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Cross Relaxation in LiF*
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A combined experimental and theoretical study of cross relaxation in LiF has been carried out. In
agreement with theory, the cross-relaxation time T2 is observed to be strongly anisotropic and field
dependent ; at 51.7 gauss it goes from 0.025 second in the [1007] direction to 7 seconds in the [111] direction.
A frequency distribution function analogous to the line shapes for magnetic absorption is measured down
to 10~ times the maximum value; for most orientations a Gaussian is an excellent approximation -to it.

I INTRODUCTION

BRAGAM and Proctor! demonstrated that two
spins with different resonance frequencies can
exchange energy and come into thermal equilibrium
with each other, independent of the lattice, if the
difference in their resonant frequencies is comparable
to the local fields. This is cross relaxation and Bloem-
bergen, Shapiro, Pershan, and Artman®? (BSPA)
have given a theory to explain this and several other
experiments.’~7
In this paper the cross-relaxation process in LiF is
examined in great detail and a quantitative comparison
with theory is made. Cross relaxation can only be
detected when different spins exchange energy with
one another faster than they exchange energy with the
lattice; because the spin-lattice relaxation times in
LiF are a few minutes, the cross-relaxation time 7'
can be measured over three decades as a function of
magnetic field and crystal orientation.

The theory presented in Sec. II is an extension of

previous work.? in which the author predicted large
anisotropies in T'2;. The experiment, similar to Abragam
and Proctor’s Ts; measurement, is discussed in detail
in Sec. ITI. In Sec. IV we discuss the results and show
that for some crystal orientations the absorption lines
in LiF can be approximated by a single Gaussian
function.
II. THEORY

A. Transition Probability

The simplest cross-relaxation process is when two
spins, one Li and one F, make simultaneous opposite

A= Z 4 iJ'SziSzi:
0,7

flips, the unbalance in Zeeman energy being taken up
by the dipole-dipole interaction. For simplicity, we
will start with this case although BSPA have shown
this is not the mechanism for cross relaxation in LiF
at fields above 50 gauss. Assume Li7 is 1009, abundant,
although it is actually 92.69%,,° and ignore its quadrupole
moment; in a perfect cubic crystal there should not be
a quadrupole interaction and the defects that cause one
in a real crystal can be neglected in this experiment.
Also assume a rigid lattice with infinite spin-lattice
relaxation time T'1; the effect of finite 7'y will be added
later.
The Hamiltonian for the system can be written as:

JC=3Co+IC113Cy, )

where 3C is the Zeeman terms, JCy is that part of the
dipole-dipole interaction that commutes with the
Zeeman terms, and JCp is the rest of the dipole-dipole
interaction. 3Co+3C; is the truncated Hamiltonian that
Van Vleck? retains in his moment calculations and
3Cs is the nondiagonal terms he discards. If we denote a
lithium spin operator by .S, a fluorine spin operator by I,
and if one prime refers to an interaction between a
lithium and a fluorine, two primes to one between two
fluorines and no prime between two lithiums, then
using the notation of BSPA 3¢, and 3C, are given as:

§e1=A+B+A"+A"+B",
50y=B'+C+C'+D'+E+ (B'+C+C'+D'+E)t

-+other terms of no importance, (2)

where

1 ypih?

= (1—3 COS20U),

i
2 Tija

* The research reported in this document was made possible through support extended Cruft Laboratory, Harvard University,
jointly by the Navy Department (Office of Naval Research), the Signal Corps of the U. S. Army, and the U. S. Air Force.

1 National Science Foundation Pre-Doctoral Fellow.
1 A. Abragam and W. G. Proctor, Phys. Rev. 109, 1441 (1958).

2 Bloembergen, Shapiro, Pershan, and Artman, Phys. Rev. 114, 445 (1959).

3 Robert T. Schumacher, Phys. Rev. 112, 837 (1958).

4H. S. Gutowsky and D. E. Woessner, Phys. Rev. Letters ,1 6 (1958).

