t tj= p (Be/Beij) s, ek ~ H e;j= ejt.

S.b.t,t.t,.g 6.2, t. 4.6 .g.t

ps+ (9,/T) „=ptr,

i BT
PTo=(o, —t;)d; ——j

T Bxg

(6.3)

(6.4)

(6.5)

s=R 1nL(1/p) —b]+ ~e„(dT/T)+constant,

where c, is the specidc heat at constant volume.

(4.28)
The positive de6nite character of 0 indicates that for a
reversible change, i.e., 0 =0, we must have one member
from ea,ch of the pairs o;; t;;., —d;; and Q;, T,,/T zero.
Four possibilities are

c„=(Be/BT), i= T(Bs/BT), (4.29)

which is a constant for an ideal gas; in such a case, we
also have a=b=0.

5. HEAT CONDUCTION IN FLUIDS

The equation of heat conduction in Quids (Van der
Waal's Quid) would be obtained through (4.10).From
the second of (4.28), we have

PTs= [ RTp/(1 —bp)]+c.—pP

Using the continuity equation (4.4), this gives

PTS= [RTP/(1 bp)]tt, „+c—„pT. (5.1)

T,;=0,

j,=0,

T,,=O,

j,=0,

0 &=t&

d;;=0

dg ——0

isothermal process and vanish-
ing dissipative stress,

totally adiabatic process and
vanishing dissipative stress, (6.6)

isothermal process and rigid
motion,

totally adiabatic process and
rigid motion.

The stress tensor in the first two cases takes its re-
versible value o,j", i.e., the form of (6.5) dictates that
the Onsager forces are o;; t;; and —T '(BT/Bjp;) and
fluxes d;; and j;.Hence, postulate (iv) is expressed as:

Now, substitute (5.1) and (4.19) into (4.10).

c,PT+LRPT/(1 bp)]v'. ' (ttT. /T). '=PTo&'
=Xdkk'+2jtd„d j;. (5.2)

(1/T) (BT/B jp;) = bjt tJ;+c;;kd;—k,

tij dijkgk+btjktttkl

For an isotropic solid, this reduces to

(6.7)

For an ideal gas, we have a=b=0, E=c„—c„and
p=pRT where e~ is the specific heat at constant
pressure. Writing

p= RTp+RpT = RTptt, „+pRT—

RTptt;, ;+p(c~—c„)T, —
in (5.2), we get

ctPT j Dtt/T) T,,]—„=X—dkk +2jtd,;dj, (5.3).
This reduces to the usual form of the equation of heat
conduction if we write a new coefFicient 0 in place of
tt/T. Equations (4.4), (4.5), (4.18), (4.19), and (5.2)
constitute the basic equations of Quid dynamics. The
equations governing anisotropic Quids can be obtained
in a similar fashion.

6. THERMODYNAMICS OF VISCOELASTIC SOLIDS

An elastic solid may be defined by an equation of
state of the form

—(e/T) (BT/Bx;) = q;,

o;;= t;,+X,,dkkb;, +2jt„d,;. (6.8)

where

Let us note that through the t;;-term this expression
contains the potential for treating large reversible
deformation problems. For these stresses, we have a
stress potential pe as expressed by (4.6) which is valid
for large strains e;; as well. The present method of
approach also makes it possible to obtain Quid dynamics
as a limiting case of a viscoelastic solid in which

t;,= —pb;;. This amounts to using in the equation of
state (6.1) 1/p for e;;, which is permissible because of
the continuity equation. To obtain t;; and T for small
strains and temperature rise, we expand pe into a
power series:

p(e ep) = V=—n;&e;&+ns+p, jseij

+ ', Ps&+ ',P,;kle, jekt-+ -(6.9)

e=e $,8;, .

