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TAsLK I. Upper limit for widths of possible resonances of total
spin J for a neutron energy of 1250 kev. The neutron energy
spread 6 is taken as 5 kev. Resonances with widths greater than
the values given would have been observed in the present experi-
ment. For a neutron energy of 610 kev, I' would be about half
the tabulated values.

J
1/2
3/2
5/2
7/2

on (barns)

2.5
5.0
7.5

10.0

16.5
35.5
55.0
83.5

r, (ev)

303
141
91
60

function for incident neutron Rux, one can place upper
limits for the widths of the resonances if they exist.
Table I gives, for various assumed J values, the
maximum value for the width of a resonance not
observable at a neutron energy of 1250 kev, i.e., one
that would have resulted in a 5% dip in the transmission
curve. The energy spread 6 has been taken as 5 kev.
Since no resonance was observed near this energy,
it is concluded that the postulated state in C" must be
narrower than the values given in Table I. At610kev
the widths would be restricted to approximately
one-half of the values shown in Table I.

Since some 660 points were taken in this experiment,
and further since the results gave a smooth curve, a
least-squares 6t of the cross section by a function with
only a few parameters gives a very accurate determina-
tion of the cross section in this region. The use of such

a procedure' leads to the following power-series expan-
sion for the cross section:

g p 4.7——10 (3.4—15)E+ (1.649)E'—(0.2606)E4,

where E is in Mev, 0-p is in barns, and the value of the
cross section at zero energy was taken to be 4.710
barns. 6 The rms error in this region is 0.075 barn or
an average of 2.7/o. While no data (other than the
cross section at zero energy) below 500 kev were
included in the fitting, the calculated curve lies within

3%%u~ of other measurements' " from 1 to 500 kev.
For energies greater than 1400 kev the expansion

quickly diverges from the measured cross-section values
because of the large fourth-power term.
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Principally from the viewpoint of orienting radionuclei, this paper considers magnetically dilute para-
magnetic ions in crystals for various cases in which there is a non-negligible radio-frequency transition
probability for inducing a simultaneous flipping of an electron spin and a nuclear spin. These transitions,
forbidden in zero order in high magnetic fields, may be provided by hyperfine interactions, and allow for
direct dynamic nuclear orientation by applied rf fields. The transition probabilities are calculated for a
general anisotropic spin Hamiltonian; thermal relaxation transitions are qualitatively discussed. The
resulting steady-state dynamic nuclear polarization and alignment are calculated for the equalization of
populations of pairs of levels by sufficient applied rf fields. The inQuence of various relaxation transitions
is considered and it is noted that the nuclear orientation available through the forbidden transitions is
considerably less sensitive to competing relaxation transitions than that obtained by saturation of the
allowed transitions.

The general predictions are found to be in qualitative agreement with the results at Berkeley of Abraham
and Kedzie using radionuclei.

The possibilities for dynamic alignment of radionuclei of diamagnetic atoms by forbidden transitions
due to weak nuclear-electron dipolar coupling are also briefly discussed.

I. INTRODUCTION

I~~VERHAUSER' pointed out, and it was experi-
mentally verified, ' that the saturation of the

* Supported in part by the U. S. Atomic Energy Commission
and the Office of Naval Research.

' A. Overhauser, Phys. Rev. 89, 689 (1953);92, 411 (1953).
s T. R. Carver and C. P. Slichter, Phys. Rev. 92, 212 (1953).

paramagnetic resonance transitions of the conduction
electrons in a metal could, through suitable hfs relaxa-
tion processes, lead to an appreciable nuclear polariza-
tion. This idea has been extended' to paramagnetic

'F. Bloch, Phys. Rev. 93, 944 (1954); A. Overhauser, Phys.
Rev. 94, 768 (1954); J. Korringa, Phys. Rev. 94, 1388 (1954);
C. Kittel, Phys. Rev. 95, 589 (1954); P. Brovetto and G. Cini,
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substances in general and many related proposals and
experiments have been described. Abragam, in partic-
ular, has treated some cases of electron-nuclear coupled
systems of general physical interest. The present paper
is essentially an extension of Abragam's treatment with
these specific differences: we here consider in detail the
proposal of utilizing radio-frequency (rf) induced
"forbidden transitions" in which electron and nuclear
spins are simultaneously Qipped; we consider a general
anisotropic spin Hamiltonian; and our principal view
is orientation of radionuclei for p-ray anisotropy
studies. In particular, this paper presents the theory
for the experiments on Co" by Abraham et al. ,

' and
on Mn" "by Kedzie et al.' which will be described in
full detail in following papers. '

All of the experiments referred to above may be
described as dynamic nuclear orientation experiments.

