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Theory of Spin-Wave Interactions in Ferro- and Antiferromagnetism
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The spin-wave theory in an ideal Heisenberg model of a ferromagnet is studied using Holstein and Prima-
ko6 s method including the spin-wave interactions. Several earlier published results of the correction to
the spontaneous magnetization produced by spin-wave interactions were in disagreement with each other,
and they were not in agreement with Dyson's result which is regarded as rigorous at low temperatures.
Our result is in agreement with Dyson's to the order which we have considered.

Our method can be applied to antiferromagnetism easily. Ne have obtained the correction arising from
interactions between spin waves. The correction term is quite small. This means that the simple theory
neglecting the spin-wave interactions is sufhcient for practical purposes.

I. INTRODUCTION

LOCH' erst presented a spin-wave theory in the
Heisenberg model of ferromagnetism. He predicted

the temperature dependency of the magnetization at
low temperatures (Bloch's T& law). In his theory he
assumes that the number of spin waves is so small that
the interaction between two or more spin waves may
be neglected. The same result was obtained by Holstein
and Primakoff' (H-P) using creation and annihilation
operators of a spin wave under the same assumption
as Bloch's.

Dyson' invented a general theory of spin-wave inter-
actions. In his theory he defines two kinds of interac-
tions: One is the kinematical interaction which arises
from the fact that more than 2S+1 units of reversed
spin (S is the magnitude of atomic spin in units of t't)

cannot be attached to the same atom simultaneously.
The other is the dynamical interaction which represents
the nondiagonal part of the Hamiltonian in his basic
set of states. The merit of his treatment is that the
kinematical interaction can be neglected in an expansion
in powers of sT/ J (e, T and J are Boltzmann's constant,
the temperature and the exchange integral, respectively)
and that the dynamical interaction is very weak at low

temperatures. Dyson also criticizes H-P spin-wave
theory in that although the kinematical interaction does
not appear, the dynamical interaction is so strong in
their treatment that one cannot get rid of mathematical
difficulties.

Prior to Dyson's paper several authors' ' obtained
correction terms in the expression of the spontaneous
magnetization of ferromagnetism at low temperatures.
Among these authors Schafroth' and Heber' followed
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the ideas of H-P. They were neither in agreement with
each other nor with Dyson. Ke believe that the origins
of their incorrect results are not in H-P's method itself,
but due to their poor approximations.

Although Dyson's paper is rigorous, it is not so easy
to understand. We will show in Sec. II that a careful
treatment of H-P's method gives the same results (to
first order in 1/S) as Dyson's, and is very simple.
Mannari and Terasaki' and Morita' have obtained
essentially the same conclusions independently of the
author.

H-P's method has been applied to antiferromagnetism
by Kubo."He has obtained the expressions of many
thermodynamical quantities and discussed the diver-
gence of some variables in the absence of anisotropy
energy. Our method can be applied to antiferromag-
netism easily, and the results will be shown in Sec. III.

5e= —2J P S; S,+agt PS,'.

Here S; is the spin operator at the jth atom, E the
total number of atoms, g the Lande g-factor, p, the
Bohr magneton, the summation P&~ t& is taken over all
nearest neighbor pairs, and the external magnetic 6eld
H is directed along the s axis, Following H-P, we
express the spin operators in the forms,

where

S,+=S, +iS,"=(2S)&f;(S)tt;,

S,-=S,' iS; = (2—S)&c;*f;(S),
s'=s —~;„J1

(2)

f;(S)= (1—rt, /2S) &, (3)
8 Cited in the following paper, I.Mannari, Progr. Theoret. Phys.

(Kyoto) 19, 201 (1958).
OT. Morita, Progr, Theoret. Phys. (Kyoto) 20, 614 and 128

(1958)."R.Kuho, Phys. Rev. 87, 568 (1952).

