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We investigate the properties of a functional representation of states for a self-coupled scalar field theory.
The assumption is made that all states can be generated by applying functionals of the field at a fixed time
(¢=0) to the vacuum state. It is shown that for the class of models considered the Hamiltonian is uniquely
determined by the vacuum functional. The calculation of scalar products between states leads to functional
integrals. The measure in this integration over function space is also determined by the vacuum state. Two
methods for the evaluation of the functional integrals are discussed. The first one reduces the problem in
some simple cases to the solution of an eigenvalue problem for a Hilbert-Schmidt kernel plus a finite number
of ordinary integrations. The other one gives a perturbation series.

I. INTRODUCTION

E want to discuss here some aspects of a field

theoretical model of the following type: The
basic variables are a scalar field ¢(x) and its conjugate
momentum = (x). They shall satisfy the ordinary
canonical commutation relations.

[7(x),0() ]=—id(x—y),

Lo(),0(3)]=r ()7 (3)1=0. W
The Hamiltonian shall be of the form
1
2= f 2du+H' (), )

where H' is a functional of the field ¢ only. In particular
we could write

1
= f (|Vo|Fme )t g, ®)

and call H? the interaction Hamiltonian.

We will not discuss here the problems associated with
the ultraviolet divergencies which are encountered if
HT is an integral over a point function such as

m= f o(5)ds. @
But we consider for instance models of the form

H’=f---fh(x1---x4)ga(x1)---<p(x4)d3x1--~d3x4, (4a)

where &(x1- - -x4) is a smooth “smearing function.” We
will therefore not assume Lorentz invariance but only
invariance under the Euclidean group (translations and
rotations in 3-space). It is obvious, however, that any
qualitative information about the behavior of the solu-
tions of the above models will also help in the discussion

* Supported in part by the U. S. Atomic Energy Commission.

of a local relativistic field theory like (4) which is just
a limiting case of (4a). In fact, this provides part of
our motivation.

In the standard treatment of our problem one starts
with a decomposition of ¢ and = into “bare-particle
creation and destruction operators” af(k), a(k) and
represents the states as vectors in the associated Fock
space. This seems unfortunate for several reasons. In
the first place the quantities a(k), at(k) are less well
suited to the problem than the original ¢ and . In
fact it seems extremely difficult to gain any qualitative
insight into the nature of the solutions in a scheme
which classifies according to the number of bare par-
ticles. Secondly the Fock-space treatment cannot be
applied directly in a model with vacuum polarization.
The nature of this difficulty may be stated in the fol-
lowing way: There are infinitely many inequivalent
irreducible representations of the system of commuta-
tion relations (1).! One particular possibility among this
infinite multitude is Fock space. Thus the situation is
in marked contrast to wave mechanics where one has to
deal only with a finite number of canonical variables
gk, pr. There one has no representation problem since
one knows that all irreducible representations of these
operators are equivalent.? Now if the theory is free of
ultraviolet divergencies this means, roughly speaking,
that the relevant volume of momentum space is finite.
If in addition we would put the system into a box to
make also the volume of ordinary space finite, then
only a finite number of oscillators would be significant
and the difficulty would disappear. On the other hand,
for an infinitely extended system, it is very easy to see?

1 This fact was first recognized by K. O. Friedrichs, Mathe-
matical Aspects of the Quantum Theory of Fields (Interscience
Publishers, Inc., New York, 1953). For the case of the anti-
commutation relations it is implicitly contained already in the
paper by J. Von Neumann, Comp. Math. 6, 1 (1938). For the
commutation relations an indication of the phenomenon may also
be found in the paper by L. Van Hove, Physica 18, 145 (1952).

2], von Neumann, Math. Ann. 104, 570 (1931); F. Rellich,
Gott. Nachr. 107 (1946).

3R. Haag, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd.
29, No. 12 (1955).
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that the representation appropriate to the case H'=0
(free field) cannot be appropriate to a case with inter-
action unless H7 is of such a special form that it leaves
the unperturbed vacuum invariant. In other words, only
for a model without vacuum polarization does the cus-
tomary “bare-particle Fock space” provide a possible
representation in which one can start to calculate. It
must be emphasized that the argument just quoted
from references does not make use of Lorentz invariance
but only of the invariance under translations in space
and therefore the difficulty is present even in a con-
vergent nonrelativistic theory as soon as one has
vacuum polarization terms in the Hamiltonian.