By this we mean that the normal Boltzmann popula-
tions of a system of spins in a lattice in a dc magnetic
field is so changed by the application of resonant rf
(including microwave frequencies) fields as to establish
an appreciably greater degree of nuclear orientatiori
than exists for the spins in thermal equilibrium with
their lattice at the same temperature. The enhancement
may be several orders of magnitude if the nuclear spins
are coupled to electron spins.

The nuclear orientation for a spin I may be described

by a series of 2I orientation parameters pi, ps, ps
the first two of which are conveniently defined" as
the polarization:

pi ——(1/I) P; (+;~I,~%;)X;/P; 1V;;

Nuovo cimento 11, 618 (1954); P. Brovetto and S. Ferroni,
Nuovo cimento 12, 90 (1954); A. Abragam, Phys. Rev. 98,
1729 (1955); A. Abragam, Compt. rend. 242, 1720 (1956);
F. Bloch, Phys. Rev. 102, 104 (1956); G. Feher, Phys. Rev.
103, 500 (1956); G. Feher and E. A. Gere, Phys. Rev. 103,
834 (1956); C. D. Jell'ries, Phys. Rev. 106, 164 (1957); D. Pines,
J. Bardeen, and C. P. Slichter, Phys. Rev. 106, 489 (1957); F. M.
Pipkin and J. W. Culvahouse, Phys. Rev. 106, 1102 (1957);
I. Solomon, J. Phys. Radium 19, 837 (1958); J. Combrisson, J.
phys. Radium 19, 840 (1958); R. S. Codrington and N. Bloem-
bergen, J. Chem. Phys. 29, 600 (1958); A. Abragam and W. G.
Proctor, Compt. rend. 246, 2253 (1958); G. R. Khutsishvilli,
Nuovo cimento 11, 186 (1959).' A. Abragam, Phys. Rev. 98, 1729 (1955).

5 C. D. Jeffries, Phys. Rev. 106, 164 (195/); C. D. Jerries,
Proceedings of the Fifth International Conference on Lou-Tempera-
ture Physics and Chemistry, 3faCkson, Wisconsin, August, 1957,
edited by J.R. Dillinger (University of Wisconsin Press, Madison,
1958).

6M. Abraham, R. W. Kedzie, and C. D. Jeffries, Phys. Rev.
106, 165 (1957).

7 R. W. Kedzie, M. Abraham, C. D. Jeffries, and 0. Leifson,
Bull, Am. Phys. Soc. 2, 382 (1957); R. W. Kedzie and C. D.
JefI'ries, &mull. Am. Phys. Soc. 3, 415 (1958).

'M. Abraham, C. D. Jerries, and R. W. Kedzie, Phys. Rev.
117, 1070 (1960).

9 R. W. Kedzie (to be published).' R. J. Blin-Stoyle, M. A. Grace, and H. Halban, Progress in
Nuclear Physics (Pergamon Press, London, 1957), Vol. 3, p. 63;
M. J. Steenland and H. A. Yolhoek, Progress in Lozo-Temperature
Physics (North-Holland Publishing Company, Amsterdam,
1957), Vol. 2, p. 292.

and the alignment:

where S; and 4; are the population and the normalized
wave function for the i'" the energy level. The polariza-
tion pi and the alignment ps are so defined as to lie
between the limits ~1 and to vanish for a random popu-
lation distribution. For I= st, ps