II. FERROMAGNETISM

The nearest neighbor exchange interaction model of
a ferromagnet is described by the following Hamiltonian,
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and the operator a,-*a;=e; is called the spin deviation
operator, and u;* and a; are ".o be regarded as the
creation and annihilation operator of the spin deviation,
and they satisfy the commutation rule

G&Q~
—8&. C~= 8&~.

Using these operators the Hamiltonian (1) can be
written as follows,

2J Q—$2$a,*f,($)fi($)ai

3 g„.
——2$ Js(1—yi) H—gp,

3C'= Q 8(ki+k2 —k2 —k4)
ki ~ ~ ~ 4

X (Vi+y4 2y2 4)+— (yi+y4)2' I6SS

X+2 !22 !22&4+
&6SE'ki, ",k6

(12)

2$a, *—a, +a;*a,a!*a!] Hgy —Pa,*a;, X8(ki+k2+k2 —k4 —k2 —k4)

X (pi+f4 —2y3—4 2) Q], !22 82 G405a4+ (13)

eikp/s (14)

where we have dropped the constant terms. Ke would
like to make the following remarks about the operator where we have delned
f, (S). There are several definitions for f, (S).One is the
binomial expansion in the Hilbert space of infinite di-
mensions such as

4 ~ ~ (6)

A second is the following expansion in the same space
as (6),

with p denoting the vectors to the nearest neighbor
atoms, and s the number of them. We have used the
notation a», y» etc. instead of aI », yI;» etc. , and later we

will use ~~», A» etc. instead of @le», Aa» etc.
%"e will use the following basic set of states,

f ($) Q e ($)g,4:mii. m

m=0
(7)

where the c (S) have to be determined from a recur-
rence relation. Expressions (6) and (7) are equivalent.
A third one is defined in the subspace of (2$+1) di-
mensions for 0&n, &2S, as follows,

2s

here ~0) is the state of no spin waves. The basic states
(15) are normalized and orthogonal to each other. H

we operate with the Hamiltonian (10) on the states (15),
the result is

f, (S)= P d„($)22;", (8)
BC' {222}

where the d,„($) can be determined individually. As n,
is the spin deviation, it loses physical meaning if it is
greater than 2$+1. Considering this situation, Eq. (8)
can be best used for rigorous treatments of the Hamil-
tonian (5). However rigorous treatments are so difficult
that Eq. (8) is not very convenient. On the contrary,
the limiting of f;(S) to the subspace as in Eq. (8) leads
to the more tedious formalism. As H-P mentioned
already and Dyson showed definitely the states
22, )2S+1 give a negligibly small contribution at low

temperatures, so that we may neglect the kinematical
interactions. A glance at Eq. (6) shows that it is an
expansion of the powers of not. only I, but also 1/S,
which is very important, as will be shown later. Thus we
will use Eq. (6) in this paper.

We introduce the Fourier transforms of a, and e,.*,

42!,= (1/E&)Q; e '"&a, , a!,*=(1/E&)Q;'e'"2'a, *, (9)

Js
2 ~ 4:222+ 2 (72+ Y2 i 71—2)
l. ki, kg

Js
+ (Vi+V2) 222222+ P

8SX ki, ks, ka

Js
X (Vi—V2-~i) 222222222+

4SE'

X+{ni,}+ Q' b(ki+k2 k2 k4)——
ki, ~ ~, k4

Js Js
X —(Vi+V4 —2y2 4)+— (V!+V4)

2Ã 16SE

then we obtain the transformed Hamiltonian as

3C=Ko+BC',

~'= Z2 ~!!2!*~!„

(1o)

(ii)

where p' means we exclude the terms of ki ——k2, k2 ——k4

and ki=k4, k2 ——k2, and %'{222'} etc. are different states
from 4{22&},i.e., they express the dynamical interac-

tions. These dynamical interactions are not so weak as
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those in Dyson's treatment, and he therefore did not
treat Eq. (16).However, the diagonal terms of Eq. (16)
are also not so simple as those in Dyson's Eq. (26) in
his first paper, and fortunately many of them are
canceled with nondiagonal terms in the following treat-
ment, and we will get the same result as Dyson gets.