Therefore if one wants to use Fock space in such a
model, one is forced to introduce a finite total volume
V and discuss the effect of the limit V' — o at the end.
This complication is not very serious for some questions
but it is troublesome for others. For instance, while we
know that the S-matrix elements must turn out to be
independent of V in the limit, the wave functions of
physical states contain normalization factors which de-
pend exponentially on the volume. A careful analysis
of the volume dependence of various quantities has
been made recently within the scope of perturbation
theory.*

If we want to avoid using a finite box and Fock
space in the treatment of the problem, we must find a
way to single out that particular representation of (1)
which is appropriate to the given Hamiltonian (2).
Systematic studies of the relations (1) have been made
by Garding and Wightman® and by Segal.® Unfor-
tunately the results of reference S are not so convenient
for our purpose because in that work the occupation
number operators in some discrete basis are taken di-
agonal. It seems more natural in our problem to
diagonalize the fields. This corresponds essentially to
Segal’s approach. A naive version of some of his
methods will therefore appear in this paper, but our
assumptions are more specific.

Our approach is exploratory and therefore, apart from
Appendix I, mathematically naive.” Its main purpose is
to present some useful concepts and discuss their
relationships.

II. THE VACUUM FUNCTIONAL -

We want the model defined by Egs. (1) and (2) to
satisfy the following requirements:

4L. Van Hove, Physica 21, 901 (1955); 22, 343 (1956). N.
Hugenholtz, Physica 23, 481 (1957); W. R. Frazer and L. Van
Hove, Physica 24, 151 (1958).

5 L. Garding and A. S. Wightman, Proc. Natl. Acad. Sci. U. S.
40, 617 (1956).

6 I. E. Segal, Trans. Am. Math. Soc. 88, 12 (1958); Kgl. Danske
Videnskab. Selskab, Mat.-fys. Medd. 31, No. 12 (1959).

7 Parallel to this work, a mathematically rigorous discussion
of the representation problem has been taken up by J. Lew, A. S.
Wightman and one of us (R. H.). H. Araki has analyzed some
examples in which the connection between the Hamiltonian and
the type of representation can be worked out explicitly.
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(2) There exists a discrete (i.e., normalizable) ground
State of H, called the vacuum state Vo, which is invariant
under the Euclidean group and under time inversion.

(¢t) Every other stale of our system may be generaled by
applying some functional of the field operators ¢(x) to
the vacuum.

Thus
Y=F(p)¥.

In other words, it is assumed that we can create all
the states from the vacuum without making use of the
momentum operators. A precise mathematical formula-
tion of assumption (ii) will be given in Appendix I.
Here we shall be content to illustrate the meaning of
this assumption and the consequences by analogy with
the quantum mechanics of a single oscillator (i.e., we
have only one pair of canonical variables p, g). We take
q diagonal and consider the wave function of the
ground state y,(g). Since ¥, has no nodes, every other
state can be approximated arbitrarily well by F(q)¢o(g),
where the operator ¥ may be chosen as a bounded, con-
tinuous function of ¢. The following two consequences
are seen immediately:

(1) If G is any operator which commutes with ¢ then

GYo#~0 unless G=0. ©)
(2) There exists a function L(g) such that
[p—4L(q) Wo=0. (6)

In fact, if we write Yo=¢"4(, then L=dA/dyq.

In our field theoretical problem we draw two analo-
gous conclusions from (ii). In particular we assert that
there exists a functional of the field, called A, such that

[ (x) —iL (%) J¥o=0, ()
with
L(x)=08A/bp(x). (8)

Because of the invariance under time reflection, A must
be a real functional of ¢ so that A and L(x) are Her-
mitian operators.

What is the connection between A and the Hamil-
tonian H? Making use of the special form (2) of H and
of the commutation relations (1), we can write

1
H=EfDr(x)+1:L(x)][7r(x)_iL(x)]dsx—l-F(gp).

If E, is the vacuum energy then (7) tells us
[F(¢)—Eo¥o=0.

Since, however, F(¢)— Ey commutes with all the qa(x)l
we conclude from (ii) that the operator F—E, itself
must vanish. We will from now on take E¢=0.%8 Then

8 This is clearly necessary if we want finite results in the case
of an infinite volume since E, must be proportional to V. It also
does not restrict the generality; if the originally given formal
Hamiltonian gives Eo#0, one must consider H— E, as the proper
Hamiltonian.
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we learn that

= f At () 4 ()P, 9)

with
A(x)=2" n(x)—iL(x)]. (10)

If we multiply (9) out and compare with (2) we get
the following explicit relation between H’ and A

8L (x)
f L(x)*dPx— f

: do(x)

We want to point out one possible use of this equation.
If one wants to study the mathematical structure of
models of type (1), (2), it may be advantageous to
consider A rather than H as given. H’ can then be
calculated directly from (11) while an assumed H’ does

not, in general, yield a closed expression for A. Let us
examine finite polynomials for A of the form

d*x=2H'.