——0, etc. The measurable
quantities in solid-state and nuclear physics experiments
with oriented nuclei depend in various ways upon the
orientation parameters. For example, in magnetic
resonance absorption the signal intensity is proportional
to pi in loosely coupled systems, but in more com-
plicated systems the signal may depend on a partial
sum of Eq. (1). On the other hand, if the nuclei are
radioactive and are emitting p-rays or n-particles the
angular distribution is a function of ps, p4 ~ . The
angular distribution of P-particles may depend on

pi and ps.
Generally speaking the dynamic nuclear orientation

available may be of the order of pi ki/kT, ps hv/kT,
~ ., where v is the frequency of the applied rf held,
A=Planck's constant, k=Boltzmann's constant, and
T=absolute lattice temperature. Thus for v=3&10"
cps, and T=1'K, appreciable orientations are obtain-
able. This dynamic nuclear orientation may be either
transient or steady state, maintained by the dynamic
equilibrium of the applied rf fields with the relaxation
processes. In either case it is "dynamic" in contrast to
the usual static orientation obtained in thermal
equilibrium at very low temperatures by static hfs
coupling. "

Before going into details we review in simple qualita-
tive terms an idealized dynamic polarization experiment
for a system of nuclear spins with I=-,' in hyperfine
coupling with electron spins with S=-,'. For example,
consider a magnetically dilute crystal containing well-
separated paramagnetic ions, each in an I S type of
hyperfine coupling with its own nucleus. If this crystal
is placed in an external magnetic field H the energy
levels will be as shown in Fig. 1, if we neglect the direct
interaction of the nuclei with H in comparison to the
hfs. The levels are approximately characterized by the
electron magnetic quantum number M= (5,) and the
nuclear magnetic quantum number tie= (I,), as shown.
Thermal processes induce transitions between each
pair of levels, and after sufficient time the population
of each level reaches its thermal equilibrium value
given by the Boltzmann factor exp( —E;/kT), Fig. 1(a).
The energy spacings, 6 and 8, are in units of kT. We
can think of the approach to thermal equilibrium as
being due to relaxation transition probabilities which
are greater for a downward transition than an upward
one. We find for the static nuclear polarization pi =5A/4,
which is just the Rose-Gorter value. " To obtain a
dynamic polarization we may apply a sufhcient rf
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Fxo. 1. Magnetic energy levels of a hyperfine system for I=-',
and S=-'„showing the relative (unnormalized) populations and
nuclear polarization p& for: (a) thermal equilibrium; (b) dynamic
equilibrium under the joint action of oscillator v and relaxation
transitions (6&=&1, Am=0); (c) dynamic equilibrium under
joint action of oscillator v' and relaxation transitions (AM'= &1,
Bra=0) and (A3II= +1, Dra= %1).

field from a laboratory oscillator at the frequency v to
induce transitions between the two levels shown,
corresponding to Ripping the electron spins up and the
nuclear spins down. Let us assume that even if this
transition is forbidden in zero order, sufhcient rf
fields are available to induce this transition with a
transition probability much greater than any of the
relaxation transition probabilities. Since the induced
emission transition probability is equal to that for
absorption, this will essentially equalize the populations
of these two levels, i.e., "saturate" them. The popula-
tions of the other two levels will be determined by the
relaxation transition probabilities and we assume that
the dominant ones are those of the classical paramagne-
tic relaxation, corresponding to hM= &1, 6m=0.
The relaxation transitions will establish the steady-state
population ratios:

and
1V(-,', ——,'):X(—-'„——,') =1:e p (6—5);

X(—r, r):XP, —') =1:exp(—6—8).

The resultant unnormalized populations are shown
in Fig. 1(b). From Fq. (1) we find for the dynamic
nuclear polarization pt= —6/2, if A((1. This is larger
than the static value by the factor 2/8 10', typically,
at helium temperatures. On the other hand, if the
assumed relaxation transitions are not dominant, but
are greatly exceeded by (km= &1, AM=0) relaxation
transitions, then the dynamic polarization is reduced
to zero. Thus the all important question is, what are
the relative relaxation rates, which we consider in
detail in Sec. II.