5 Walter I. Goldburg, Bull. Am. Phys. Soc. 4, 165 (1959).
6 S. Shapiro and N. Bloembergen, Phys. Rev. 116, 1453 (1959).

7 Sorokin, Lasher, and Gelles, Proceedings of the Conference on Quantum Electronics, Bloomingberg, New York, 1959.

8 P. S. Pershan, Bull. Am. Phys. Soc. 4, 165 (1959).

® Handbook of Chemistry and Physics, edited by C. D. Hodgman (Chemical Rubber Publishing Company, Cleveland, 1954-1955),

p- 394.
0 7, H. Van Vleck, Phys. Rev. 74, 1168 (1948).

109



110 P. S. PERSHAN
YLiyYFh?
A'= 2 Aif Salls: Aif =———(1-3 cos¥y;),
1,7 71]
" 17 1 7F2h2
A= 2 Ao 'Ll i§ == (1—3 cos®y;),
i 2 7’,']'3
1 ypih?
B= 2 Bij(S4iS—i+S-iSss): Bij=—- (1—3 cos?;),
i 8 fijs
1 yryysh?
B'=3 By/Syd: By =—~ (1—3 cos?;)),
B 4 T,‘js
" 17 1 7F2h2
B'= 2 By (il 1l y5): Bij'=—~ (1—3 cos¥;),
o 8 7’1‘,'3
3yutht
C= 2 Cij(SesS4i+51:5:5) : = —— — sinf;; cosfje~i%ii,
¥ 4y
, , 3 vLiv¥h? . .
C'= 2 Cif Syl Cif/=—~ sinf;; cosl,e~ i,
Wi 2 7
3 YLiveh?
D'= 3 DifSal: Dy =—- sinf;; cosfyjetidii,
i 2 1’”‘3
3 yLih?
E= 2 E;S4sS4j: L= —- sin%f;e 2,
i 8 7’~;j3

The terms A, B and A", B”, etc., are half of their
usual values because we choose to sum over each
interaction twice.

Consider the following hypothetical experiment.
Initially the lithium spin system is at an infinite spin
temperature, and the fluorine system is at room

temperature in a field of 5000 gauss. Without changing -

direction, the field is suddenly dropped to Ho, of the
order of 50 gauss say, and stays there for a time ¢ when
it is raised back to 5000 gauss, again without changing
direction. It can be shown?® that this is equivalent to
turning on JC, for a time £, as in text book examples of
standard time-dependent perturbation theory.!! Treat-
ing 3C; by this method, we find the probability per

[{ P22 [{Ps2]

unit time that one lithium ‘4’ and one fluorine 7
have simultaneously flipped is given by

T
Wnyiomyi41; mp—omp—1 =%g12 (w12) l Bij, [ 2

X | (myit1, me—1]Spl sl musme)| % (3)

gi2(wiz) is a frequency distribution function which
gives the probability that the dipole-dipole interaction
can absorb the Zeeman energy left over. We can

1 Leonard I. Schiff, Quantum Mechanics (McGraw-Hill Book
Company, New York, 1949), first edition, Chap. VIII.

approximate this function by
g12(wi2) =f gri(w)gr(w)d(w+0") P (w,w)dwds’. (4)

gri(w) and gr(w’) are the line shape functions observed
in the usual absorption experiments, §(w+w’) is to
account for conservation of energy, and P(w,w’) takes
account of correlations that make it more difficult for
the local fields to change by large amounts over short
distances than over longer distances. Equation (4)
can be approximated further by replacing gr;(w) and
gr(w’) by Gaussians with second moments given by
Van Vleck and setting P=1. The result is the Gaussian

[1 (wp—o1:)? )
exp| - , (8
[21!‘ (AwL i2+ Awpz)]% p 2 AwLi2—!-AwF2] (

812 (w12) =

where wie=wr—wri.

In principle gi2(wiz) can be calculated exactly by a
moment method. However the length of such a calcula-
tion limits us to just the second moment

) 1 Tr|3c,B’ — B'3c, |2
(Aw)12 —% T B . (6)

A better approximation than Eq. (5) is to assume
gi2(w12) is a Gaussian with second moment given by
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Eq. (6) since it takes into account P31. Neglecting

correlations would say the dipole-dipole interaction

can absorb more energy than it really is able to,

predicting cross relaxation at too high fields.
Neglecting lattice sums like

2 Aif A A,

1,9,k
compared with terms like

Z (Aw ) Aii? )

7,k
Eq. (6) can be evaluated, for the (111) direction,
giving (1/27)[ (Aw)1221*~11.8 kc/sec compared to 15
kc/sec by the overlap integral of Eq. (5). Correlations
make the distribution function narrower by a factor of
0.8. Putting numerical values into Egs. (3) and (5),
the cross-relaxation time 7's; can be obtained by a
method to be explained later; the conclusion is giz(wis)
is peaked so sharply about wi;=0, even when correla-
tions are neglected, that above 40 gauss cross-relaxation
times are larger than one minute.

