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Upper Bounds on Scattering Lengths for Compound Systems:
n-D Quartet Scattering*t
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In the zero-energy scattering of a particle by a compound system under the conditions that (1) only one
exit channel is open (elastic scattering) and (2) no composite bound state exists for the particle and the
scattering system in the state of given total angular momentum, the Kohn variational principle gives an
upper bound on the scattering length. This is one of several results given previously for the case of scattering
by a center of force which may be taken over directly, provided conditions (1) and (2) are satisfied. As a
particular application of these results, several previous calculations of the n-D quartet scattering length, A g,
based on the Kohn principle (the method of Verde and the static approximation of Buckingham and Massey
are included) are reanalyzed using the rigorous criterion that the best result is the one giving the lowest
value. Further, some calculations of Ag based on the Rubinow formulation, which do not necessarily
provide a bound, are converted to the Kohn form, thereby obtaining, in addition to a bound, an improved
approximation to the scattering length. Some limitations and possible extensions of the method are discussed.

I. INTRODUCTION
' 'N a previous paper, ' to be referred to in the following
~ - as I, it was shown that for the zero energy, zero
orbital angular momentum scattering of a particle by a
center of force, the Kohn variational principle gives an
upper bound on the scattering length provided no
bound state of zero orbital angular momentum exists.
We now wish to present the appropriate generalization
of this result to the case in which the scatterer is a
compound system. The knowledge that a variational
calculation gives a bound is considerably more useful
in the many-body problem where it is more difficult to
choose a good trial function. In fact, results obtained
from different trial functions may vary over so wide a
range that practically no information is gained from
the calculations unless one has a reliable criterion to
enable one to choose the "best" among a set of results.
This point is illustrated by an example given previously
for the e+B problem' in which two trial functions, each
containing dependence on all the relevant coordinates,
and each containing three linear variational parameters
gave qualitatively different results, one showing an
eftective attraction between the positron and hydrogen
atom and the other an effective repulsion.

The proof that the Kohn principle gives an upper
bound on the scattering length is presented in Sec. II.
In its essential points the argument follows rather
closely the one given in I for the one-body problem.
The proof is valid under the following conditions:

(1) Elastic scattering, including Pauli exchange, is

*The research reported in this article was done at the Institute
of Mathematical Sciences, New York University, under the
sponsorship of both the Geophysics Research Directorate of the
Air Force Cambridge Research Center, Air Research and Develop-
ment Command, and the Ofhce of Ordnance Research, U. S.Army.

t A preliminary report was given at the Washington Meeting
of the American Physical Society in April, 1959 [Bull. Am. Phys.
Soc. 4, 243 (1959)g.

1L. Spruch and L. Rosenberg, Phys. Rev. 116, 1033 (1959)
(to be referred to as I).' L. Spruch and L. Rosenberg, Phys. Rev. 117, 143 (1959).

the only process which is allowed on the basis of con-
servation of energy, angular momentum, parity, and
any other conservation law which can be taken to be
valid. Since, as will be seen, at zero energy only one
exit channel is then open, the zero energy scattering is
completely characterized by a single real parameter,
the scattering length. (For the present we restrict
ourselves to the case for which the scattered particle
and the scattering system do not both carry a net
charge. )

(2) No composite bound state exists for the particle
and scattering system in the state of given total angular
momentum, parity, and any other quantum number
that can be assumed to be conserved. For example, in
the scattering of a spin —, particle from a system of
angular momentum I, where the total angular mo-
mentum can take the values J=J+-,' (J=-', for I=O),
if a composite bound state exists for one of these values
of J then the scattering state with that value of J is
excluded from our present considerations. The condition
that no composite bound state should exist is listed
separately even though the existence of a bound state,
which in turn implies the possibility of the radiative
capture process, is excluded by condition (1).However,
both conditions are required if the proof is to be applied
in a problem in which the interaction with the radiation
field is ignored. This approximation is often made, for
example, for the problem of low-energy e-D scattering
so that a real scattering length may be defined for each
J value. Thus, according to condition (2), the Kohn
principle provides a bound on the quartet scattering

length; when applied to the doublet case it need not
give a bound.

The proof, in Sec. II, is presented in terms of neutron

scattering by a nucleus. It is clear, however, that
applications can be made in problems of electron or
positron scattering by neutral atoms as well. (While
Coulomb forces are present in this type of problem the
effective interaction between the scattered particle and

1095



i096 L. SPRUCH AN D L. ROSEN BERG

the scattering system falls o6 sufficiently rapidly so
that a phase shift can be defined. ) The e+H calculation
referred to earlier is in fact one such application. The
fact that the Kohn variational principle gave a bound
was justified there' on the basis of the Kato method.
The desirability of giving a proof which is independent
of the Kato method is discussed in I.'