We note that, alternately, if we apply the oscillator
at the "allowed" frequency u' between the (-,', ——',)

and (—sr, —zr) levels and assume the additional cross
relaxation transitions (dM=&1, 6m=&1), we can
produce the populations of Fig. 1(c), leading to a
dynamic nuclear polarization pt=h/4. This second
method, which we will call dynamic polarization by
saturation of allowed transitions, is a direct generaliza-
tion4 of Overhauser's original suggestion and is to be
contrasted to the first method in the preceding
paragraph, which we will call dynamic polarization
by forbidden transitions. The two methods are indeed
very closely related and the relative advantages will
be discussed in Sec. II. At this point we merely note
that the essential feature of both methods is a simul-
taneous Ripping of an electron spin and a nuclear spin.
In the second method it is the cross relaxation transi-
tions which Rip the nuclei and give rise to a polarization;
in the first method it is the applied rf fields which
directly Rip the nuclei, producing a polarization.

Our use throughout this paper of the term forbidden
transition to denote an rf-induced simultaneous Rip
of an electron and a nuclear spin is admittedly a poor
notation, since the transition probability may, in some
cases, be comparable to that for the usual allowed transi-
tions AM=&1, Am=0. Furthermore, as Abragam"
has pointed out, these transitions may be induced by
ultrasonic waves, in which case they are not relatively
forbidden.

It should be pointed out that a low-frequency
prototype of dynamic nuclear orientation in solids was
first performed by Pound" some time ago, essentially
the only difference being that instead of an electron-
nucleus coupled system he used a pure nuclear system
with unequally spaced levels due to both nuclear
Zeeman and quadrupole interactions. In his system,
(6/8) 2 and the dynamic nuclear orientation was
only about twice the static value, but still readily
detectable by magnetic resonance.

For detailed considerations we adopt the spin
Hamiltonian of Abragam and Pryce" for a system of
electron spins and nuclear spins in a crystal in a
magnetic field B at such low temperature that only the
lowest electronic state is significantly populated and
has a degeneracy 2S+1:

pB(!= Q (Hogg(S(+SsAs)Ig+IsPg, (Ig)

+g„pH I+ac,. (3)

The terms represent, consecutively, the electronic
Zeeman, magnetic hyperfine, nuclear electric quad-
rupole, nuclear Zeeman, and electronic crystal field
interactions. It is assumed that the crystal is magnet-
ically dilute. For the present we take 3'.,=0; the more

"A. Abragam and W. G. Proctor, Compt. rend. 246, 2253
(&9s8)."R.V. Pound, Phys. Rev. 79, 685 (1950).

"A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London)
A205, 155 (1951).
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general case of K,/0 will be treated in a later paper'
on Mn. "'4

Of the many possible systems of physical interest we
choose to discuss in detail in Sec. II the case of diluted
paramagnetic ions in a single crystal, each in relatively
strong hfs coupling with its own nucleus. This system
is particularly useful for dynamic orientation experi-
ments with minute quantities of radionuclei para-
magnetic atoms to determine their nuclear moments.
We make the simplifying and not too restrictive
assumptions that a set of crystal coordinates (x',y', z')
may be chosen which are the principal axes of all the
tensors in Eq. (3). Only the diagonal terms remain
and may be rewritten, assuming axial symmetry about
z', as:
PC= g„PH;S;+giP(H S +H„S„)+AS,I;

+B(S;I;+SoI„)+P[I I(I+1—)/3]
+g„P(H, I, +H„I„+H;I;). (4)

Here g&, and g& are the electronic spectroscopic splitting
factors along and perpendicular, respectively, to the
z' axis; S=effective electron spin; I=nuclear spin;
A=A, , and 8=A, =A„„are the magnetic hfs
coupling constants (in ergs) parallel and perpendicular
respectively, to the z' axis and are proportional, for a
given ion, to g„; g„=p„/I=nuclear g factor, where p,„
is the nuclear magnetic moment in Bohr magnetons;
P=Bohr magneton; P is the nuclear quadrupole
coupling constant and is rarely large enough to be
detected. We have taken p= —gpS and p„=—

g pI
in the definition of the algebraic sign of the g factors.
In Sec. II, following Abragam, ' we consider PC of
Eq. (4) to be subject to the perturbations, PC(t)
+ABC(t), where, iR(t) is a time-dependent perturbation
on oK due to applied rf fields and ABC(/) is a random
time-dependent perturbation representing thermal

- relaxation interactions of the spin system with the
lattice, considered as a "bath. "The various transitions
are discussed and calculations are made for the polariza-
tion pi and the aligmnent po to be expected upon
saturation of various allowed and forbidden transitions.