Now, Gibbs' equation is written as

e=Ts+p 't;,e;;,

(6.1)

(6.10)

ep= e(0,0), n= p(Be/Bs) p, n t'=p(Be/Be, ;)p,

P;;=p(B' e/B.SBe;;)p, P= p(B'e/Bs') p,

(6.2) P'ikt= p(BPe/Be;;Bekt) p, ,

which defines temperature T and thermodynamic and a subscript zero indicates that the expansion is



I RREVERS I BLE THE RMOD YNAM I CS AN D ELASTIC M ED IA ii8i

about theAzitial state s=0, e;;=0. Now, (6.3) gives

t,;=n,;+p,&s+p,,i, iei, i,

pT=n+p;;e &+ps.
(6.11)

p'&=vb'&, p'&i i=~4bI i+ted(b'ib&i+8'ib&~)

Hence, we get

t;;=(ov/P)»„+0 ~/P)".8,;+2 .;;,
= (./P)8- (~/P) „.

Phenomenological relations thus become

(6.13)

(6.14)

o, = (oV/P)88'+(~ V'/P)—e 8,

+2pe, ,+X„ei,i,b,,+2t»„e,;, (6.15)

j,= —(~/T p) (88/8x;).

Ke may now obtain various special cases of interest.
(a) Isothermal deformation. In an isothermal de-

formation the temperature at all instances is the same
and is equal to the temperature of the initial state
To. Hence 8=0. In this case (6.14) reduces to

s= —(r/p) e,;,

t;,= (X—y'/P) e&,ib;;+ 2pe;;.
(6.16)

In the expression (6.5) of o the term containing q,
vanishes thus indicating that the dissipative de-
formation energy is solely responsible for entropy
production.

(b) Isentropic deformation. In this case, we have
s=0. Hence, the isentropic values of temperature rise
and stresses are given by

8= (y/p)equi,

t,;=hei, j,b,&+2tie„.
(6.17)

This is the usual form of the generalized Hooke's Law
which is often confused with the adiabatic case in the
literature. Through (6.4) and (6.5) we find that

g;, ,= (o;;—t;;)d,,

Hence the heat input is fully used to balance the dissi-
pative deformation energy.

(c) Totally adiabatic deformatiort. This means that
during the deformation, the heat is not permitted to
Bow from one point to the next in the body, i.e., j,=O.
This through (6.15)2 gives 8,,=0, that is, the tempera-
ture in this case is uniform throughout the body and
it may change only with time, 8=8(t). Phenomeno-

If the initial state is stress free-(t,,=0 at temperature
To), we find n,;=0, n= pTO. From (6.11) we solve for s
and thus write in terms of temperature

s= (t/P)8 (P-„/P)e„,
(6.12)t„=(t/P)P„8+[P„ai (1/-P)P,;Pai)., t

Constants n;;, p;, , and p;;i& have obvious symmetries.
For an isotropic medium, we have

logical relations (6.14) and (6.15) otherwise retain their
forms.

(d) Locally adiabatic process. This means g;,;=0.
The heat conduction is steady. Again phenomenological
relations (6.14) and (6.15) retain their forms except
that now temperature 8 is an analytic function, i.e.,

V'0=0. (6.18)

We note in both cases (c) and (d), (6.4) and (6.5)
reduce to

Hence, in both of these cases the entropy change s is
balanced with the dissipative deformation energy. It is
customary to compare the elastic coeKcient for various
cases. If we express the thermodynamic stress-strain
relations in a common form

t,,= 'Ae&, &,b,,+2p, e;&& (6.19)

we see that the isothermal and adiabatic values Xr and
) ' of the constant X are

or
~/p ye

x'=x —~'/p.

(6.20)

(6.21)

Since p) 0 we see that Xr&X*. The elastic constant ti
is not altered. By the same token, the isothermal value
of stress I„;~ is never greater then the isentropic value
of the stress. The difference —(y'/p)ei, i,8,; represents an
extra pressure over the isentropic stress. Note also that
adiabatic Lame constants are the same as the isothermal
ones. This is contrary to the known results in the
literature. In the literature often the adiabatic process
(j,or g; „.=0) is confused with the isentropic case (s= 0).

On the other hand, for the isothermal case, g;, , is set
equal to pTs; then, the Helmholtz free energy e—Ts is
used as the stress potential for T=constant. This
replacement for the irreversible changes is not
acceptable.

The internal energy function is obtained by putting
(6.14) into (6.9).