In Eq. (10)X' is the Hamiltonian of free spin waves,
and X,' represents the interactions between spin waves.
It is by no means clear that 3C' is smaller than 3C' at
this stage. However, if we regard Eq. (10) as an expan-

. sion of powers of 1/S, we can surely treat X' as a

perturbation. In the following we will calculate the
grand partition function of the system defined from

Z= Trace exp( —PX), P=1/(«T),

where we have taken the chemical potential as zero.
As is well known, "Eq. (17) can be developed into the
following form,

Z= Trace exp( —PX') 1— exp(sX')X'
l

00 Js
Ziii= p exp( —pp Aiei)

nfsM k .8gg2 k1,k2, kg

Iyi+y2+y3+yi+2 3
—2yi 3

—2'r2 3I'
X-

Vi+72 73 Vi+2 3—
X (eie2+2ein2e3)+O(1/S') . (21)

Further terms give nothing to order 1/S. In the follow-

ing calculations we will con6ne our consideration to
the simple cubic lattice. In Eqs. (20) and (21) the
terms in n~e2 express two spin-wave interactions, and
combine to give the following term after a simple
calculation,

00 pJ
P exp( —p P Aiiti, )
nfe~ k 2g k1,ks

X (ki*'k2.'+ki, 'k2, '+ki.'4.')
pP

X exp (—sX')ds+ exp (sX')X' exp( —sX')
a) p

1(1 7
X 1+-I -+

S &6 216

Xexp(tX')X' exp( tX')dtds+—. . . (18)

In this expansion we will calculate the terms to order
1/S. The erst term in the parentheses gives, of course,
the ground partition function of free spin waves as
follows,

The term in Niit2na in Eq. (21) corresponds to three
spin-wave interactions; it will give higher order con-
tributions and will not be analyzed further. Thus the
grand partition function can be written from Eqs. (19)
to (22) as follows,

Z=II (1— "") ' 1+
k 2Ã k&,ka

Zi ——p exp( —p Q Agei, ).
nk=o

(19) X (k»'k2, '+ki„'kp„'+ki, 'k2g )

In the second term only the diagonal terms of X' do
not vanish, and the result is

0.2q
1+ IX(d'"'—1) '(e~"'—1) ' . (23)Sj

Zii ———P P exp( —P P Ai,ei)
nibs k

Js
X Q (1+71—2 71 V2)'+1'+2

)$7 kt, kg

+ 2 (71+72) itiii2
8++ k1,k.

Js
+ Q (yi —y3 2 i)miegit3+O(1/S') . (20)

45'/2 k&,k&,k3

( «T q't2 3~ t' «T q't'
=s—t (-', ) I

(87rJSj 4 (87'rJSj
( «T ) it2 3m t' 02)

t (-:)
I I

—
I

1+
32 48mJSj 2S( S j

337r2

t' «T
xf(-;)f(-,')I I

", (24)
(8 Jsj

By the standard method the spontaneous magnetiza-
tion M is given by

r
In the third term the nondiagonal terms contribute to where t (n) is the Riemann zeta function

t'(3) =2.612, f (-', )= 1.341, f (-,")= 1.127. (25)"For example, see M. L. Goldberger and E. N. Adams, II,
J. Chem. Phys. 20, 240 {1952}and R. Serber, Phys. Rev. 43, 1011
{1933}. In Eq. (24) the term in T't' corresponds to the T'" law
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of Bloch, as it should, and the terms in T'" and T"'
are due to the corrections of the long-wavelength
approximation. The term in T' corresponds to Dyson's
correction term, although our numerical factor contains
(1+0.2/5), whereas Dyson's contains (1+0.3/5). The
difference may come from numerical approximations in
Eq. (22) in our paper and in Eq. (92) in Dyson's first
paper. (Note that J used in the present paper is just
half Dyson's J.)