In Sec. III we similarly consider briefly a system of
nuclear spies in weak long-range dipolar coupling with
electron spins, particularly from the viewpoint of
dynamic orientation of radionuclei of diamagnetic
atoms.

In Sec. IV are given explicit expressions for the y-ray
anisotropy of dynamically oriented radionuclei and
in Sec. V a brief comparison is made with the general
experimental results. "

II. PARAMAGNETIC IONS IN STRONG
hfs COUPLING

A. rf—Induced Transition Probabilities

1. Ma,gaelic hfs

We introduce a set of laboratory coordinates (x,y,z)
in which the applied dc field Ht~s, and transform the

spin Hamiltonian Eq. (4) to these coordinates for two
cases of crystal orientation: (1) the parallel (~~) case,
i.e., for z'~~z, x'~[x, y'~~y; and (2) the perpendicular (i)
case, i.e., for z')[ —x, x'()z, y'[)y. Dropping for the
moment the term in E' and introducing the raising
and lowering operators I+——I,&iI„, S+——S &iS„we
obtain

These matrix elements will be useful:

(Mm
~
S~Ip

~

M'm') =~r+8~,~ +i5„, +i, (7)

(Mm
~
S~I~

~

M'm') =~r~&ir, ~ +i&, ~i, (8a)

where

r~= [(Iam)(I+m+1)$&,
~=L(SAM) (SHM+1)3'*. (8b)

Usually we will have (electron Zeeman energy)
))(magnetic hfs energy)))nuclear Zeeman energy, in
which case the energies are found from a second-order
perturbation calculation,

E((=g()PHM+AMm+ (B'/2g„PH)([I(I+1) —m'$M
—mkS(S+1) —M'3)+g PIIm (9)

Ei=giPHM+BMm+ (A'+B'/4giPH)
X[I(I+1) m']M— (AB/—2g,PH)

X[S(S+1) M']m+ g„PHm—. (10)

We label the levels by the zero order quantum numbers
(M,m), where M = (S,), m= (I,). Transitions between
these levels are usually induced by applying suitable
rf Acids at a fixed frequency vo =gPHo/h and v—arying
the magnetic field B. For example, for S=~, allowed
transitions (—,',m) ~ (—io, m) occur at these fields,
a.pproxima. tely,

Am
J

B'
H„=H,— —

] [LI(I+1)—m'j,
giiP (2g 'P'H )o

for z'j(H, (11)
Bm p A'+B' y

[ ttI(I+1)—m' j,
giP t 4gi P'Ho)

for "iH. (»)
So-called forbidden transitions (—,',m) ~ (——',, m+ 1)
occur at these fields, approximately,

&»=&0— (m~ l)—), , IP(I+1)
giiP «2g u'P'Ho&

—m(ma1)a-', —2]aHog /gii, for z'IIH~ (13)

oR„=g„PHS,+AI,S,+ ', B(S-I++SKI )+g„PHI„(5)
oXi= giPHS, +BI,S,+ i~ (A+B) (SM++S+I )

+~i(A B)(S—I +S+I+)+g„PHI,. (6)
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t
A'+B' q

II(, H——o —(ma-', )—i i LI(I+1)
gip (4gPp'Ho i

—m(ma1)+-',j+
4gisP'Ho

aaog. /gi, for s'J H. (14)

I.or.'&II,

qoo+q '+q+'=1,

qg =&BRpp/2g„PH. (15b)

lt, (M,m) = aors (M,m)+a+it o(M —1, m+1)
+a go(M+1 m —1)+b go(M+1, m+1)