In Sec. III the particular case of quartet scattering
of neutrons by deuterons is considered. Here we re-
analyze some previous variational calculations with the
aid of the rigorous criterion that the best result is the
one which gives the lowest value for the scattering
length. Since the method of Verde4 as well as that of
Buckingham and Massey, ' who derive an equivalent
one-body formulation, can be obtained from the Kohn
principle (see Appendix), calculations based on these
methods are included in the analysis. Further, we find
that results obtained using the Rubinow formulation'7
are improved when converted to the Kohn form. This
is generally to be expected when, in addition to the
conditions under which the Kohn principle gives a
bound, the scattering length is positive and the trial
function is sufficiently accurate such that third order
terms can be neglecteds (see I).

In Sec. IV some limitations and possible extensions
of the method are discussed.

II. GENERAL FORMULATION

We consider the scattering of a neutron from a
nucleus of angular momentum I, consisting of Z protons
and N neutrons. The total system is assumed to satisfy
the properties outlined in Sec. I. To prove that the
Kohn variational principle provides an upper bound
on the scattering length we begin by deriving the
generalization of the Kato identity' for this system;
this will be done for arbitrary scattering energy. The
wave function, 4, satisfies the equation

—(2p/fi') (T+V E)%=A@=0, — —

where

4'z+ir+i=4'z+iv+r(1, . , Z; Z+1, , Z+N, Z+N+1)

is taken to be antisymmetric in the coordinates (space
and spin) of the Z protons, and in the coordinates of
the neutrons labelled by Z+1 through Z+N. (Here
and in the following P, will be understood to represent
a summation over the indices Z+1 through Z+N+1 ).
The set of functions P;, Z+1&i&Z+N, is defined in
terms of gz+&+i by the rule that it; may be obtained
from it;+i by interchanging the coordinates of neutrons i
and i+1. While fz+&~t is not uniquely defined by a
knowledge of 4' and by Eq. (2.1) (a function, APz+zr+i,
may be added to ifz+zr+i without changing + provided
P; (—1)'6$,=0), its asymptotic form is, and that is
all that will be relevant for our purposes. Now let

F;=F,(1, , Z; Z+1, , i 1, i+1—, , Z+N+1)

be the wave function of the unperturbed nucleus (con-
sisting of all the N+Z+1 particles except neutron i) in
its ground state, with energy E, ; F; is normalized to
unity. The total energy, 8, may be expressed as

E=Eg+ (fi'/2ii) k',

where Ak is the relative momentum of the incoming
neutron with respect to the nucleus. The asymptotic
form of f, will be different for different values of the
total angular momentum, J, and its z projection, J,.
For simplicity it will be assumed in the following that
I=I,=I+,', but t'he formal -results of this section may
be readily obtained for the other possible values of J
and J, as well. Thus, with q; defined as the distance of
neutron s from the center of mass of the other Z+N
particles, r defined as the distance between particles
m and I, and xes, (s) the spin function of neutron i,
the asymptotic form of it;, for Z+1(i(Z+N+1, may
be written as

where T and V are the total kinetic and potential
energy operators, respectively. 8 is the total energy of
the system and p is the reduced mass of one neutron
with respect to the rest of the system. The wave func-
tion may be represented as

iP; —& Dx;;(s)F; sin(kq;+r))/Lq; sin(rl —0)7,

for g'~
f,—&0, for r „&~, m—, rsWi (2.2)

(2.1)

3 The point is that in the present method of proof no connection
between the zero energy phase shift and the number of bound
states (a generalization oi Levinson's theorem) need be assumed.
Further, the effects of the Pauli principle are taken into account
in a simple way.' M. Verde, Helv. Phys. Acta 22, 339 (1949).

5 R. A. Buckingham and H. S. W. Massey, Proc. Roy. Soc.
(London) A179, 123 (1941).

6 S. I. Rubinow, Phys. Rev. 98, 183 (1955).
r L. Sartori and S. I. Rubinow, Phys. Rev. 112, 214 (1958).

More precisely, in order that conversion from the Rubinow
to the Kohn form give an improved result it is sufhcient that
(in the notation of I) A ~ be positive and ) (A ~1'I~XI~dr)

~
be small

compared to unity. We note that these conditions may be satisfied
even for an inaccurate trial function.' T. Kato, Progr. Theoret. Phys. (Kyoto) 6, 394 (1951).

Here p is the phase shift, 8 is an arbitrary normalization
parameter, and D is an arbitrary parameter to be
chosen later for convenience. A trial function, +~, is
now defined, satisfying the same type of boundary
conditions as 0', with g~ replacing the true phase
shift, q. The expression,

with J'dr understood to represent an integration over
configuration space as well as a summation over spin
indices, may be evaluated in two ways. On the one
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hand, since AC =0, we have

E=—I %*M,dr

On the other hand we have

E=—(2p/5') I (+ *X%' +*T—%;)dr.