(11)

Ny 1
A=Y ——')\,.(xl- k) o(xr) s o(xa) B2y - - dBx,. (12)

n=2 9!

The simplest choice, N=2, yields a theory of noninter-
acting particles which have an energy-momentum
relation :

E=\(p)% (13)

where A(p) is the Fourier transform of Aa(x1—xs).
Polynomials of odd degree are ruled out by the require-
ment (19) below. The simplest nontrivial choice is
therefore N =4 which gives a polynomial of sixth degree
for H. The finite polynomials (12) for A have the serious
drawback that (except in the trivial case N=2) they
do not yield theories which are even formally Lorentz
invariant for any choice of the kernel functions. It is
easy to see this either by inspection of (11) or by apply-
ing infinitesimal Lorentz transformations to (7).

We could have arrived at (7) and (11) also in the
following way. Let us assume that we can take the field
operators ¢(x) diagonal, represent the states as func-
tionals of a c-number field x(x) which is allowed to
vary over the function space £ and represent the
momentum operators by the variational derivative

() = —13[8/6x (x) 1. (14)
Then, calling the vacuum functional ¥o(x) and writing
Yo(x)=e 4, (15)

we immediately get (7). Any other state ¥=F(p)¥o
will be represented by the functional

Y () =F(x)e . (16)

Of course, the hard part of the representation problem
has not been touched upon by making these assign-

® We shall not make any specific assumptions about & in this
paper except that it shall be a linear space of functions.

1139

ments for ¢ and 7 because one has yet to define the
scalar products between states. Alternatively speaking,
one must define the process of integration over the
space . We will show in the next section that the
functional A determines the measure of integration, and
we shall give formulas for the computation of this
measure. Thus the functional A occupies a central posi-
tion in the discussion of the connection between the
Hamiltonian and the type of representation of (1).
It may be used to characterize the representation and it
determines the Hamiltonian by (11).

We now want to mention three simple properties
which A should possess. The first is obvious: the in-
variance of the vacuum under the Euclidean group is
expressed by

A)=AKX) with x'(®)=x(rx+a), (17)

where 7 is an arbitrary rotation and ¢ an arbitrary
translation. Secondly, since exp(—A) is essentially the
probability amplitude for finding the field x(x) in the
vacuum state, we expect

lime=4¢x) =0

p—®

(18)

for any fixed function x.

Finally let us imagine a division of space in cells and
denote by Ry the set of operators which are functions
of the ¢(x), and = (x), with x restricted to the cell k.
We shall assume that the Hamiltonian is essentially
local, i.e., H=)_; H; with H; belonging to Ry provided
the cells are sufficiently large. This means that the pro-
jection operator on the vacuum is approximately a
product of projections Py with PreRy. In this approxi-
mation ¥,(X) is then a product of the ¥o(X;), where Xx
is the restriction of x to the cell %, i.e.,

Xp=X(x) if x is in cell %,
. (19)
X=0 otherwise.
Hence
A=3 A(Xy). (20)

In order to satisfy (20) each kernel function A, of a
polynomial (12) must tend to zero with increasing dis-
tance between any two points x; and x;. The advantage
of the exponential expression ¥o=exp[ —A(x)] is thus
apparent. Indeed, we have here an example of the well
known linked cluster expansion which has been used in
different forms in statistical mechanics and quantum
field theory.l® The requirement (20) imposes an inde-
pendent restriction on acceptable choices of mathe-
matically simple functionals ¥o(x). It would be tempt-
ing, for instance, to assume

1
Vo(x)=P(x)exp| —= | Ma—yx@x(y)d*xzd®y|, (21)
2

10 See Appendix II for examples and references.
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where P is a polynomial of finite degree, since the
vacuum expectation values of products of fields could
then be evaluated explicitly. However, the requirement
(20) rules out such an ansatz.

To close this section we want to make some remarks
about the problem of solving Eq. (11) for A if H is
given. One can set up a Ritz variational principle to
determine the “best” bilinear choice for A. This leads to
a nonlinear integral equation for the kernel function A
(see Appendix IIT). It is not clear to us, however,
under what circumstances such an approximation can
be trusted. Alternatively one may set up a systematic
perturbation scheme for the calculation of A if H' is of
polynomial form. One then starts with a bilinear zero-
order Hamiltonian

1
Ho,= EfL(O) (x1— xz) <p(x1) <p(x2)d3x1d3x2.

Putting H'=Hy+gH” one expands the kernel func-
tions A, into power series in the coupling constant:

An=2_1 8NP,
Starting from the zero-order solution,
AP)=[rO )T, X©@=0 for n=2,

the calculation is completely straightforward and need
not be described here. 2@ (p) is the Fourier transform
of #®(x). The two approaches could be combined if
one takes as the starting point of the perturbation
calculation the result of the variational method.