+b P(M —1, m —1), (15c)
where

We And the approximate wave functions of these
magnetic hfs levels by taking zero order functions
iP(M, m) corresponding to an electron and a nucleus in
a huge magnetic field. The hfs term admixes these
slightly and a first order perturbation calculation yields,
for s'f)a,

P„(M,m)=q lto(oM, m)+q P(M+1, m —1)
+ q+P(M —1, m+1), (15a)

where

terms in g„are quite negligible. Here H& may be a
standing wave field in a microwave cavity and H~,
represents the component parallel to the dc Geld.
Let the system be initially in a state lt(M, m) and
let, &X(t) be turned on at time t=0. Then by the
usual erst order time-dependent perturbation theory
the probability that the system will be found at time
t= r in the state P'(M', m') is"

I ( ) I'= 'I
~

(0'l.f5C(t) I4 ) exp(i~ t)«l' (18)

where ar'= (R E')/5. O—n considering the time-depend-
ent factors in Eq. (18), we obtain

~a(r)
~

((o'—(o) sin $r(co' —oo)/2$. (19)

Now in the total system, i.e., S spin pairs, we may
expect a distribution of values of E and E', and we
now assume a continuous distribution of states peaked
about E and also about E', in correspondence with a
finite sample line width characterized by the line shape
function g(v), so normalized that J'o"g(v)de=1. If
Eq. (19) is averaged over g(v) for a time r))Ts, where
Ts is the inverse line width (h~) ' one obtains rg(v)/4.
Thus one obtains a transition probability per second
averaged over the whole system,

ao'+a+'+a-'+b+'+b-'=1,

ag ——+ (A+B)Rj rg/4g+H,

b~ W(A B)R——~r~/4giPH—.
(15d)

(15e)

W(M, m M', m)=~ a(.)~/.
=g(~)(2&) '

)&
~
(Mm), fR(M'm') ('sec '„(20)

At this point we note that the spin Hamiltonian, Eqs.
(5) and (6), and the above discussion applies, strictly
speaking, to a single isolated electron-nucleus hfs-
coupled pair. We are actually concerned with a system
consisting of a large number, X 10", of such pairs,
still more or less isolated from each other but coupled
to a crystal lattice in which they are imbedded. We
use the usual perturbation methods and optical con-
cepts, 4'4's and accordingly we consider a typicat pair
to be described by the foregoing spin Hamiltonian,
energies, etc., and distribute the S pairs over the
energy levels of a single pair.

The action of an applied rf Geld Hi with components
B&, cosM t, H~„coscot, LI &, cosset will be found by
introducing a time-dependent perturbation, PC(t)
=,PC cosset. We take

,PC()= g„PHi.sg+-,'giP[(ai, —saio)S+
+(H,.+ia,„)S $, for s'~~a, (16)

rPCi= gdai. S,+oPL(ai.gri —iai,gi)S+
+ (Hi~g(i+saiogi)S g, fol' s J H) (17)

as perturbations on Eq. (5) and on Eq. (6), respectively;

"N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev.
7B, 679 (1948).

'o J. P. Lloyd and G. E. Pate, Phys. Rev. 94, 579 (1954).

Wi(M, m —+ M+1, m)
=Cgg (Hi.'+Hi„')R~'/4 sec-', (21)

Ws(M, m ~ M&1, m&1)
=Cgi 1 IIy~ 0!Eg r ' sec

W4(M, m ~ M, m%1)
=Cg~'(Hi~'+Hi„')n'r+ M' sec '

(22)

(23)

where C=g(p)P'/4'', n=B/2g„PH, and ~, r+ are
given by Eq. (Sb). For s'ia we use Eqs. (17) and
(15c) to obtain similarly

Wi(M, m —+M&1, m)

=C(g(PHi. '+gP Hi ')Ry'/4 sec '

Ws(M, m~M&1, m&1)
—Cg 2Q 2~ 2+~2r 2 SeC

—1

(24)

(25)

16 L. I. SchiR', QNantnm 3I/echanics (McGraw-Hill Book
Company, Inc. , New York, 1949), Chap. VIII.

which will be the same as W(M', m' —+M, m), since
,PC is Hermitian.