&= —(»/&') 2 (0'~*T4' 0'*Tk'~—)dr

= —(2p/5') (1V+1) (P, ,*TP; P;*TP;—g) dr,

where j is any one of the 1V+1 indices which label the
neutrons. Now T may be written

T= —(A'/2p) V';2+ t (2.3)

where t contains no derivatives with respect to q;
(Vt2 is the operator with respect to q;). Therefore, with
this form for T, and with the aid of the boundary
conditions on P; and f;~, we obtain

This may be simpli6ed by introducing the representa-
tion, Eq. (2.1), for 4 (and the analogous one for 4&)
and recognizing that because of the boundary condi-
tions, Eq. (2.2), T is Hermitian when between functions

f, and P;~, with iW j (since then there exists no surface
at inanity on which both f, and |t;& are nonvanishing).
We therefore obtain

For X)0, Q(X) is quadratically integrable. From the
fact that no composite bound state exists we conclude
that

M(X)=—I Q*(X)~Q(X)d«O, X&O.

To establish the continuity of M(X) at X=0 we examine

M(X) —M(0) = [exp( —2XP, q;) —17Q*AQdr

+ (/+1)V I Ql
' exp( —2XP, q;)dr

—(x+1)n I (q,Q*) (q,Q)
aq,

)&exp{—2XQ; q, )dr/q, (2.5)

where again the index j labels any one of the neutrons.
In evaluating the commutator of A with each of the
factors exp( —Xq;), to arrive at Eq. (2.5), the repre-
sentation for T given in Eq. (2.3) has been used. The
right-hand side of Eq. (2.5) may be shown to be
vanishingly small, in absolute magnitude, in the limit
as ) ~0. It is useful, in checking this, to recognize
that with Q;=P;~ f,, and Q=—P, (—1)'Q; we have

IQ;I' exp( —2XP;. q;.)dr+R

E= (1l1'+1) (f )*V"P—P *V"f g)dr

=D'(X+1)[0 cot(g —0)—k cot(rt~ —0)7.

Here use has been made of the fact that P, is normalized
to unity. We choose D'= (%+1) ', and equate the two
forms for E to obtain the identity

I

0 cot(g —8) =k cot(g~ 8) —4'~*A—@&dr

Q*t Qdr, (2.4)

where 0 is dehned as

0=+)—%.

It now remains to show that for k=0, and 0&0, the
second order term, J'Q*AQdr, is nonpositive. (The
specification of 840 corresponds to choosing the appro-
priate generalization of the boundary conditions, Eqs.
(2.5), of I.) In analogy with the presentation given in I
for the static problem we define

Q(X) =Q exp( —XP, q;).

= PV+1) IQ;I' exp( —2ZP,' q, )dr+Z,

where R is an integral which results from the cross
terms and therefore remains finite as ) —+ 0. A similar
decomposition may be made for the third integral in
Eq. (2.5). The proof then proceeds just as it did in the
treatment of the static problem. Here 0; satisfies the
boundary conditions

q,Q;~ constX;;(j)F;, for q; —+ ~
0;~0, for r „~~, m, eQj.

For completeness it is noted that the Rubinow formu-
lation, as applied to quartet m-D scattering, ~ may be
derived from the Kato variational principle, which in
turn follows from Eq. (2.4) upon dropping the second
order term, fQ*hQdr. With 8=0, an in.side wave
function is introduced and the variationally determined
value of the parameter k coty& is inserted. Identification
with the form given in reference 7 may then be made.
This is straightforward and the details are omitted
here. We note that the analogous identification has
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previously been made by Kato" for the case of scatter-
ing by a static potential.

IIL THE n-D QUARTET SCATTERING LENGTH

The experiments on low-energy e-D scattering are
consistent with the assumption of either of two sets
of scattering lengths, for the quartet (A@) and doublet
(Ar&) states, respectively. They are"

A g= 6.4f, Ag) =0.7f; Set I
A @=2.6f, AD= 8.3f; Set II.

Thus a determination of one of the scattering lengths
leads to a determination of the other. However, since
almost all m-D calculations to date have ignored the
presence of the tensor force and the repulsive core, such
calculations provide more information about the ability
of the assumed potentials to represent the true poten-
tials than about the true scattering lengths. (We note
that a calculation has been performed recently, by
Delves and Brown, "in which the tensor force, though
not the repulsive core, was taken into account. The
authors come to the conclusion that Set II is correct.
However, as the authors themselves point out, the
theory has been rather severely simplified and it appears
to the present authors that their conclusions must
remain tentative. ) Therefore our main concern here is
with the reliability of the calculations for an assumed
set of potentials rather than with a determination of
which set of scattering lengths is the correct one. Our
viewpoint in this regard is the same as that expressed
by Sartori and Rubinow. v Of course the effects of the
tensor force and repulsive core are included to some
extent since the strengths of the assumed central
potentials are adjusted to match the experimental two-
body data. We shall in fact assume in the following
that these eQ'ective central potentials are sufficiently
realistic so that they introduce no spurious composite
bound states for H3 with J=~. This is almost surely
true in all cases of interest. It may well be that the
eGective central potentials do give reliable results, but
from the point of view of the present investigation the
point is that one cannot now rigorously prove this.
(Though it will not be our present concern, it might be
noted that if the correct potential were known, and
used in a calculation which provided an upper bound
on Ag, a bound lying below 6.4f would prove that
Set II is correct. One could not, in this way, prove that
Set I is correct. )