III. THE EXPECTATION FUNCTIONAL

We use the notation

o(f)= f (@) (@), -

U(f)=expie(f).

These quantities are, respectively, Hermitian and uni-
tary operators if f is a real function of x belonging toa
space §1, the test function space. We will not explore
the consistency conditions which must be observed in
the choice of the spaces & and £:. This question is one
of the central points in the mathematical representation
theory of the canonical commutation relations (1).67
Here we shall only assume the existence of the “scalar
product”

G0f)= f xfd 23)

for every fef, and xef. We now define the “expecta-
tion functional” E(f) by

E(f)= (WU (f)¥0)(¥o, o). (24)

F. COESTER AND R. HAAG

It will be convenient in the following not to normalize
W, to unity at the outset. E(f) is the generating func-
tional of the vacuum expectation values of field prod-
ucts since

E(f)=Xn (i"/n)) f Flan)- )

Kgn(x1e* - 25)d%1+ - P2y,  (25)
with
gn(®1e - wn)= (Yo, (1) - - - 0 (22)¥0) (¥o,¥0) 2. (26)
It is sometimes useful to put
E(f)=expn(f), @7

because n has the linked cluster property (20). 5 is the
generating functional for the system of ‘truncated
vacuum expectation values” or ‘“g-functions.”t

The functional E may be used to define the scalar
product between state vectors in the following manner:
According to assumption (ii) every state vector ¥ can
be expressed in the form

V=F(¢)¥. (28)
The scalar product (¥,,¥,) therefore takes the form
(1,%2) = (¥o,F1(0)*F2(¢)¥o). (29)

However, for any functional F(¢) we have according
to (22)

(o, F (@)U (f)¥0)=F(—18/5f)E(f) (¥o,¥0), (30)
and hence
(Yo,F () ¥0)=[F(—i8/6f)E(f)]1=0(¥0,¥0). (31)

The definition of the scalar product implies a definition
of a functional integral over the representative func-
tionals (16).

(‘I’o,‘I’o):fe‘zA(x)ax’
(32)
(‘I’II"I’Z) = fFl*(X)FZ (X)G—ZA(X)(sX.

For any functional G(x) the integral then is defined by

f G O0ix = (To, A OG ()T, (33)

A functional G(x) is integrable if the right-hand side
of (33) exists. A sensibly defined integral should be
linear and invariant under translations; i.e.,

f [G1 () +Ga0) Tox= f Gi6oset [Gabow, (39

11 P, Kristensen, Kgl. Danske Videnskab. Selskab, Mat.-fys.
Medd. 28, No. 17 (1954); E. Freese, Nuovo cimento 2, 50 (1955).
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and

f GOX+XD)ox= f GOOX. 35)

The relation (34) obviously holds for the definition
(33). Equation (35) is also easily verified from

fG(X+X1)6x=(‘I’0, 62A(¢)G(cp+xl)\1’o)

— (e—-i fr(z)Xx(x)dzeA(:p)\Izo,
G( <p)e_‘f” (2)X1(z) d’eA(‘P)\IIo).

The right hand side of (36) is independent of X; since
w expA (¢)¥, vanishes according to (7) and (8).

We shall make use of (34) and (35) in a heuristic
fashion in order to evaluate the functional integrals.
Imagine for a moment instead of the functional G(x)
a function of a finite number of variables G(g1- - *gn).
It is well known that for such functions the properties
corresponding to (34), (35) are sufficient to determine
the meaning of the integration symbol apart from an
arbitrary normalization factor. Let us now take a
complete and linearly independent but not necessarily
orthogonal basis of functions X; in & and represent an
arbitrary x by its expansion coefficients g; in that basis.
The functional G(x) then becomes a function of the
countably infinite set ¢z. The analogy with the case of
a finite number of ¢, would lead us to infer from (34),
(35)

fG(x)5x=consth(Q1q2‘ < )dgudge- . (37)

The right-hand side is still only of symbolic value but
it will be given a precise meaning below, at least for
some simple cases.

