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tt & c)2a/3 we obtain

( 2t (a—c) (c—2t) )
xst»=Stsi 1+ + (4 12)

a 2t— 2t(g —2t)

provided we have -,'c~&2t~&2c —a, and

get» =St'(1+L2t/(a —2t))+ (a—2t)/St) (4.13)

for 2c—a~&2t&a. For cases where we have 0~&c~&2a/3,
we find Eq. (4.13) provided iea~&2t&a. In the special
case of the electromagnetic form factors for the nucleon,
we have for the isotopic vector part a= M+rm,
c=2m, and 2t=M, which gives

xstt'& = 2rw '2M/(2M —rrt. ),
est» = (M/2ttt. ) (2M+sit. ).

(4.14)

The isotopic scalar part requires c=3m and leads to

a «& =3rrt 'M/(M —rm ) "
xs'» = (M/2rN ) (2M+em, ).

(4.15)

In problems related to the question of consistency of
quantum electrodynamics, it is sometimes useful to
know some analytic properties of the electron-photon
vertex function. From the direct representation, we
can say only the followiog: if one is willing to introduce
a small, auxiliary photon mass ))0 such that we have
x=srt, 2, a=b=sst, +X, c=3X, then the singularities in
the 23 plane are restricted to a finite region and the
static cut xs&~(3X)', ys

——0. The real boundary points
of the region with complex singularities are given by
Eqs. (4.15) with M replaced by rm„and sit by li.
Note that for X~O the mass variable x1——x~——m, '
coincides with the static cut x&~it'=liini, o(m, +X)',
y=0, and the singular region covers the whole s3

plane.
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The kinematics of an arbitrary process involving two incoming and two outgoing particles is studied in
terms of the invariants used in Mandelstam's representation, treating the three processes described by the
same Green's function simultaneously. It is shown that the physical regions for these processes are bounded
by a cubic curve in the plane of the two independent invariants. The unitarity conditions are discussed in
the approximation of neglecting intermediate states of more than two particles. The formula for the spectral
functions of the double dispersion relation is obtained explicitly in terms of the invariants chosen.

1. INTRODUCTION

'ANDELSTAM' has recently proposed a repre-
- ~ sentation of the scattering amplitude for meson-

nucleon scattering, which is obtained from a plausible
assumption about its behavior as an analytic function
of two variables, the energy and momentum transfer.
He has also been able to show, ' for a more general
process, that the representation is satisfied by the lower
orders of the perturbation series, and that this series
can actually be constructed from the representation
and the unitarity relations, in a two-particle approxi-
mation. In this paper we shall discuss certain aspects,
mainly kinematical, of the extension of this represen-
tation to a general process. We consider together the
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' S. Mandelstam, Phys. Rev. 112, 1344 (1958).' S. Mandelstam, Phys. Rev. 115, 1741 (1959).' S. Mandelstam, Phys. Rev. 115, 1752 (1959).

three processes
I: 1+2~ 3+4,

II: 1+3—+ 2+4,
III: 1+4~ 2+3.

The complications of spin and isotopic spin will be
ignored, and all the particles will be assumed to be
stable.

In Sec. 2 we shall find the physical regions for the
three scattering processes in terms of the three invari-
ants r, s, t, whose sum is equal to the sum of squared
masses of the four particles. These invariants may be
regarded as homogeneous coordinates io a plane, and
the physical regions are theo bounded by a cubic curve
in this plane. The curve has three branches correspond-
ing to the physical regions for the three scattering
processes, and also a closed branch within the rst-
triangle. The interior of this closed curve would
correspond to the physical region for the decay process

IV 1~ 2+3+4
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if this were possible. The form of the double dispersion
relation for such processes has been given by Mandel-
stam. '

In Sec. 3 we shall discuss the unitarity condition for
a typical process in the two-particle approximation.
By making use of the determinant of scalar products of
the independent momenta, the unitarity condition can
be written in the form of an integral over the invariants.
From this we are able to derive the relation giving the
spectral functions in terms of the absorptive parts, in
a similar form. The boundaries of the regions where
the spectral functions are nonzero will be given by the
vanishing of the determinant.

ml) m2+m3+m4, (2)

then the decay process IV is also energetically possible
(although in that case we assume that it has vanishing
probability). We shall choose the momenta of the
incoming and outgoing particles to be p; and —p;,
respectively, so that the conservation equation is always

Pi+P2+P3+P4= o (3)

The metric is chosen so that p'2=m'2.
In addition to the masses, there are two independent

scalar products. It is, however, convenient to use the
three invariants

which satisfy

r= (pi+ p2)'= (p3+p4)',

=(p+p )'= (p+p )'
t= (Pl+P4)'= (P2+P3)',

(4)

r+s+t= K—=mP+m2+m3+m4.

In the center-of-mass system for process I, the mo-
mentaare pl=(Ei, qi), p2 —(E2 ll) p3—( E3 Q3)

p4
——( E4, q3). The invarian—t r is then the square of

the total energy,

r=W2, W=El+E2 ——E3+E4.