According to the conditions outlined in Sec. I, and
the proof given io Sec. II, it follows that a calculation of

the quartet scattering length, Aq, using the Kohn
variational principle, will provide an upper bound
on Ao. (We are here ignoring the radiative capture
process. As mentioned in Sec. I, the Kohn principle
need not lead to a bound on AD since the e-D system
can be bound in the doublet state. ) Now a sizable
number of calculations of Ag have appeared in the
literature. It is then of interest to determine how the
methods used are related to the Kohn principle, and to
reanalyze the calculations accordingly.

To begin with, we consider some calculations which
do not take into account specific polarization. This
means that apart from the effect of the Pauli principle
the deuteron is assumed to be unperturbed in the
scattering process. With xg representing one of the
quartet spin functions (all four of which are of course
totally symmetric in the spin coordinates) the wave
function may be written, in this approximation,

+=x.L~(»; 3)-~(»; 2)3,
where

P(12; 3)= 2—IR(ris) f(it&)/q&. (3.2)

(3.1)

Here R(rts) is the exact deuteron wave function and

f(gs) is a function, satisfying the proper boundary
conditions, of the position of the scattered neutron
with respect to the center of mass of the deuteron.
From the assumed form of the wave function, Eqs. (3.1),
and (3.2), Buckingham and Massey have defined an
effective one-body problem, described by an integro-
diGerential equation" which we write symbolically as

Z,f(qs) =0 (3 3)

(The subscript s is used to denote the static approxi-
mation. ) At zero energy the exact solution of Eq. (3.3)
is characterized by a scattering length, Ag, . On the
other hand, a function of the form given by Eqs. (3.1)
and (3.2) may be used as a trial function in a vari-
ational calculation. If the Kohn principle is employed
it may be shown (see Appendix) that the approximate
scattering length thus determined must be greater than
or equal to A g„ the equality obtaining only if the trial
function is constructed using the exact solution of
Eq. (3.3). Therefore A 9, represents an upper bound on
the true scattering length, A q.

While Eq. (3.3) is arrived at by making an approxi-
mation in the formalism (i.e., the no polarization
approximation) it may now be solved numerically,
leading to an exact determination of A @,. Values of A @,
for the ordinary, Serber, and symmetric force mixtures,
and a variety of potential ranges, have been calculated
by Burke and Robertson. "To check the relative merits

io T. Kato, Phys. Rev. 80, 475 (1950).'i D. G. Hurst and J. Alcock, Can. J. Phys. 29, 36 (1951);
Wollan, Shull, and Koehler, Phys. Rev. 83, 700 (1951)."L.M. Delves and D. Brown, Nuclear Phys. 11, 432 (1959).
We note that an investigation of high energy m-D scattering, using
the Born approximation, has been performed in which tensor
forces were included PB. H. Bransden, Proc. Roy. Soc. (London)
A209, 380 (1951)g.

"See Eq. (36) of footnote 5."P.G. Burke and H. H. Robertson, Proc. Phys. Soc. (London)
70, 777 (1957).The work here was carried out with potentials of
Gaussian radial dependence. For a recent extension to the Yukawa
interaction see F. A. Haas and H. H. Robertson, Proc. Phys. Soc.
(London) 73, 160 (1959). See also P. G. Burke and F. A. Haas,
Proc. Roy. Soc. (London) A252, 177 (1959), where polarization
e8ects are included.
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of the Kohn and Hulthen methods, Burke and Robert-
son performed no polarization variational calculations,
using diGerent sets of exponential variational param-
eters, for several small (but nonzero) values of the
scattering energy. (The symmetric force mixture was
used. ) In all those calculations for which the plot of
k coty es k' is very nearly a straight line the extrapola-
tion back to zero energy of the quartet results leads to
approximations to the scattering length which we find
to lie above A @„asthey must by the arguments given
above. For the one trial function (corresponding, in
their notation, to v=0.07&&10" cm ') which leads to
values of k cotp showing the proper energy dependence
for both the Hulthen and Kohn methods, the latter
provid. es a better extrapolated result. This is also con-
sistent with our previous statements (see I).The results
of the Hulthen, Kohn, and exact calculations are 5.6f,
5.4f, and 5.24f, in that order.