We turn to the problem of computing E(f) from a
given A. According to (24) and (33) we may write

E(f)=[ i eXP(—ZA)t?x]“ [ expliten)—28607x

= { f exp[ —2A(qigz - +) Jdqudgs- - - ]_
Xf expli 22 qx(Xx,f) —2A(q1qs- - -) Jdgrdge- - -, (38)

In order to evaluate the integrals in (38) we appeal to
the linked cluster property of A which implies that in a
suitable basis A is approximately a sum of terms, each
of which depends only on a finite number of ¢,’s. Let us
therefore restrict our attention first to cases in which A
is of the form

A= N g+ Qitn)- (39)

We also restrict ourselves to test functions for which all
but a finite number of the (Xi,f) vanish. This latter

(36)
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restriction is not serious because, if (38) is meaningful
for these special test functions, then the remaining
question is one of extending the definitions. In other
words, it concerns the precise nature of the test func-
tion space which we shall not attempt to discuss in
this paper. Under the conditions stated we may write
instead of (38)

E(f)
=]1v1_1g{f exp[—2 2 M (gi* + * Qiyn) Jdg-n+ - -dgn

-1

xf exp{i 2ok q(Xr, ) —2 i N(gi+ * * Qitn) }

Xdg_n---dgy. (40)
In the sums in (40) the index ¢ shall run from — (N+#)
to + N because the contributions which are due to an
1 outside of this interval cancel. For each NV the right-
hand side is then well defined. We need to show that
the limit exists. We shall do this for an example which
brings out most of the points of interest. Take n=1
and, for instance,

(41)

and take test functions f for which (X3,f)=ay for
i <k <nyand (Xz,f)=0 for all other values of 2. Then
(40) becomes

E(f) =Um[ K (¢_y_1,qn41) ]

Mqi,gir) = — 394 pQigir1— 5 qir1Y,

n2

2 argr)

k=ny

X fK(N—l‘nl"l"l) (Q—N—I,QN-H) . exp (i

XK(in,gnl"l-l) e K(an—l,Qn2)K(N+l—”2) (Qn;gN+1)
Xdin . 'dan,

K(q19")=exp[—2X(q1¢")],

and K™ is the n-fold interated kernel. Now we observe
that K is a kernel of Hilbert-Schmidt type. Therefore
it has a highest eigenvalue « which is separated by a
finite distance from the next eigenvalue. Degeneracy
could only be accidental. So we will argue that it is
nondegenerate. The eigenfunction to the highest eigen-
value we denote by ¢(g). As N gets larger only the
contribution from the highest eigenvalue survives and
we get in the limit

(42)
where

ng
E(f)=x"(m—n0 f ¢(gn1) exp(i 2° axgi) K (gni,qna+1)
ni

X 'K(an—l,qnz) QO(an)dQn)_ . dan (43)

Thus the evaluation of the functional integral is reduced
in this case to the eigenvalue problem for the kernel K
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and a finite number of integrations. This simple result
suggests that, starting from (38) useful approximation
procedures may be developed for the calculation of E
from A also in more realistic cases.

A perturbation theory of the expectation functional
can best be developed starting from the definition (24).
Let ¢o be a state represented by exp[ —Ao(x)] for
which the expectation functional

Eo(f)=(¢0,U (f)0) (¢ho,00) !

is known explicitly. Such is the case for bilinear A,

(44)

1
Auo)— f N o (o) o (o) Pandss. (45)
We have then

Eo(f)= exp[—i f A1 (xq,0) f(21) f (xg)d3x1d3xg]

46)
=expno(f).
The vacuum state ¥, can be expressed by
¥o=exp[—A’(¢) Igo, (47)
where A’=A—A,.
The expectation functional E(f) takes the form
E(f)= (90, exp[—2A"(¢) JU (f)d0)
X (o, exp[—24"(p) Jpo):,  (48)
and hence
E(f)={exp[—2A"(—/5f") JEo(f")} yr=s!
Xexp[—2A'(—18/8f)1E(f). (49)

A perturbation expansion for E(f) is obtained by ex-
panding the exponentials. The denominator guarantees
the condition E(0)=1. To make evident the corre-
spondence between the terms of the perturbation series
and diagrams, one may introduce a set of creation and
annihilation operators af(x), ¢(x) in a formal Fock
space with the formal vacuum @o. Then, making the
substitutions f(x) — —iat(x), —1(6/6f(x)) — a(x), one
gets from (49) the following expressions for the vacuum
expectation values (26):

gn(o1- - - 20) = (0] exp[ — 24" (@) JEo(—iat) [20)
X{Q|a(x1) - -a(x,) exp[—2A"(a) JEo(—ia®) | Q). (50)