The magnitudes of the spatial momenta are given by

4rq, '= fr (mi+m2)'$[r ——(ml —m2)'$,

4rq32= (r—(m3+m4)2jLr —(m3 —m4)2j,

and the invariants s and t may be related to the scat-
tering angle by

2. KINEMATICS

For convenience, we shall assume that the masses of
the four particles involved in the processes I, II, III
satisfy the inequalities

nag) nz2 &m 3)m4) 0.

Pl Pl'P2 Pl'P3
P2'Pl P2 P2'P3
P3'Pl P3'P2 P3

This may be written as a homogeneous inequality in
r, s, t,

rSt) (r+S+t)2(ar+bS+Ct) (g)

where the dimensionless constants a, b, c are given by

K'G= (mPm2' —m3 m4 ) (mP+m2 —m3 —m4'),

K'b=(mPm3 —m2m4)(mP+m3 m2 m4),
K'c= (mPm4 m2'm3 ) (—ml +m4 m2 m3 ).

The variables r, s, and t may now be regarded as
homogeneous coordinates in a plane, in which the line
at infinity is r+s+t=0. The region (8) is bounded by
a cubic curve in this plane, whose asymptotes are r=0,
s=0 and t =0. Moreover, the cur ve intersects its
asymptotes on the line

ar+bs+ct =0. (9)

The shape of the curve is shown in Fig. 1, in which the
regions marked I, II, and III are the physical regions
for the corresponding processes. We note that, by the
assumed inequalities for the masses, the constants e, b

and c satisfy

a)b)c,
and that a and b are necessarily positive, although c
may have either sign. If c is negative, the line (9)
passes within the rst-triangle, and therefore the region

The conditions for a physical scattering process may
now be expressed in terms of r, s, t. The necessary
condition

&p; p;)mm;
yields

r)(ml+m2)' or r&(ml —m2)', (7)

and similar inequalities for other pairs of masses. The
requirement that the scattering angle be real can be
stated in the form

2s=K—r+4qiq3s —(mP m2)(m3 m4)/r,
(6)

2t =K r 4qlq3z+ (mP—m—2') (m3 m4')/—', —

where s= cos( ll, q3). I' IG. i. The physical regions.
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III in Fig. 1 includes part of this triangle. In other
words, all three invariants can be positive for this
process.

The bounding lines of the region defined by (7) can
be shown to be tangential to the curve, so that the
entire boundary of each of the physical regions is a
part of the curve. ' If the condition (2) is satisfied, then
the excluded strips

(ttti —ttz2)' (r((tt33+ m2)',

(tt33—tt34) 2 (r ( (2233+ tt34) 2

do not overlap, so that the region IV is allowed kine-
matically, as we should expect. If (2) is not satisfied,
however, the strips (10) overlap, and the region IV is
excluded.

3. MANDELSTAM REPRESENTATION AND
UNITARITY CONDITIONS

We shall assume that for the processes in question
the ordinary dispersion relations are valid. Thus for a
fixed value of t, say, one can write a dispersion relation
which will be an integral along a line such as AB in
Fig. 1. The poles will occur on lines r=r~ and s=s~,
and the continuous integrals will begin on lines r=r,
and s=s„as indicated. Here r& and r, are the squared
masses of the single-particle' and lowest two-particle
intermediate states in the process I, respectively. Using
the same assumptions as in his treatment of meson-
nucleon scattering, ' Mandelstam' has given a double-
variable representation for these processes, involving
three spectral functions, here denoted' by A„„A„&,and
A, ~. The function A„, for example, will be nonzero in
a region lying within the triangle de6ned by r&r„
s&s,. To find the exact boundary, C„„ofthis region,
as shown in Fig. 2, we must use the unitarity relation.
We shall assume that intermediate states with three or

i

more particles may be neglected in this relation, and
further that only one pair of particles contributes to
the two-particle intermediate states. If there is more
than one such pair, we have only to sum the contri-
butions from each. In this approximation, the unitarity
condition for the process I is

9

d (a,b, c,p) =

p'a

ab ac ap
b' bc bp

c'b c c'p
pb p' p'

(12)

It is convenient to choose a=pi+p2, b=pi, c= —p3,
so that

(p a)'= p ' (p -b)'=s (p —c)'=s . -
Then, using the definitions of invariants, we find

Ai„(rsi) =2(22r) ' d'pod'pob(po' —tt33')8(poo)b(po' —tt33')

Xg(poo)~(po+po pl p2)A3 (r$3)A2(r$2), (11)

where A~, A2, and A3 now refer to the processes

Ii'. 1+2~ 3+4,
I2. 1+2~ 5+6,
I3. 3+4~ 5+6,

respectively. The invariants are defined' as in Sec. 2.
We now wish to convert (11) into an integral over
invariants. To do this, we perform the po-integration
using the b-function, and convert the po-integration
into one over p32, (po —a)', (po —b)', (po —c)', where a,
b and c are any three fixed timelike vectors. The
Jacobian for this transformation is