As a further check it is noted that Christian and
Gammel" have also determined Aq, exactly, for the
Serber force, basing their calculation on the variational
principle given by Verde. ' The value" differs from the
corresponding value obtained by Burke and Robertson
by a fraction of a percent (see Table I). Of course exact
agreement should not be expected since different deu-
teron wave functions were used in the two calculations,
and since the "exact" solutions of the approximate
one-body equations involve the replacement of diGer-
ential equations by difference equations.

'An earlier application of the Verde principle was
made by Troesch and Verde, " who ignored specific
polarization. Their variational results are in agreement
with the second set of scattering lengths quoted above.
Even if the assumed central potentials do provide
accurate compensation for the effects of the tensor
force and repulsive core this should still not be taken
as evidence that Set II is the correct one. The reason
for this is that their variational result for the quartet
scattering length lies considerably below the corre-
sponding value of A @, determined exactly by Burke
and Robertson, and we have shown that it cannot lie
below. The value obtained by Kohn" in a no polariza-
tion variational calculation also lies below the exact
value. The explanation for these results, the only ones
that we have found for which a bound is violated, is

very likely the fact that a relatively crude deuteron
function, namely a single Gaussian, is used in both the
Kohn calculation and that of Troesch and Verde.
(Burke and Robertson, and Christian and Gammel use
two and three Gaussians, respectively, to represent the

"R. S. Christian and J. L. Gammel, Phys. Rev. 91, 100 (1953).
"We refer to the result corresponding to Eq. (44') in refer-

ence 15. Actually, two other results are presented for the Serber
force; the three values would be identical if the correct deuteron
wave function were used. The other two results are not considered
here for reasons discussed by Sartori and Rubinow (see foot-
note 7).

'r A. Troesch and M. Verde, Helv. Phys. Acta 24, 39 (1951).
's W. Kohn, Phys. Rev. 74, 1763 (1948).

deuteron wave function. ) That Kohn obtains a reason-
ably accurate result, in spite of the crudity of his
deuteron function, is presumably accidental, as he
himself points out. The considerable sensitivity of
variational results to the assumed form of the deu-
teron wave function, even for one consisting of three
Gaussians, has been discussed and illustrated by Sartori
and Rubinow. On the other hand, as we have already
noted, the values of Aq, calculated by Burke and
Robertson, and by Christian and Gammel, who used
diferent deuteron functions, are practically identical.
It seems possible tha, t the error introduced in using an
inaccurate deuteron function is significantly magnified
by the inaccuracies in the scattering trial function.
(It should be stated that since none of the calculations
involve the use of the correct deuteron function,
comp/e1e rigor cannot be claimed for any of the bounds
quoted here. )

It was shown in I, for the one-body case, how one
couM convert results obtained using the Rubinow
principle to the Kohn form, No new calculations need
be performed provided one knows the values of the
integrals A ~, 8, and C defined in I.Sartori and Rubinow
have generalized the Rubinow formulation from the
static case to the three-body problem and applied it to
zero energy neutron-deuteron scattering. r (This was
also done, independently, by Efimov. ") They have (by
private communication) kindly made available to us
the numerical values of the integrals correspond. ing, in
this generalized form, 'to the expressions A~, 8, and C
for some of their calculations using the ordinary (WB)
force mixture. The results obtained for the Rubinow
form, " and Kohn results derived from them, appear
in Table I. The rather large diGerence between the
results of the two variational principles, with no specific
polariza, tion, indicates that the trial function can be
improved, without introducing polarization. This is
verified by observing the corresponding value of Aq,
(for the ordinary force mixture) obtained by Burke
and Robertson.

Sartori and Rubinow also performed calculations
using a trial function which allowed for specific polar-
ization. This function, a generalization of the trial
function used in the no polarization calculation, con-
tained two free exponential parameters which were
chosen to give an extremum. Again, conversion to the
Kohn form leads to an improved approximation, as well

as a bound on Aq. While it is true that the Kohn
polarization result (column V in Table I) represents an

improvement over the Kohn no polarization value for
the same potential (column II) this is not a necessary

consequence of the fact that the Kohn principle is here

"Y.N. E6mov, J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 137
(1958) [translation: Soviet Phys. JETP 35(8), 98 (1959)j.