If, as assumed, Eo is of the form (46) one can simplify
the expression by shifting E, to the left and obtain

gn(1-+ ) =(Qo[ b (1) - - -b(xa) exp[—2A"(8) ]| Q)

X(Qo| exp[—2A7(8)]]Q0), (51)
with

b(x)= a(x)-!-1 f A (w,y)at (y)ddy.
2 ).
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The evaluation of the numerator clearly leads to Feyn-
man diagrams with the propagator #A~! and vertices
which are the kernel functions of A’. If the numerator
and denominator are evaluated separately it is neces-
sary to introduce a finite volume or the equivalent but
the ratio is independent of this volume. In fact, if one
uses the diagram language one finds that the volume-
dependent terms arise from diagrams with disconnected
vacuum parts. One can show that one obtains the cor-
rect ratio (49) or (50) if one omits all such diagrams in
the numerator and drops the denominator at the same
time.*

We still want to describe a perturbation scheme for
the n-functional which is defined by E(f)=expn(f).
This scheme has the advantage that no volume-
dependent terms arise at any stage of the calculation.
From (49) follows

010
—;j;=.e-w<f> eXPEZA’(~i6/6f)]%

Xexp[ —2A’(—8/8f)Jen.  (52)

Equation (52) yields a perturbation series for the -
functions in a straightforward manner,

0
N=2_ N,
n=0
where 7, is determined by the recursion formula

Mn
—=—¢™ [2A" 60, 1/6f]
5f v/of

1
+; [2A,[ 2 6np—o/8f 114 - - }e"“. (53)

One observes that there exists an exact formal
analogy between the problem discussed in this section,
namely the computation of E(f) from A, and the
problem of computing the vacuum expectation values
of time-ordered products in a local field theory from
the Hamiltonian. Let x now be a space-time point and
consider field equations of the form

(O—m?) p(x)=—bL"/dp(x)

£’ is the interaction part of the action integral. Further-
more let 7(f) be the generating functional of the system
of r-functions defined by

T(f) =% ir(nl) f ) f)
(54)

X7 (210« 2,) %1+ + A%y,
T(@1e n) = (o, TLe(21) - - - o(2x) T¥0),

where T is the time-ordering symbol. Then the formulas
of this section may be literally transcribed according to
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the key
space <> space-time,
E(f) o 7(f),
—2N g,
—2A 18, (55)

1
o= f o(2) (O —m) o (2)dia+ £
2

In this manner (37) goes over into a certain version of
the Feynman integral?; the counterparts of (49) and
the perturbation scheme derived from it are well
known.®® In spite of this exact formal correspondence
there is a decisive difference between the 3-dimensional
and the 4-dimensional formalisms. It can be seen from
the fact that in the first case the integrands of the func-
tional integrals have the damping factor exp(—2A)
while in the second case there is an oscillating factor
instead. Again, if one uses the 4-dimensional formalism
to calculate the equal-time vacuum expectation values,
the perturbation series proceeds according to powers of
HT whereas in the 3-dimensional formalism this calcula-
tion is broken up into the two steps H — A and A — E.
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APPENDIX I. MATHEMATICAL SUPPLEMENT

We want to give here a precise mathematical formula-
tion of the basic assumption (ii) of Sec. II and of some
of its consequences. Let us consider the set {4} of
operators which are of the form

N
4 =Z ciU(ff);

=1

1.1

where N, ¢;, f; are arbitrary. [{4} contains all linear
combinations of a finite number of U(f;).] We denote
the von Neumann ring which is generated by these
operators by . U consists of all bounded operators in
the representation space which either belong to {4} or
are strong limits of sequences in {A4}. The precise for-
mulation of our assumption (ii) then is that

AV=D (1.2)

2 R. P. Feynman, thesis, Princeton, 1942 (unpublished); Revs.
Modern Phys. 20, 367 (1948); J. G. Polkinhorne, Proc. Roy. Soc.
(London) A230, 272 (1955); P. T. Mathews and A. Salam, Nuovo
cimento 2, 120 (1955); J. Klauder, thesis, Princeton, 1959
(unpublished).

13 M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951);
F. Coester, Phys. Rev. 95, 1318 (1954); J. G. Valatin, Proc. Roy.
Soc. (London) 229, 221 (1955).
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is a dense set of vectors in the representation space. In
standard terminology this is expressed as: ¥ is a cyclic
vector with respect to the ring U.

The following two statements are consequences:

(1) If an operator B commutes with 9 and annihilates
the vacuum then B=0. [Compare (5), Sec. I1.]