A more likely mechanism for exchange of energy is
if two Li’s flip opposite to one F spin, the Zeeman
energy left over in this process is less than } the value
for the simpler process, the exponent in Eq. (5) is
reduced by a factor of 10, and the resulting increase in
212(w12) more than compensates for the reduction in the
matrix element accompanying the necessarily higher
order perturbation. Following conventional time-
dependent perturbation theory, for initial state |0)
the probability amplitude for final state |8) in which
two Li’s have flipped up and one F down is made up
of a sum of terms like

1
0s(8) ij:m1= —% Za: BijCu

y (<ﬁ| Stil—j|a){a| SirSatS41S:4] 0)
@(Cri)a:o
. (B]S1wSart+S S| @) (e Syl 0>)
@(Bif)az0
exp (fwg.ot)—1
X________

» (D)

wg:0

where 7%w(Cri)a:0 is the energy difference between the
states |a) and |0) that are connected by Cii(SysS.
+S:15+1), similarly for %w(Bi;)a:o. The most naive
approach would be to take the absolute value of the
square of a sum of terms given by Eq. (7) and similar
equations for other pairs of operators, integrate over a
frequency distribution and obtain the transition
probability. This can’t be correct since it would mean
the three spins which flip do not have to be physically
near one another. In Eq. (7), spin “4”’ must be near

LiF 111
spin “j” but “k” can be anywhere, the resultant
transmon probability would be too large by a factor &V,
equal to the number of spins in the crystal.

Since there can only be transitions between states
that conserve energy we must consider only those
terms in Eq. (7) for which wg.e=0, that is, only those
states for which

w (Ckl)a:()":’ - w(Bij,)ﬁlﬂ7
w(ckl)ﬁ:a% _w(Bij’)a:O-

Neglecting the small difference between w(Cri)a:e
and w(Cr1)g:e and similarly for w(Bi;)a:0 and w(Bi)g: a5
and taking a suitable average, the first approximation
to these terms is

(i) _—1 BifCuy 1 N 1

ij:kl——%“’_ 2 (wm I wF—wLi)
X {{8] Sil —i(StwSatStaSer)
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X

(8)

)
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This probability amplitude is significant only when
the three spins which flip are near one another. Taking
into account all necessary operators of the form of
Eq. (9), the probability per unit time of a transition
from |0) to |B) is

2
W0—>ﬂ='f;§12(wl2>] (8]3C12[0)]2, (10)
where
<6Jseu|0>——( +~)<ﬂ|D'E ED'|0)
+1( L D eise—coso)
22\ wp—wLi  WL;

1
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and neglecting correlations
1
{2r[2(Aw) L+ (Aw)#* ]} *

812 (w12) =

( - (wF—— 2wy, 1) )
Xp

2[2 (Aw) L 12+ (Aw) F2:1
analogous to Eq. (5).

The second moment of g;2(w;s) is rigorously given by

<( ) 2> 1 TI‘ ] 3{313(112—3(3123(31 ! 2
Aw)1?)=—
ﬁz Tr ] 5C12 l 2

(12)
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However, it is such a formidable task to just expand
this out that no attempt was made to try and evaluate
it. From the results of Eq. (6) for the two-spin process,
we might expect correlations to cause (Aw)is® to be
anywhere from % to 2 of the second moment in Eq. (11).

When w;. is equal to two or three times the second
moment of Eq. (11), g1 becomes very sensitive to the
value of this moment. Since Van Vleck has shown
(Aw)r? and (Aw)¥* to be anisotropic, for a given
magnetic field (i.e., constant wys), g1z and Ts; are also
anisotropic. For large enough fields, small changes in
linewidths caused by rotating the crystal can cause gi»
and thus T to change by a couple of orders of mag-
nitude, because the second moment of g1, occurs in the
exponent of a Gaussian.