U= p(e eo) = 2it;;e,,+,'p—8s+qT-os, - (6.22)

which may also be expressed either completely in terms
of e;; and T, or in terms of e;; and s, by using expressions
of stresses and entropy. The first two terms in (6.22) are
the internal energies due to straining and heating the
body from an initial state of zero strain and zero
entropy (s=e;;=0). The last term is the energy which
is due to an initial temperature T0 at the initial state.
If we set TO=0 at this state, we eliminate the last term
on the right of (6.22).The internal energy U now becomes
a positive definite quadratic form having its minimum
at the initial state. This situation appears to be closely
related to the third law of thermodynamics in which
we have s=O as T —+ 0.
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p —po= pp8,';. (6.25)

The basic equations of general Voigt solids therefore
consist of the conservation of mass (6.25), conservation
of momentum (4.5), the phenomenological relations
(6.15), and the equation of heat conduction (6.24).

All of this analysis must be modified for the Quids
and solids having internal constraints. In the following
section, we carry out the analyses for solids only. The
situation is very similar for the fluids.

7. SOLID WITH INTERNAL CONSTRAINTS

When the solid has internal constraints we must add
the Maxwellian terms, similar to those of (3.18), to the
phenomenological equations. Therefore, we write

1 BT fb&g~+cgA~'—&+ 2
~

Lc't&'4K(r)
d 0

—b*t'0~(r))e ~" "d.

To obtain the equation of heat conduction, we
substitute (6.14) and j; of (6.8) into (6.4).

(pT/P) (p8 —ye&, i,) —(KT,;/T);= (a,; t—,;)d,; . (6.23)

If we set T= To+8 when To——constant))8 and linearize
(6.23), thus dropping the second order Rayleigh dissi-
pation term on the right, we obtain:

cp8 cye&,—&,
P8=—0, c=pTo2/KP. (6.24)

According to the Lagrangian point of view, for solids
the time differentiation is taken as the partial differenti-
ation, i.e., F=BFIB—t. We must now add to the basic
equations obtained above the equation of the conser-
vation of mass.

constants due to internal constraints. They are the
isotropic values of b;; and c;;~~, i.e.,

b;;~= (1/K')8,;, c;;pi' X——.8;;bgi

+&i:(8'&8;&+8'&8~7) (7.3)

The first of Eqs. (7.2) is an extension of the Fourier law
of heat conduction. To the best of my knowledge, I do
not recall seeing in the literature the history terms
involved under the integral sign on the right. It is
reasonable and logically compatible with the Max-
wellian terms arising from damping to argue in favor
of this heat term. We shall only remark, however, that
this term implies the change of the material conduction
constants with heating through its heat capacity. The
Anal justification of it must, however, await experi-
mental verification.

The equation of heat conduction again follows from
(4.10) upon using (7.2) and linearizing the result.
This time, however, j; is not expressible in a simple way
in terms of 88/Bx;. The heat conduction equation is
included in the set of

(poToIP) 8 hToIP—)e'.+0". =o,

1 88 1 p'1 (74)=—j,+ Q I
—j;(x,r)e & « '&d7,

Tp BX& K d ~0 K

of which, the first is the same as (6.4) when linearized,
and the second is the new heat conduction law which
reduces to that of Fourier when K =~. We may
eliminate j;,; between the two expressions of (7.4)
leading to an integro-di6'erential equation for the heat
conduction:

—P8+ (ppTp'/KP)8 —(7To2/KP) e;;

t

+b;;&,idii+ P " Pc &&,i'd&, i(r)

(7.1) t

+z f ~("T.Ip")8(.)—(»'/'p)"'( ))
d 0

Xe "« '&dr=0 (7.5).
0

+d &7 j&,(r))e—"&'—'&dr,

where the even-order coefficients satisfy the Onsager
symmetry condition. For a linear isotropic medium,
these relations become

1——8;=-j;+P
~

—j,(x,r)e-" &'-'&dr,

Tp K d ~0 K

pv ( v'
o;;=—8 8+~ l&,

——+l&,„—~eK&,b;;
p ( p Bt)