Thus we have obtained an essentially same result
as Dyson's, using the spin-wave formalism of H-P. We
will further show the equivalence of the two methods
in another way. In Eq. (10) we rearrange the terms as
follows:

X Xi)+Xir~

XD= —egg P a;*a;+25J P (a;*—ai')(a, —ai)

(26)

+J P a,*a,*(a; a,)', (-27)

Xa=J Q (a,*a;*a;ai a;*a—i*a,a;)
(i &&

J
+—P (a& a& a4ai+a,: ai'ai'ai)

8S &J,i)

J
85 ('.i)

+a,"ai*ai*aiaiai)+ . (28)

X& is just the same as Dyson's Hamiltonian LEq. (57)
in his first paper). After a Fourier transform the first
term in Eq. (28) gives

sJ
P yini44s4' k1,A.g

(~,—~;, ,)e,e,~,. (30)4'' u& p2, u,

However, the diagonal parts of the second and third
terms in Eq. (28) cancel the first and second terms in
Eq. (30), respectively. Thus Xa (Remainder of the
Hamiltonian) gives nothing to order 1/S. This means
X is equivalent to Xii at lea, st to order 1/S.

III. ANTIFERROMAGNETISM

As is well known the exchange integral in antiferro-
magnets is negative so that an antiparallel spin coupling
between nearest neighbor atoms is more stable than a
parallel one. However, the ground state in Heisenberg' s
model of the antiferromagnetic case is very complicated
and is known only approximately, while the ground
state in the ferromagnetic case is very simple and is a

S (ki+k'& ks k4) al as asa4 (y4 y2) . (29)
237 k1,

The diagonal terms of Eq. (29) vanish, and the con-
tribution from nondiagonal terms is given by

starting point of a spin-wave theory in ferromagnetism.
In spite of this the successes of spin-wave theories of
antiferromagnetism by Anderson" and Kubo" make us
feel that they contain a correct approach to attack the
problem. As was discussed by Kubo in detail there is a
divergence of the fluctuation of magnetization in spin-
wave theory of a,ntiferromagnetics. This divergence
can be avoided by introducing the anisotropy energy.
In fact we cannot doubt the importance of the role of
the anisotropy energy in antiferromagnetism. How-
ever, this divergence of the fluctuation occurs in the
spin-wave theory of ferromagnetism, too. On the other
hand our method used in the last section is essentially
the same as Dyson's in ferromagnetism. We will apply
it to an ideal antiferromagnet with no anisotropy
energy, which may correspond to Dyson's method if it
were done for antiferromagnetism.

Let us confine our considerations to a NaCl type and
a CsC1 type crystal, and divide the lattice points into
two sublattices, denoted by l and nz, respectively. The
Hamiltonian is assumed to be

X=2~ J~ P (S,.S )+k, P 54*+k, P 5 *, (31)

for a "down" spin on the ez sublattice. The operators
b and b* are de6ned in the same way as a and u*, and
satisfy the equations,

b *b„=e ', b„b„*' b*b '=b —' (34).
We introduce the Fourier transforms of a~, a~* and

b etc,

ai,——(2/X)& Pi e'~'ai ai,*——(2/E)' Pi e '"ai*

bi, —(2/X)&P e 's~b— b~,
~ (2/X)l P e"~b ——*, (35)'

where E is the total number of atoms. Furthermore, we
use the new operators ni„ni,* and Ps, Pq* defined by

as =ny coshes —ps sinhSs,

bi, = —ns* sinhoi, +Pi, cosh04,

as =ns cosh8s —Ps sliil10s,

bq*= —ni sinh8s+Pi, * coshgs,

"P.W. Anderson, Phys. Rev. S6, 694 (1952).