B. Rate Equations and Cross-Relaxation Time

Van Hove? and Philippot!* have shown rigorously
that for all but pathological situations rate equations
can be written down for a spin system described by
the Hamiltonian in Eq. (1). Our treatment of these
equations is similar to Schumacher’s® which is also
equivalent to the somewhat different procedure followed
in BSPA. Assume the rate of exchange of energy
between the Li and F systems is much slower than the
time necessary for a Boltzmann distribution to be
established in each system separately, (i.e., T21>>Ts).
We can then define an Li spin temperature § and an F
spin temperature 7, where 6 is not equal to T in general.

Let p be the density matrix for the Li spins and 7
for the F spins. Since the two systems are separately
in thermal equilibrium with themselves, p and P are
both diagonal. Neglecting the dipole-dipole interaction
we have <ELi>=TI'[75C0Li, (EF>=T1'P3C0F,

_ (a|exp(—3¢s¥/k0) | a)
Tr exp(—3Co/k0) ’
(b|exp(—3Co¥/kT)|b)
Tr exp(—3Co¥/kT) )

a

(13)

=

If Wapsas is the probability of a transition from a
state @'d’ to ab, by the principle of detailed balance
we have

Wartsab Ea'Li_
=exp
I'I/ab-m’b'

EaLi+Eb,F—EbF]
kTs ’

where T's is the equilibrium spin temperature, where

d 0FEyL; db
-<EL§>=TI‘3CQLiZi= 5 (14)
di a0 di
and
Po= X PaPyWarsa—pPsWapsaw.  (15)

a’b’b

12 1. Van Hove, Physica 21, 517 (1955); Physica 23, 441 (1957).
13 Jean Philippot, thesis, Université Libre de Bruxelles, 1959
(unpublished).
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Combining Egs. (13), (14), and (15) with similar
ones for (Er) and Ps we obtain

% %)zw“(f?‘;) T Ty
(7)) (m;)

where if the number of Li and F spins are each N

ow
NS(SHD) 2SN QI+1)Y

6=— -,
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Solving Egs. (16), one of the time constants is infinite
corresponding to an infinite 7'y for a rigid lattice, the

other one is
1/T21=a+&. (17)

From the transition probability given by Eq. (10)
and Egs. (16) and (17)
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where the last term comes from one Li flipping twice.
Using yri=27X1655 (gauss sec)™, vyr=2wX4007
(gauss sec)™ and carrying out the lattice sums to the
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122nd nearest neighbor, the results in Table I are
obtained. The last column is that value of H, for which
the overlap integral approximation [Eq. (11)] predicts
T21=1 second.

To take the finite spin-lattice relaxation times into
account we modify Egs. (16) as follows,?

d /1 1 1 1 1
L))
dait\g 0 Ts T Tg
1 (1 1)
Tian\0 T, ’
d /1 1 1 /1 1
L)AL 2C)
dt\T T Ts 0 Ts

1 1 1
——-(—-—) (19)
T\ T T,

where T is the lattice temperature, Tiwiy and Ti(r)
are the Li and F spin-lattice relaxation times, respec-
tively. The two time constants associated with Egs. (19)
are Ay and A_; with the aid of Eq. (17) we define

4

T T
Ty Tiw Tiwy

1 2T9; 1 1
—_[1+ ( —
T 9 \Tyw» Tiwn
1 1 29}
+Tﬁ( - )]L (20)
Tim Tiwp

1 1 2T 1 1
)
T T 9 \Tiw Tiwyp

oo 1 1 293
1 —- )]
Tiwy Tiwy

In the limit of 79 <KT1, 7 is equal to T's;, while if Ty
is infinite 1/A_=Tywi and 1/A.=T1(w.

The Li (or F) signal as a function of the time ¢ at
H(] iS

1 1{ 1 1 1
J— _ |
To 2

S=e¢ T A+ B(1—e ) ]+C, (21)

where A, B, and C are determined by the initial
conditions, lattice temperature 7';, and H,.

TaBLE I. Numerical results of calculations on cross
relaxation in LiF single crystals.