~0Two variational principles are given in reference 7, which
would yield the same results if the correct deuteron wave function
were used. Only the results obtained using one of them (referred
to in reference 7 as variational principle 8) are considered here.
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TABLE I.A summary (by no means exhaustive) and an analysis
thereof of calculations of the n-D quartet scattering length. In
all cases the interparticle potentials were of the form V;;(r;;)
=Vs exp( —r;; jb )Lrc+mP;;+bQ;;+hP;, Q;; j where Q;; and F;;
represent spin and space exchange operators, respectively. The
symbols WB, S, and SYM stand for ordinary, Serber, and sym-
metric force mixtures, respectively. The potential range, b, and
the scattering lengths are expressed in units of 10 "cm. According
to the analysis given in the text the results for a given potential
should satisfy the relations II&III&A@ and V)Aq. For a
sufficiently accurate trial function (see footnote 8) one should also
And I)II, and III)IVVV. Here I, II, etc., represent the values
which appear in those columns for a particular row. There are
values in the literature which do not agree with the erst mentioned
set of inequalities. Ke give one example, placed in parentheses.
It is assumed that the explanation for this disagreement lies in
the fact that deuteron wave functions were used which were not
sufficiently accurate.

Potential
Type Range

No polarization approximation
variational principle

Rubinow Kohn "Exact"
I II III

Polarization
considered
variational
principle

Rubinow Kohn
IV V

SYM 1.29
S 1.33
WB 1.33
WB 1.9

7.5b
6 9d

5.4a
~ ~ 4

5.8e
(2.8)'

5.24a
5.33,e 5.32a
5.26a

9a

3b ~ ~ ~

6.5d 5 7e

& Footnote 14. Each of these values represents the result of an extrapola-
tion to zero energy.

b Footnote 19.A rearrangement of the data used in obtaining this value
would enable one to fill in the dashed portion in the column to the right.

& Footnote 15.
d Footnote 7.
e Calculated by present authors from the data which was used by Sartori

and Rubinow in obtaining the number in the column to the left.
' Footnote 17.

a minimum principle since a variational determination
of the parameters in the trial. function, using the
Rubinow form, will not generally yield the optimum
set (i.e., that which gives a minimum) in the Kohn
form. (However, as pointed out in I, conversion from
the Rubinow to the Kohn form does give a result which
corresponds to the optimum choice of one of the vari-
ational parameters, namely the trial scattering length. )

Additional numerical results, based on the present
work, have been recorded by Rubinow and Sartori. "

IV. DISCUSSION

It is found that the results which are summarized in
Section IV of I, presented there in terms of the problem
of scattering by a center of force, are valid in the wider
class of problems in which the scatterer may be a
compound system, provided the conditions which are
outlined in Sec. I of the present paper are satisfied. In
addition to the e-D quartet system discussed in Sec. III,
the results may be applied, for example, to zero energy
n-H' scattering for both the singlet and triplet states,
as well as to e-n scattering. On the other hand, the
e-He' problem cannot be treated by the present
methods. A bound state with J=O (He') exists which is
sufhcient to exclude the singlet scattering state from
the present type of treatment. Even if a bound state
did not exist, however, the fact that in addition to

I S. I. Rubinow and L. Sartori, Proceedings of the International
Conference on XNclear Forces and the Fm Nucleon Problems,
Lottdort, Jgfy, 1959 LPergamon Press (to be published) j.

elastic scattering the reaction st+He'~ p+H' can
take place means that the zero energy scattering
carrot be completely characterized by a real scattering
length, for either the J=O or J=i states.

The method can be extended to take into account the
eGect of a Coulomb Geld" so that the case of proton
scattering from nuclei, as well as electron or positron
scattering from atomic ions, or from nuclei, may be
included. For example, one could, in this way, study
zero energy p-p, p-cr, p-He' (both spin states), as well

as quartet p Dand -triplet p-H' scattering (provided the
radiative capture process is ignored). The doublet p D-
and the singlet p-H' states would be excluded from the
present type of analysis due to the existence of the
bound systems, He' and He4, respectively. Note that
in the J=2 scattering of protons by Li7, while the
reaction p+ Li' +ct-+n is not excluded on the basis of
conservation of energy and angular momentum, it is
forbidden by the assumed conservation of parity for
strong interactions, leaving only one exit channel open,
if we ignore the possibility of gamma emission. (For
J= 1 the reaction p+Lir —+ u+rr is forbidden by angular
momentum conservation. )

In the preceding discussion it has been assumed that
the orbital angular momentum, L, of the scattered
particle relative to the scattering system is zero before
the reaction and that it is zero after the reaction has
taken place, i.e., no additional states with higher L,

values are introduced asymptotically. This is in fact
necessary in order that the scattering process may be
completely characterized by a single real parameter.
It is of course true that if the scattering energy is not
zero the above assumption will not be valid in general.
The point is that at zero energy, for scattering in which
the region of interaction is in effect Gnite, the long range
centrifugal barrier prevents the scattered particle from
escaping to inGnity in states for which I is not zero.
One has a somewhat analogous situation in a low-energy
scattering problem, e on B, say. In the region of
interaction there exist an inGIlite number of compound
states which, however, decay asymptotically; for these
states the hydrogen atom is excited so that the scattered
electron lacks sufhcient energy to escape. Thus the
present method is applicable for a system in which
tensor forces exist. An explicit proof that at zero energy
there is no mixing of states of higher I, values (even
asymptotically) has been given for the I-p triplet
system" and, recently, for the more general case of the
scattering of one compound system by another. "