(36)

with different eGective magnetic field on / and m sub-
lattices. The reason for using diferent magnetic field
parameters is that by differentiation with respect to a
single parameter we may select out the magnetization
of a sublattice. According to Kubo we have to introduce
two diGerent de6nitions of the spin-deviation operators.
These are

Si+= (2S)&f4(5)ai, Si ——(25)'aie fi(5),
Si*——S—ai*ai, (32)

for an "up" spin on the l sublattice, and

5 += (25)'b.*f (5), 5== (25)'f-(5)b-
S *=—S+b *b, (33)
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where

tanh28, =y)4/(1 ——,'h, '+-,'h, '),

4'=4/2sI~IS, &2 h2/2sI~IS

Then the Hamiltonian (31) can be written as

SC=Ea+Q (A), 44)+A)+44)')

(3'/)

(38) C

C

7j

NaCl-type

0,09/
0.156

1/(3&2&)
24/3

39P4I3

CsC1-type

0,073
0.150

3
87/4

TABLE I.Numerical quantities for antiferromagnetic lattices. '

with

+ Q [Bu)(44)N, +m, '442')+B&')44, 442']+ (39)
k1kP

a The numerical values of c and c' are calculated by Anderson and by

When the external magnetic Geld is zero (i.e., I4~ ——h2 ——0,
D= 1) the free energy Fo can be written,

)4), =u) *4)-'I, 44)
' =p) *pk, Fo= Eo+2~T Q in[1 —exp( —PA P)](403

1
F),= 2z

I
I

I
S SE(—1-)'4, '+—h2')

2

+E[(D'—v~')
'*—D]

(4/)
cV ( )' exp(PA), ') 1J—

where A~' means A4 (I4)'=h2' ——0)=Ak (h~'=k2'=0).
The zero-point energy Eo is

J 0= —sI JISS(S+c+c'/4S),

A a+= (D' —vs')'*~-'(hi'+h2')

( D—v)'
—,—1 I, (41)

2Sg. ~ ((gy —q,')' where c is defined by

= (2/&) Z. L1- (1-v.')'1

(48)

(49)

/)r ((D2 ~ 2)~~ (gy ~ 2))
(43)

D-v), ' ( D-v~'
(42)

ScV (D' —y4')-:,: E (D' —y),')'*

The numerical values of c are calculated by Anderson
and by Kubo, and shown in Table I. Equation (48) is
identical with the result of Kubo in his second approxi-
mation. As shown in Table I, c is so small that the
correction term c'/4S is not important. The energy of
the spin wave with wave number k is

2sIZI ( D pP D—p,'—
+1 I

((D2 ~ 2)$ (D2 ~ 2)$ )

hl h2
D=1——+—,

2 2'

A),' ——2s
I
J

I S(1+c/2S) (1—yg')'*. (50)

(44) In Eq. (50), though c/2S is a correction, the property
that the spin-wave energy is a linear function of k in
the region of long wavelength does not change. From

(45) Eq. (4/) we obtain the internal energy by the standard
method:

163 f(4)' g(6) ( 5c&
+. gs+. . .+5t& I

1——IH'
S 2 4'' 2SJF=F)„+)4TP (in[1—exp( —PA),

—)]

+in[1—exp( —PA4+)])+ P
i (8) (

I
1——108+

2S)k1,k2

with

.3l-(4) / 3c q
where we have picked up all terms to order (1/S'). U=&o+2sI&IS/

I
1—I84

Sy a method similar to that of the last section, we ob- 2S

tain the free energy as follows:

(51)

1 1
Bo) I'

(exp(PA) )—1 exp(PA2 )—1

+
exp(PA)+) —1 exp(PA~+) —1)

+B(&)
exp(PA& ) —1 exp(PA2+) —1

0=.r/2sI SIS, (52)

i.(2)=~'/6, i(4)=~4/90,

g(6)=4r'/945, l'(8)=m'/9450. (53)

In Eq. (51) the second term in the brace is the correction
due to the spin-wave interactions, and the last two
terms are due to corrections resulting from the deviation
from linearity of the spin-wave energy spectrum. The
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&(gf)' t(2) ( 3ci 1D(2)7
f

t)s 04

2si Jf5 tr t)' ( 25) 512' (4) I' 3c i 1 f (4)'
~

1—~ey-232 0'y "
trsrfs ( 25) S »f (2)f (4) t(4) ~ Scq

+ —i)s+ +(ts tr't7' t. 2S)
vr4g6

i(6) ( Sc)
+30(t ( 1—~e'

2S) i(6) ( 7cl 1 2gt
|(2)f.(4)0' .