+2~ ti+p„—~e;,+P P,„e&&,(x,r)b,;
E ati . o

+2p,„'e;,(x,r))e +« '&dr, (7.2)

where 0= T—To, and K, X„, p,, are the additional

Let us 6nally remark that if the Laplace transforms
of these expressions are used, a great deal of simplifi-
cation can be achieved. Thus, for example, transforms
of the phenomenological relations (7.2) give

o.;,+o,,'= (py/P) M,;+l&.e&pb,;+2Pe;;,
7.6

g, = —(K/T p)8,;,
where

a,&'= Xe&,&, (x,0)b;;+2Me,;(x,0),

X=l&,—(y'/P)+hi, P=p+Mf,

(7.7)

1 i i i-=-+Q-
K K ~ K f+Xg
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where f' is the transform variable. By taking the Laplace
transform of (7.5), we obtain

where 0(x,o) and e,,(x,o) are the temperature and
dilatation at t=o It.may be deduced from (7.6) and
(7.8), and the fact that conservation laws are the same
whether the medium has viscosity or not, that:
Theorem of Correspondence: The solution of the Laptace

transform of basic equations of thermo nis-co eta-sticity is
the same as that of the thermoetasticity with the transformed
body forces f; and surface tractions o; in the latter
reptaced by f= f, o—;,,p and o,= (o;; . o—,ys)n, , and X,

p and lr replaced by )I., p and R.
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Nuclear Spin Relaxation in Liquid He'. ll*
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The nuclear spin thermal relaxation time, T&, of He' nuclei in pure liquid He' at its saturated vapor
pressure has been measured at temperatures between 0.8'K and 3.1'K, at static magnetic fields from 1560
gauss to 12 200 gauss. No dependence of TI on the static magnetic 6eld was observed. The measured relaxa-
tion times increase gradually from 300 seconds at 0.8'K to 650 seconds at 3.1'K. These measured relaxation
times do not appear to have been significantly shortened by wall relaxation processes. These results, which
do not agree with measurements made elsewhere, are in good agreement with the short correlation time form
of the Bloembergen, Purcell, Pound theory of spin relaxation in liquids.

INTRODUCTION

ECENTLY we reported measurements' of the
thermal spin relaxation time, T1, of He' nuclei in

pure liquid He' at its saturated vapor pressure. Previous
measurements in this laboratory' ' had yielded diGerent
Tj values depending on the container used. It had been
concluded from these earlier measurements that in at
least some of the containers used the relaxation time
was being artificially shortened by wall relaxation or
possibly by some impurity. The combination of the
long relaxation time in liquid He' and the large diffusion
coefficient makes it difficult to avoid wall effects by
simply using a very large sample. In these circum-
stances, the longest T1 measured at any given tempera-
ture, pressure, etc. , probably lies closest to the value
characteristic of the bulk liquid, unless there is some
systematic error which gives spuriously long T& values.
The safest procedure seems to be to construct containers
of a material believed to be relatively ineffective at
relaxing He' spins; if then approximately the same

* Supported by the Once of Naval Research and the Once of
Ordnance Research, U. S. Army.
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S. R. Williams, Phys. Rev. 92, 208 (1953).' W. M. Fairbank, W. B. Ard, and G. K. Walters, Phys. Rev.
95, 566 (1954).

results are obtained in two containers of quite different
sizes, one has presumably measured something close to
the "true" T1.

Fortunately, it was discovered early that Pyrex
surfaces do not relax He' spins very fast. ' The measure-
ments reported in I were therefore made in two Pyrex
bulbs of diGerent sizes and the results obtained from
the two bulbs were in good agreement with each other.
All the data in I were taken in a static magnetic field
of 9000 gauss and seemed to be in reasonable agreement
with the BPP' theory of spin relaxation in liquids,
provided that one makes the assumption that the
correlation time for the motion of the atoms (r r'/10D——10 "seconds, where r, a typical inter-atomic distance,
is a few A, and D—10 ' cm'/sec. ") is much less than
the Larmor period in available magnetic fields (2s./&vs

&2&&10 s seconds). The short r, approximation would
appear to be an extremely good one for He', particu-
larly at high temperatures ( 3.0'K).

Shortly after the completion of the measurements
reported in I, the subject was re-opened by the reports
of a previously unsuspected magnetic field dependence
of T1. Low and Rorschach, making measurements at
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