Other possible extensions of the method would be to
the case where the relative orbital angular momentum
has some nonzero value in the initial and final states,
and to the problem of the scattering of two compound

22 L. Spruch and L. Rosenberg, Proceedings of the International
Conference ol Xsscleor Forces ortd the Few 1VNcleost Problem,
Lortdon, Jgly, 1959 LPergamon Press (to be published)g.

s' J.M. Blatt and L. C. Biedenharn, Phys. Rev. 86, 399 (1952)."L.M. Delves, Nuclear Phys. 8, 358 (1958).
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systems. However, one of the simplest types of com-
pound-compound scattering problems, D-D scattering,
may be excluded from consideration immediately, due
to the possibility of the reactions D+D ~ tt+Hes and
D+D —& p+H'. (Further, for J=O, the bound system,
the alpha particle, exists. ) Note that for 7=2 con-
servation of angular momentum does not forbid the
above reactions; nonzero values of the relative orbital
angular momentum are possible in the final states, due
to the kinetic energy which is gained in the reaction.

Finally, we wish to point out that in the case where
the particle and the scattering system can form a com-
posite bound state, but where no exothermic reactions
are possible (again, we ignore the radiative capture
process) the present method can be modified so that
upper bounds on the scattering length may be obtained.
This will be discussed in a future communication. "
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APPENDIX

It will now be established that the integro-differential
equation used by Massey and his collaborators to
describe e-D scattering may be derived from the Kohn
variational principle. (The discussion is restricted to the
quartet state. ) The trial function may be written, in
the notation of Sec. II,

+t /st li'2tt

where lt st and list diRer by an interchange of the coordi-
nates of neutrons 2 and 3. In the no polarization
approximation, Pet takes the form

At= (2 '*)xit&(rl&)f (q )t/qss (A &)

(In the following the subscripts on r and q will be
dropped. ) Here ft(q) is a function which satisfies the
boundary conditions

ft(o) =o

ft(q) —+ sinkq+tang, coskq, for q ~ oo;

"Note added t'tt proof The technique .—for handling the case
where bound states exist was developed in conjunction with T. F.
O' Malley LPhys. Rev. (to be published)g. The method has been
used by the present two authors in an analysis of zero-energy n-D
doublet scattering LNuclear Phys. (to be published)j. E6mov"
obtained a variational estimate of 1.1f for the doublet scattering
length AD. It is shown that a conversion of Efimov's data (not
all oi which appeared in the published article) to the appropriate
normalization will provide an upper bound on AD. To the extent
that his assumed potentials are realistic, and to the extent that
the inappropriate normalization used will not significantly alter
the result, both of which assumptions are not unreasonable, it
follows that a value close to 1.1f serves as an upper bound on A~,
from which it may be concluded that Set I is the correct set.

Withltst of the form given by Eq. (A.1), I becomes

I=vz Pt(q)/q)g, Z(r) Aeter

ft(q) ~.ft(q)dq,
Jo

(A.2)

which defines the operator Z, ."This definition agrees
in form with the Massey integro-diGerential operator. '
The Kohn principle, in the no polarization approxima-
tion, may be written in the equivalent one-body form

k tang= k tangt+
~0

ft(q) Z,ft(q)dq. (A.3)

Since the right-hand side of Eq. (A.3) provides, at zero
energy, an upper bound on the true scattering length,
A g, it follows that, in particular, the scattering length,
A it„obtained from an exact solution of Eq. (33), lies
above A q, as stated in Sec. III. Further it is seen that
A it, represents the best (i.e., lowest) value obtainable
from Eq. (A.3). This follows from an application of the
theorem proved in Sec. II to the one body problem
defined by the operator 2,. (The fact that the potential
is now an integral operator does not a6ect the validity
of the result. ) We verify the applicability of the theorem
by noting that Z, admits no bound state solutions since
it is defined on a sub-space of those functions for which
the operator, A, is dered, and no bound state exists
for the latter. It is to be noted that the static approxi-
mation is applicable to a wide range of problems, not
only the m-D case considered here.

We now turn to the relationship between the Verde
variational principle (which was developed in terms of
the isotopic spin formalism) and the Kohn form, for
e-D quartet scattering. The equivalence may be estab-
lished by identifying the wave function 4 with a linear
combination of the functions g' and P" defined by
Verde. "We find that

4=c(3 P' f")xtt,
—(A.4)

I 2, is not urtt'ttuety de6ned by Eq. (A.2) but this is irrelevant
for our purposes.

~'For a comprehensive discussion of the nuclear three-body
problem which, in particular, includes an analysis of the sym-
metry properties of the wave function in the isotopic spin for-
malism, see M. Verde, Hcndblch der Physik, edited by S. Flugge
(Springer-Verlag, Berlin, 1957), Vol. 39, p. 144.