25) S tr'tts
f (8) (+566 I

1——ie'+ . (34)
2S) Both the second and third terms are caused by the spin-

wave interactions, and are order of 1/S.
Lastly, we will get the perpendicular susceptibility,

gt. In Eq. (31) we add the following Hamiltonian, and
put h& and h2 equal to zero:

We can understand the meaning of each term in Eq.
(54) by comparing with those in Eq. (51).

In order to get the magnetization, M, of sublattice,
we differentiate Eq. (46) with respect to the selector
parameter h~, using the following property: h, (Q St*++5 *}. (59)

numerical constants t), $t, and $s are shown in Table I free energy with respect to h. The result obtained is
for NaCI and CsCl type crystals. The specific heat is
easily obtained:

( D—vt'

Clht ( (D —7pt)1) h, t =tw = D

The result is

f(2) ( c) 13'(2)f(4)—=—s—-'c' ——
2

06 ~ ~ ~

gft 2 2trst)' ( 5) 5 tr4tf s

f(4) t' 2c) f(6) t'

] 1—l04 Zs-
4trst)' & S ) 6tr't)' l 5 )

(55)

(56)

This is the Hamiltonian of the external magnetic field
directed along the x axis. We can use transformations
similar to those in Eqs. (32) through (37). Noting that
the perpendicular magnetic field shifts the origin of the
operators tto and as* by —h jV'1/4s

~
J

~

S' while bo and be~

do not change, the Hamiltonian can be diagonalized
easily within the range of the same approximation, and
the perpendicular susceptibility is obtained as follows:

-&(@)' 1, 1 l (2) t'
7.= 1—(c+")——

4s~ J
~

2S 5 2tr't7' & 5)
where c' is defined by

2 (c'=—PI( (1—yk')'*

and its numerical values, as calculated by Anderson
and Kubo, are shown in Table I, The magnitude of
magnetization at zero temperature, 0=0, does not
change from Kubo's result, although Fisher" very
recently got a different result by a variational method.
The fourth term proportional to 0' in Eq. (56) comes
from the spin-wave interactions. The last two terms are
due to the energy spectrum correction.

To obtain the parallel susceptibility, Xll, we must put
h~ ——h2 ——h, and calculate the second derivative of the

' J. C. Fisher, J. Phys. Chem. Solids 10, 44 (1.959). His result is
3E(0)/gp=mfl7S/1 —sS/(2sS —1)~)=~~ftrSX0.987 (in the case of
MnF~), and he compares it with the experimental result —,'ES&(0.98
&&M(0)/gp&~&1VSX1.03 by Jaccarino in Mnf'&. On the other hand
Eq. (56) gives 3/I(0}/gp. =-,'ÃS)(0.97. In both theories the aniso-
tropy energy is neglected and only the single exchange integral is
considered. (If the theories are applied to MnF2, this exchange
integral corresponds to that between second nearest neighbors. )
However we cannot neglect the e8ect of the anisotropy energy
and the exchange integral between nearest neighbors on. the
magnetization in a real MnF2 crystal. Thus it is diKcult to say
which theory is in better agreement with the exper'iment.

13' (4) t' 2c'l 1 3$(2)t (4)+- -i 1—it)4—— g6 I ~ ~

5 tr'tt' & 5 ) 5' tr4t)'

1 |(4) lr 2c) 1

(
1—— ~0+-~ 5q, —

5 47r'tf' t. S ) 5 6rfs)

f(6) ( 3c)

5) (60)

In this expression the third, fourth, and fifth terms
represent the eGect of interactions between spin waves,
and the last two terms are due to the energy spectrum
correction as before. Ziman" calculated the correction
terms of the perpendicular susceptibility due to spin-

wave interactions, but he did not obtain the tempera-
ture-dependent term because of his poor approximation.