Crystal (Ho2/T21812) Ho(T21=1 sec)

orientation (gauss/sec)? (gauss)
100 1.34X101 104
110 3.88X 101 88
111 1.15X101 67
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PULSE
coiLs

D0.C.
COILS

r
FIELD
PIPE
AIR

TUBE
LiF CRYSTAL
R-F -OSCILLATOR
coi
—

POLE FACE OF
6" VARIAN
MAGNET

TO AIR
OUTLET

.Fi1c. 1. Experimental arrangement for moving the sample from

4600 gauss to Ho in which cross relaxation takes place.

III. EXPERIMENT

T91 is measured by the same method Abragam and
Proctor! first used. An LiF crystal is allowed to come
into equilibrium with. the lattice in a field of 4600 gauss,
the Li spins are then saturated and the crystal is
quickly moved to a field H, of the order of 50 gauss,
where cross relaxation takes place. The sample is
kept there for a measured length of time and then
brought back to 4600 gauss where the Li magnetization
is then measured.

Since this is all done fast compared to the spin-lattice
relaxation time there can only be nonzero Li magnetiza-
tion via cross relaxation. The time at the low field is
varied and the data fit to Eq. (21). This fit can bemade
even though the time necessary to move the sample is
not really negligible compared to T; 4, B, and C are
functions of various times in the measurement process
but care can be taken to make each measurement in
exactly the same way so in any one plot of magnetization
s time they really are constants. Spin-lattice relaxation
times in pure LiF crystals are a couple of minutes long
so it is not difficult to do things fast compared with T'y.

This experiment is  different from Abragam and
Proctor’s in the way we move the sample from 4600
gauss to Hg, the apparatus shown in Fig. 1 was con-
structed for this purpose. The sample is shown in the
rf coil used to both saturate and detect the Li magnet-
ization at the bottom of the air tube. The crystal is
glued to a plastic piece that has a square cross section,
the inside of the air tube is also square which keeps the
sample from rotating. The field pipe is a solenoid 80 cm
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long, and when activated it supplies 120 gauss along
the entire length of the air pipe. At the top of the field
pipe are two Helmholtz coils that can rotate about the
axis of the pipe, the dc coils supply the field Hy, the
pulse coils supply about 80 gauss parallel to Ho.
After the Li magnetization is saturated, the field pipe
is turned on and the crystal is shot up and kept at the
Helmholtz coils by compressed air. When the crystal
is at the top the field pipe is turned off. Since the 4
seconds it takes to reach the top of the pipe is much
smaller than 73 or Ty and since the mechanical
motion is slow compared to 7'y this is a reversible
adiabatic demagnetization.!3:=17 The crystal is now
in a field of Ho+80 gauss large enough to make T
very long, the 80 gauss are turned off for a measured
length of time and then on again. During the time it is
off cross relaxation takes place at a rate determined by
H, and the orientation of the Helmholtz coils, when the
80 gauss come on again cross relaxation stops and the
Li magnetization is frozen in. The field pipe is turned
on again, the air turned off and the sample falls into
the rf coil where the Li magnetizaton is measured.
The pulsed field is turned off and on by a current-
regulated power supply triggered by a one-shot multi-
vibrator. The pulse width can be varied from 0.003
second to 24 seconds; longer times can be done
manually. Transitients obvseved by a pickup coil and
a Tektronix 535 oscilloscope die out in 1 millisecond,
and pulse widths are measured this way to better than
3%.

The dc Helmholtz coils have been calibrated with
dpph at 70 Mc/sec to better than 19, they are air
cored so the field is strictly proportional to current;
current was measured with the same Weston dc
ammeter during the experiment and calibration.
Homogeneity was better than 0.59, over the sample
volume. Field orientation was measured to better than
0.2° by means of marks every degree on the outer
circumference of the rotating table holding the coils,
it was 50 cm in diameter.