R(r) is the spatial part of the deuteron wave function
(normalized to unity) and y q is the spin function defined
in Sec. III. The Kohn variational principle may be
written

k tang= k tangt+I,
where

f fI=
,

e—tA@tdr=2 PstM tdr.
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where c is a constant. As Sartori and Rubinow have
already observed, the two coupled differential equations
satisfied by f' and lb" LEqs. (14) and (15) of reference 4)
may be combined to yield the Schrodinger equation for
the system, in which the spin and isotopic spin variables
have been removed Lsee Eq. (10) of reference 7j. Verde
defines an integral I, involving f' and lb", which
vanishes if the correct functions are used and whose
first variation is zero. With the aid of Eq. (A.4) and
the symmetry properties of lb' and |J"it may be shown
that

I=const )t CA+dr.

The normalization used by Troesch and Verde in their

application of the Verde principle is equivalent to the
choice 8=sr/2 Lsee Eq. (2.2)], i.e., it corresponds to
that proper to the Kohn principle. The variational
parameters were evaluated according to the prescription
of Hulthen, i.e.,

r)I/r)tt, =0, i =1, 2, , 1V,

where the a; are the E variational parameters in the
trial function, excluding the trial scattering length. As
discussed in l, the Kohn method for evaluating the
parameters, in a problem in which it provides a bound,
is superior to that of Hulthen but the results in the
latter case still give an upper bound on the true scat-
tering length.
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Electron Capture Decay of Tm'" and Tm"'
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The electron capture of Tm"' (87 day) to levels in Er'" was investigated with permanent magnet spectro-
graphs and coincidence scintillation spectrometers. The following levels in Er'" have been established:
79.8(2+), 264.3(4+), 548.9(6+), 822.4(2+), 897.0(3+), 996.2(4+), 1095.1(3—and Ti=1.2)&10 r sec),
and 1543.1(3)—) kev. The internal conversion data for Tm"' (7.7 hour) suggest levels in Er"' at 80.6(2+),
265.1(4+), 545.3(6+), 787.1(2+), 860.6(3+), and 957.2(4+) kev. with many more high lying levels.
Energy level schemes are proposed for both Er" and Er"'. The levels at 822, 897, and 996 kev in Er'" and
787, 861, and 957 kev in Er"' may possibly be associated with electric quadrupole (gamma) vibrations.
Some general features regarding these vibrational levels are discussed and compared with available data on
other even-even nuclei in the rare earth region.

I. INTRODUCTION

')RELIMINARY results of a survey of the radio-
activities of neutron deficient rare earth isotopes

have been reported previously. ' ' This paper is con-
cerned with a more detailed study of the energy levels
of two even-even nuclei of this region, Er" and Kr'"
which are reached by electron capture of the neutron
de6cient isotopes Tm'" and Tm'", respectively. These
nuclei are in the region where the nuclei are strongly
deformed and have spheroidal equilibrium shape.
According to the unified model' 8 these are expected

* Supported by the U. S. Atomic Energy Commission.
t Operated for the U. S. Atomic Energy Commission by the

Union Carbide Nuclear Company.
r Mihelich, Harmatz, and Handley, Phys. Rev. 108, 989 (1957).
~ J. %. Mihelich and B.Harmatz, Phys. Rev. 1G6, 1232 ($957).' Jacob, Mihelich, and Harmatz, Bull. Am. Phys. Soc. 2, 260

(1957).
sWard, Jacob, Mihelich, Harmatz, and Handley„Bull. Am.
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6 A. Bohr and B.R. Mottelson, Kgl. DanskeVidenskab. Selskab,

Mat. -lys. Medd. 27, No. 16 (1953).

to exhibit energy levels which are collective in nature.
This study was undertaken to obtain more data on such
collective levels.

II. RELEVANT PREDICTIONS OF THE
UNIFIED MODEL

The lowest modes of collective excitation of deformed
nuclei correspond to rotations in which the nuclear
shape remains unchanged. The resulting energy spec-
trum for a deformed even-even nucleus is given by

Er (P/2 y)I(I+ 1)+BIs(I——+1)'

where I=O, 2, 4. .. The quantity d represents an
effective moment of inertia. The second term in (1) is a
correction term due to rotation-vibration interaction.
The quantity 8 is related to the vibrational quanta Acvp

and Ace~ associated with the so called beta and gamma

7 A. Bohr and B.R. Mottelson, Beta- and Gamma-Ray Spectro-
scopy, edited by K. Siegbahn (North-Holland Publishing Com-
pany, Amsterdam, 1955), Chap. XVII.

8 Alder, Bohr, Huus, Motte&son, and Winther, Revs. Modern
Phys. 28, 432 (1956).