All the correction terms which we obtain are quite
small so that they are hardly observable in a real
antiferromagnet. Nevertheless, the smallness of the
e8ect of spin-wave interactions confirms the usefulness

of the 6rst approximation in H-P's method. In a case

"J.M. Ziman, Proc. Phys. Soc. (I.ondon} 65, 540 and 548
(1952).
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in which the first approximation does not fit the experi-
mental result, we must seek the origin in the difference
between the real antiferromagnet and the simple

Heisenberg model.
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A correlation function for a positron-electron pair within a metal is obtained by solving a Bethe-Goldstone
equation. Thus one may take account of the many body effects, of screening and the exclusion principle, in
computing the electron density at the position of the positron. The results indicate that one may, in this
fashion, reconcile the Sommerfeld model of a metal with the experimental data on positron annihilation in
metals.

I. INTRODUCTION
' 'N recent years attempts have been made to explain
~ - the failure of the Sommerfeld model of a metal to
account for the observed positron annihilation rates in
metals. It was apparent that no progress could be made
until some account was taken of the interactions
between valence electrons and positron within the
metal. We propose to present an adequate treatment
of these interactions. Our work follows most closely
that of Ferrell. ' The basis of the latter's discussion was
the Bohm and Pines theory' of collective motion in an
electron gas. The introduction of the collective or
plasmon modes allows one to effect a separation between
the long range and short range, or screened, Coulomb
interactions in the, electron gas. In the present work
we will make no attempt to calculate the effect on the
positron annihilation rate of the plasmon part of the
Hamiltonian. This will be discussed in a later paper.
For now we only refer to the earlier work of Ferrell,
whose estimate of the plasmon effects indicate they
are probably small.

Where we diGer from Ferrell is in the treatment of the
screened electron-positron Coulomb force. Ferrell
reasoned that this weakened interaction should admit
of a perturbation treatment. Our calculations indicate
this was not a justifiable assumption, at least not for
most of the metals of interest. We have attempted to
arrive at an electron-positron correlation function by
setting down a two-body equation embodying the
screened Coulomb positron-electron force and the
equally important Pauli exclusion principle. This can
be done by formulating the appropriate Bethe-
Goldstone equation' for an electron-positron pair in a

' R. A. Ferrell, Revs. Modern Phys. 28, 308 (1956).
'- D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953).' H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London) A238,

551 (1957).

metal. Xo attempt is made here to include the proper
energy-momentum relationship (dispersion law) for the
electron and positron, resulting from the short range
collisions experienced by these particles. It is assumed
that both electron and positron propagate as free
particles.

In Sec. II we set out in detail the basic wave equation
for our problem. In Secs. III and IV an approximate
solution of the equation is discussed and the results
for electrons annihilating at zero tabulated. The
calculation is extended to include electrons at the
surface of the Fermi distribution in V and the resulting
annihilation lifetimes computed.

II. BETHE-GOLDSTONE EQUATION FOR
ELECTRON-POSITRON PAIRS

We are of course ignoring lattice e8ects and treating
the metal as an electron gas (at zero temperature) with
the neutralizing charge of the positive ions smeared
throughout space. We assume that the positron on
entering the metal is rapidly thermalized4 and assign
zero momentum to this particle. It is convenient to
carry out our calculations entirely in momentum
space, for it is then possible to state both the Pauli
principle and the screening as algebraic restrictions on
the intermediate relative momenta. It is easiest to set
down the two-body equation we have in mind and
explain the notation after.

The equation describing the interaction of a zero
momentum positron with a representative electron of
momentum k,=2a is

4n t" d'k'
(&'—a')0(k) = -

—,
—4 (k'),

(2n)'its~
~

k—k'~'

where p(k) is the relative-momentum wave function of

' G. E. Lee-Whiting, Phys. Rev. 97, 1557 (1955).