(2) U is maximal abelian, i.e., every bounded opera-
tor which commutes with 9 belongs to . The first
statement is easily proved by

BO=BAY¥=AB¥,=0.

The proof of the second statement has been given by
Segal.™* Conversely : If one applies the spectral theorem
to the abelian ring 9 one obtains a decomposition of the
space into a direct integral

o= [omam), (L3)

such that every operator of the ring acts as a multiple
of the identity in each M. If the ring is maximal
abelian then the §® are one-dimensional. In that case
every vector which has nonvanishing components in
(almost) all Y is a cyclic vector with respect to .
Therefore assumption ii) can be replaced by the re-
quirements that 9 be maximal abelian and that the
vacuum state shall have nonvanishing components
almost everywhere in the spectral decomposition.

For Eq. (9) in Sec. II the distinction between
vanishing “almost nowhere” and vanishing “nowhere”
becomes important. Take the example of the single
harmonic oscillator. The excited states as well as the
ground state are cyclic vectors since the nodes are
isolated points which have measure zero. We can there-
fore go through the argument leading to (9) taking for
¥, the first excited oscillator state. The zero of the
energy scale must, of course, be correspondingly ad-
justed, i.e., we should put then

H=3p+¢)—3. (1.4)
Arguing as in Sec. IT we obtain
A=2"¥p—iL), At=2"}(p+iL), (L3)
L=g—q? H=A%4. ’

The appearance of (I.5) seems in contradiction to the
fact that H now has a negative eigenvalue. This ap-
parent paradox is explained as follows: although AT is
formally the Hermitian conjugate of 4 it is not a proper
adjoint because of the singular character of L.15

APPENDIX II. THE LINKED CLUSTER THEOREM

In statistical mechanics and in quantum field theory
one is frequently dealing with hierarchies of the func-

tions g, (#1- - -&,) which have the following asymptotic

141, E. Segal, Mem. Am. Math. Soc. 9, 65 (1951).
156 We are indebted to V. Bargman and H. Araki for a clarifica-
tion of this point.
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property : If we divide the points ;- - - &, in an arbitrary
fashion into m clusters of k- - - k. points, respectively,
and denote the points in the ith cluster by ;- - - xik;
then, as we increase the separation between the dif-
ferent clusters

g,,(xl- . -x,,) i gk1(x11- . -x1k1)gk2(x21- . 'x2k2) e

X gl (my -« + omber).  (IL.1)

The physical meaning of (II.1) is simple. If the func-
tions can be interpreted as probability distributions
then (II.1) states that all correlations decrease with
increasing separation in space and that one obtains
statistical independence in the limit of infinite separa-
tion. We shall call here a system of functions with the
asymptotic property (II.1) for short a g-system. Ex-
amples: Let ¥ be an arbitrary normalized physical
state in one of our models. The two most frequently
used ways to represent ¥ are (a) by the set of Fock-
space amplitudes and (b) by the set of “covariant wave
functions.” The former are defined by

Ca(®r - 2a) =N"YQo|a (1) - - - a(xn) | T).

In (I1.2) Qo is the “unperturbed vacuum,” a(xx) are
“bare particle destruction operators” and N is a nor-
malization factor which depends exponentially on the
total volume and is introduced to make the amplitudes
finite in the case of infinite volume. The covariant wave
functions are defined by

@n(@1ex0) =(Wo| @(x1) - - (%) | ).

Both sets of functions are g-systems. The reason for
this may be seen most simply in the terminology of
Eq. (20) of Sec. II. Since both the actual Hamiltonian
and the unperturbed Hamiltonian are approximately
decomposed in the form (20), the projection operators
on the true and on the unperturbed vacuum are both
approximately products of projections which belong
to Ri. Secondly, every normalizable physical state be-
comes equivalent to the true vacuum in the asymptotic
regions of space. Finally, the bare particle annihilation
operators a(x) are ‘“almost local” in the sense used
by Haag.®

The following theorems are useful in dealing with
g-systems.

(IL.2)

(IL.3)

(1) Truncated functions. One introduces the system
of functions s, (x1° - - 2,)

gi(x)=s1(x),
g2 (xl,xz) = Sz(x1,x2) +31(x1)81(x2)
gs (x1x0x3) = 53 (21200%5) 51 (21) S 2 (2 2263)

+51(22)s2(w15) +51(%5) 52 (w12)

+S1(x1>31(x2)31(x3), (II4)

gn(@1 - xn) =2 Sk1(X11° + *X1k1) * * * Sk (Xm1® * * Bmkeyy).