J= ,', $ A—(a,b—,c,P3)j
where

2r

" r+t132—tt342

r+ 42332—tt332

r+ ttz 3 tr42—
25$]

ttti2+ m32 —si
tJZi + tr43 —$9

r+t233' —4234'

titi2+tt332 —si
2tg32

tt33'+ tt33 —S3

rytt332 —tt332

ttti +tt33 —$2 = d, (r; sisos3), say.
SS3 ~tÃg —S3

2815

(13)

This transformation is not one-to-one, since the scalar
products are unaltered by changing the sign of the
component of Po perpendicular to a, b and c. This
introduces an extra factor of 2. Finally, we obtain

A i, (rsi) = (1/64tr') ds2ds3 $ &(r; $1$2$3)—$ &

XA3 (r$3)A2(rs2), (14)

where the integration is over the region where 6 is
negative.

4 In the case of elastic scattering, the curve degenerates into a
straight line and a hyperbola.

50f course there may be more than one such particles and
hence more than one pole, or there may be none at all.

6 Mandelstam denotes the corresponding functions by A», A»,
and A». That notation would, however, be likely to cause con-
fusion with the AI, A2, and A3 introduced below.

The function d can of course also be expressed in
terms of si, t2, t3 by interchanging tt43 and ttto in (13),
and similarly it can be expressed in terms of t&, s2, 33

or ti, t2, s3.
Now, in order to find an expression for the spectral

functions, we have to substitute in (14) the ordinary
dispersion relations for A2 and Ae in which r is held
fixed. If we choose the value of r to be such that

r) (tt33+tt32)', r) (2333+tm4)', r) (4233+tt33)', (15)

and take s~ to be in the physical region for the process
I~, then it is easy to see that the condition 6 &G implies

7 Note that if we de6ne the signs of the momenta in I1 and Ig
according to the convention (3), then two of the rnomenta in I3
have the "wrong" sign. Thus we must define, for example,
33 (P3 P3)
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expression for A &„„obtained by evaluating the discon-
tinuity along FD, may be concisely expressed in terms
of the original invariants. It is"

A i„(rsi)= (1/32m ) ds2ds3 $A(r; sis2s3) j

XA3,*(rs3)A2.(rs2)+
J

"dt,dt, Lh(r; sit2t3)]-

XA3,*(rt3)A2g(rt2) . (16)

FIG. 2. The regions in which the spectral functions are nonzero.

that s2 and s3 are in the physical regions for the processes
I2 and I3, respectively. Thus the denominators of the
dispersion integrals for A2 and A3 will never vanish in
the region of integration in (14), and we may ignore
their small imaginary parts. For values of r which do
not satisfy (15) we must have recourse to analytic
continuation in the masses.

It is now possible to perform the s~ and s~ integrations
in (14) explicitly. This can be done most simply by
introducing the center-of-mass variables

si cos(q&, g&), sm= cos(q&, q&), z&= cos(q3 g$),

which are linearly related to s&, s2, s3 by the analogs
of (6), as is done by Mandelstam. ' We find by combining
the rows and columns of the determinant (13) in a
suitable way that

~(» sls2s3) =«gi'g3 g5 ~(sls2s8)
where

k (sis2ss) =si'+ s2'+ se' —1—2sis2sa.

Thus the s2 and sg integrations reduce to an integral
already evaluated by Mandelstam. ' The values of the
spectral functions A &„, and A &„& may now be found from
(14) by evaluating the discontinuity across the real
s&-axis. The function A &„ is easily seen to be an analytic
function of s~ for fixed real values of r, except for these
cuts, indicated by the lines CE and FD in Fig. 2. The

8 This situation is discussed in detail in reference 2.' See reference 1, Eq. (3.5).

Here the region of integration in both terms is part of
the region where 6)0, and is bounded by one branch
of the curve 6=0. In the first integral, s2 and s3 are
always positive, and in the second, t2 and ts are. There
are of course two other branches of the curve, corre-
sponding to positive t~ rather than sj, which bound the
regions where A~„~ is nonzero.

It should be remarked that Eq. (16) is remarkably
similar to the relation (14) for Ai„ itself, except for the
fact that (14) is an integral over the physical region,
whereas (16) is entirely over part of the unphysical
region.

The boundary C„,of the region where A &„, is nonzero
will clearly be given by the appropriate branch of the
curve d =0, in which the arguments s2 and s3 are given
their minimum values, provided that these are attain-
able simultaneously. In the general case, we must
consider all those four-cornered diagrams which are
such that none of the four internal masses (of one or
more particles) can be decreased.
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'OThe fourth-order contribution to A„may be alternately
evaluated by 6nding the discontinuity in A, on crossing the real
r-axis (see reference 3). The consistency of the two methods of
calculation is assured by the invariance of 6 under the simul-
taneous interchange m2'+-&m3', rie'~s2, m6'&-+s3 f ~s] In
fact 6 has a great deal more symmetry than this. It is invariant
under a transitive permutation group on its ten arguments r, s1,
s2, s3, mp, ~ ~ m62, isomorphic to the symmetric group of degree 5.