The spins were observed with a Pound-Watkins!®
type spectrometer in which the oscillator section was
" replaced by one given by Mays, Moore, and Shulman*®
and an extra stage of rf gain was added to improve the
AVC control at low levels. The oscillation level was
adjusted so the Li signal would saturate in approxi-
mately 5 seconds, and the frequency was swept so
that it took about 10 seconds to go through the line.
The output of the spectrometer was fed into a phase
sensitive lock-in detector'® that had a time constant
of 0.5 second. The output of the lock-in was recorded on

4 R. V. Pound and N. F. Ramsey, Phys. Rev. 81, 278 (1951).

15 L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959).

16 A. Sachs and E. Turner, thesis, Harvard University, 1949
(unpublished).

17 A. G. Anderson, Phys. Rev. 115, 863 (1959).

18 George D. Watkins, thesis, Harvard University,
(unpublished).

18 Mays, Moore, and Shulman, Rev. Sci. Instr. 29, 300 (1958).
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an Esterline Angus recorder. Keeping all other param-
eters constant the recorded signal is proportional to
the magnetization immediately before the line is
swept through. Since proportionality depends on the
system being linear an experiment was done to prove
linearity. The Li signal was saturated, and, without
moving the sample from the field, we waited a measured
length of time before sweeping back and observing the
line. When the resultant signal was plotted as a function
of the time waited, it was of the form (1—e %71,
The excellent fit to an exponential is proof the system
really is linear. This is the way we measured 7' in
high fields.

In order to fit our data to Eq. (21) we had to make
sure each point in a signal vs time plot was measured
is exactly by the way. This was done in the following
manner. The line was saturated by sweeping through it
three times. A radio receiver was tuned to a frequency
just off one side of the resonance line, when audio beats
were heard in the receiver after the third pass through
the line, a stop watch was started. At 5 seconds the
sweep motor was shut off and simultaneously the
sample was shot up the tube, where the field pipe was
already on. This time was never in error by more than
0.5 second. It always took 4 seconds for the sample to
reach the top of the tube, at which time the field pipe
was turned off and the pulse triggered; this was done
in less than one second. The field pulse was observed
on an oscilloscope so that within 0.5 second after the
80 gauss came on again, the field pipe was turned on
and the sample was falling back to the rf coil. It took
4 seconds to reach the bottom. Within 0.5 second of
reaching bottom the sweep motor was turned on again
and the signal was recorded 9 seconds later. Excluding
the time during which cross relaxation took place, the
entire process lasted 23=£2 seconds.
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Since measurements were reproduceable to within
the error expected from the noise of the detection
system, i.e., less than 59, we are confident that we
were able to keep 4, B, and C constant.

Two crystals were used; both were cut in the form
of right circular cylinders, diameter 1 cm and length
2 cm. In crystal 4 the axis of symmetry was the
[100], in crystal B it was the [110] axis. Crystal 4
was considerably purer than crystal B; this-was reflected
in the spin-lattice relaxation times,® in 4600 gauss
T:1(Li) was 8 minutes in crystal 4 but only 4 minutes
in crystal B.

IV. RESULTS

Figure 2 shows the anisotropic behavior of 7'y
predicted in a previous communication,® except for
the three points taken from crystal 4, it was taken in
the (110) plane of crystal B. The excellent agreement
between two crystals with very different spin-lattice
relaxation times is evidence that impurities do not play
any role in cross relaxation.

The qualitative agreement between the curve in
Fig. 2 and the overlap integral approximation is
excellent. Cross-relaxation times are longest when the
magnetic field is in the [1117] direction, this is also the
direction in which the absorption lines are narrowest,
making g2 [Eq. (11)7] smallest. T’ is shortest in the
[100] direction, where the absorption lines are broadest.
The similarity between the shape of Fig. 2 in this paper
and Fig. 2 in reference 10 is a very clear demonstration
of the dependence of T's: on linewidths. The anisotropy
is so very large, a factor of 500 in 54°, because the
probability that energy can be conserved changes
rather drastically as the crystal is rotated.

The field dependence of T's; is shown in Fig. 3 for

T T T T 7 T T T T ]
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crystal 4.
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2 N. Bloembergen, Physica 15, 386 (1949).
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T16. 4. g1a(w12) vs Ho, w1a=2w697H,. The curve for the [110]
direction is g12=0.49X1075 exp[—»12/2(10.3 kc/sec)?], and
for the [111] direction g12=1.4X1075 exp[ —»:22/2(8.8 kc/sec)?].

three orientations; the [111] direction was taken on
crystal B, the other two curves on crystal 4. The fields
at which T's;=1 second are 0.6 to 0.7 times the fields
predicted by the overlap integral approximation in
Table I. Since this approximation ignored correlations,
we expect it to predict too large fields. For the [111]
direction the exact calculation of the second moment
for the two spin process [Eq. (6)] was 0.8 times the
value from the overlap integral for that process.
Since the cross-relaxation process we are studying is
more complicated than the two-spin model it is to be
expected that correlations have a larger effect and 60
to 709, is a reasonable amount.