16 R. Haag, Phys. Rev. 112, 669 (1958).

F. COESTER AND R. HAAG

Let us call R, the radius of the smallest sphere enclosing
the points #;---x,. Then (IL.1) is equivalent to the
statement

Sa(®1: - %,) >0 for R,— . (ILS5)

We call (IT.4) the “Ursell expansion” or “linked cluster
expansion.”?

(2) Genmerating functionals. For the following it is
convenient to define the constants go=1 and so=0.
Then to any system of functions we define a generating
functional by

G()=X (n) f g+ -0a)

X f(#1,- « - f(@n)dx1- - - dity.

For a gsystem the asymptotic property (II.1) is
equivalent to

(I1.6)

G(fitf2) — G(f)G(f2)

if the separation between the supports of the two test
functions f1 and fj is increased towards infinity. On the
other hand, for a system of truncated functions the
equivalent of (ILS) is

S(frt+f2) = SU)+S(f2). (IL.8)

The Ursell expansion corresponds to the functional

relationship
G(f)=expS(f).

For formal calculations it is often useful to insert in
(IL6) instead of the ¢-number test function f(z) a set
of formal creation operators a(x) as in (50), (51). G and
S are then operators in a Fock space and the functions
may be obtained from the generating operators by

gn(®1* %) ={Qo]a(x1) - - - a(w,)G(ah) |Q0),
su(@1e &) =(Qo| a(21) - - - a(x2)S (a?) | Qo).

(3) Corollary. For f(x)=1 we get from (IL.9) the
identity

(I1.7)

(IL.9)

(IL.10)

H_zn: (nl)‘lf“'fgn(xr cx,)dwy - - - da,

=exp[z,, (n!)—lf - ~fs,,(x1- < xp)dxy- - -dxn].

(I1.11)

If the s, are translationally invariant functions satisfy-
ing Eq. (ILS5) then Jf-:-fs,(#1 - 2n)dxs- - -de, is
proportional to the volume V for large V. In that case
the left-hand side of (II.11) becomes therefore equal to
expcV, where ¢ is independent of V. Since the nor-

"H. P. Ursell, Proc. Cambridge Phil. Soc. 23, 685 (1927);
J. E. Mayer, J. Chem. Phys. 5, 67 (1937); B. Kahn and G. E.
Uhlenbeck, Physica 5, 399 (1938).
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malization factor in (IL.2) is given by
N=1+43%, (n!)‘lf- . f | gn (21 + - %0) | 2d21 + - dtn,

and |g.|? is also a “g-system,” the volume-dependence
of N is exponential. (See also reference 4.)

APPENDIX III. VARIATIONAL APPROXIMATION
FOR A

We want to find the best bilinear approximation for
A. Let us define “best” as that expression which gives
the lowest expectation value for H. Consider the mode]

1 1
H =5f1r(x)2d3x+§fh<2) (xlxg) (p(x]_) go(xz)d3x1d3x2

+(1/4!)fh<4)(x1- - xg) o(%1) - - o(w4)

X« -dixq.  (I11.1)

[Compare (3) and (4a).] For bilinear A we evaluate
easily the expectation value of (ITII.1) using for in-
stance (7), (8), (31) and (46):

(¢o,00)~* (0, Hebo)
1 1
=Zf)\ (xlx)d“x—l-z f A (2,2 )\ (o x)d3x' d3x

+(32) f 5O (21 - 2N ()N ()
Xy - dy. (IIL2)

It is convenient to introduce the reciprocal of the
Fourier transform of A(x,y) as the unknown. Therefore
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we put

A(w,y)=(2m)~? (II1.3)

p(p)™ expip(x—y)d*p.

Furthermore, let 2®(p) be the Fourier transform of
h? (x,9) and

K(p,9)=(2m)~* f RO (£n,0)e i PO BEPnde,  (I11.4)

where £=x1—x, n=xy—1x;, {=x3—x, then (IIL.2)
becomes

2PV (gogn) G ion) = [ [o(p) 10 DB} 1%
1
+ [ K ontparsr. L

V is the total volume of space to which (¢o,H¢o) must,
of course, be proportional. To make (IIL.5) an ex-
tremum p must satisfy the integral equation

1
p(O72 = () f K(pgo(g)dg.  (IIL6)

We remark that in the case of the local field theory
@), @
A = pfm?,

B® (E0,8) =go(2m)% (D8 ()5 (5),
k (P:Q) = go-

In this case (IIL.6) is solvable and leads just to an
infinite mass shift,

p(p)=(*+M*)*

w=mtig [ Hamap. ()