These results are also consistent with Abragam and
Proctor’s measurement of 72;=6 seconds at 7510
gauss. They paid no attention to orientation so we
might assume their measurement yielded the shortest
cross-relaxation time for a given field, that should be
for the [100] direction where T'2;=2 seconds at 75
gauss and 6 seconds at 79 gauss.

From Fig. 3 and Table I we calculated gio(wis) as
a function of field (w12=27697H,), and the results are
plotted in Fig. 4. The data for both the [1117] and
[110] could be fit to Gaussians throughout the three
decades we were able to measure. However, the results
for the [100] direction could not possibly be described
by one Gaussian. The Gaussians that describe the
tails of gis(wis) are also good approximations near the
center, wip=0. Since gi2(w12) is normalized to unity

f 812 (wlz)dwm =1.
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F1c. 5. Spin-lattice relaxation times vs Zy in Lil*. For the [100]
direction T is given for Li, for the [1117] direction T} is given
for both Li and F, the solid curve is the theoretical function
as explained in the text.

Assuming these functions are symmetric about the
origin the results are 1.9 for the [111] direction and
0.8 for the [110] direction. In view of the fact that the
closest we can get to the center of the line is 0.1 g12(0),
the agreement is remarkable. There is every reason to
believe the absorption lines have .the same qualitative
shape as gi2(wi2) and thus are also Gaussian in the
[1117] and [110] direction. In the [100] direction we
could not describe giz2(wi2) by a Gaussian, however we
did make the two extrapolations (a) and (b) that seem
to be the limits of reasonable curves; assuming sym-
metry about the origin the integral from — o to -+
is 1.0 for curve (b) and 1.4 for curve (a), agreement is
again excellent.

Curve (b) is very flat and broad near the center and
the extrapolation may seem unrealistic. Numerical
integration for curve (b) gives

[{Aw1!) ]/ [{Awrs?) Ji=1.26.
Van Vleck® calculates this same ratio for a simple
cubic lattice of spins % to be 1.25 in the (100) direction
indicating that curve (b) is reasonable.
Watkins'® observed that in large magnetic fields the
spin-lattice relaxation time of Li in LiF is anisotropic.?!

21 We are indebted to Dr. A. Redfield for suggesting the investi-
gation of T in low field.
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Figure 5 shows T'; for Li as a function of field for the
[100] and [111]-orientations of crystal B, and for the
[111] direction the T'; of F is also shown. At 109 gauss
the anisotropy is the same as Watkins observed.
However, as the field is lowered, it changes considerably,
and at 71 gauss 7' is the same for both directions. At
this field T's; is less than 1 second in the [ 1007] direction
and since the F spin-lattice relaxation is more rapid
than the Li, the easiest way for the Li’s to come into
equilibrium with the lattice is by first coming into
equilibrium with the F’s which then come into equili-
brium with the lattice, the apparent 7'y of Li is lowered.
In the [111] direction however, T is more than 100
seconds at 71 gauss and this drop has not yet begun;
the slow decrease of the Li 7'y above 70 gauss is not
associated with cross relaxation.?

Assuming in the absence of T2 the T's in the [111]
direction would continue to decrease along the straight
lines they follow above 70 gauss, from Fig. 3 and
Eq. (20) we can calculate Ty vs Ho. The solid curve for
Li in the [1117] direction is the result. The theoretical
curve is an excellent fit to the measured values of T',.

V. CONCLUSIONS

1. The theory of BSPA is correct. Cross-relaxation
times can be predicted if one takes into account all the
necessary interactions.”

2. The tails of line shapes for nuclear magnetic
absorption can be inferred from cross-relaxation
measurements. For LiF in the [111] and [110] direc-
tions they are very well approximated by Gaussians, in
the [100] direction a Gaussian is a poor approximation.

3. The validity of rate equations to describe cross
relaxation is established. Cross relaxation is an irrevers-
ible process in which two-spin systems come into
thermal equilibrium with one another.
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