We evaluate Eq. (20) for the crystalline axis s'~~H

by using Eq. (16) and the wave functions of Eq. (15a),
assuming F0=1, q+((1 and neglecting terms of order

(q+q ), and find the transition probabilities
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Ws(M, m~ M+1, m+1)
=Cg~'II' 'y 'Ry'rg' sec—' (26)

W4(M, m~ M, mp1)

=&Lg~ 'Hi'h'++&-)'+g'Hi. '(7+—y-)'1r+'M'
sec-', (27)

where y~ ——(A+B)/4g@H.
The transitions, Eq. (21)—Eq. (27), are shown

schematically in Fig. 2 for S=~ and I=1, arbitrarily
chosen. W» corresponds to the usual allowed transitions
induced by the perpendicular rf field component.
Transitions W3 and W2, forbidden in zero order,
correspond to a simultaneous Gipping of electron and
nuclear spins in the same and opposite directions,
respectively, and are of interest in dynamic orientation;
they are induced by the parallel rf field component and
are weaker than W» by the order cP p'~2&(10 ',
typically, but are nevertheless often observed in
paramagnetic resonance spectra. "For s' J II we note
that W&/Ws= (A+B)'/(A —B)', which becomes unity
if

~

A
~

is either much larger or much smaller than
)
B

~

.
For s'~~H, Ws ——0. Transitions W4 correspond to low-

frequency transitions, which are useful in double-
resonance experiments. "

The spin Hamiltonian, Eq. (4), and the above
discussion apply to paramagnetic ions in crystals which
have at least a double degeneracy in the lowest state.
Sy Kramer's theorem all ions with an odd number of
unpaired electrons have this degeneracy. An even
number of unpaired electrons requires individual
consideration in each case, but for some cases (e.g.,
Ni'+, Ho'+) an effective spin Hamiltonian of the form
of Eq. (4) is valid and the above discussion applies.
However other cases (e.g., Fe'+, Pr'+, Tb'+) are
approximately represented by a spin Hamiltonian in
the crystal coordinates (x'y's') of the form":

K=g&iPS, H cos0+AI;S, +5;S +h„.S„., (28)

I
, I

2

where 0 is the angle between s' and the dc field H,
and the small terms 6, A„probably arise from a
random distribution of crystal fields of low symmetry.
An applied rf field has no matrix elements between the
zero order wave functions P(M, m), since go=0. The
6 terms admix the states so that ll (M,m) =aip(M, m)
+b~tPs(M&1, m), and the rf field component Hi,
induces transitions of type W» in first order. However,
dynamic nuclear orientation by saturation of transitions
of type W2 or W3 will not be practicable in this case,
since these transitions are highly forbidden, being
induced only by the small (previously neglected)
term g„&Hi I cos~l.

Z. nuclear Electric Quadrupole Interactions

Forbidden transitions obeying the selection rules of
W2 and W3 may also be obtained through a mixing of
the zero order functions by the quadrupole term I' in
Eq. (4), as discussed in detail by Bleaney. "To review
this case we take a spin Hamiltonian in the laboratory
coordinates:

X=gPHS, +A &.S+PL(I, cos0+I, sin0)s
—I(I+1)/3j, (29)

where 0 is the angle between s and the crystalline axis
s', with y~~y', and we have assumed isotropic g and A
tensors. Let P&A. Neglecting terms in A/AH, the
first order wave functions will be:

iP( M, m)= Ps+(M, m)+P+P'(M, m+1)
+p P(M, m —1)

+s+P(M, m+2)+s P(M, m 2), (30a)—
where

p~= WP sin0 cos0(2m+1)r+/2AM, (30b)

s~——WP sin'0(I&m+2) (I&m —1)rp/SAM. (30c)

The quadrupole interaction adds to the energy, Eqs.
(9) and (10), this term:

E„=PL(zs) cos'0 zr Lm' —I(I+1—)/3 j (31.)

FIG. 2. Rf-induced transi-
tions, Kq. (21)—Eq. (27),
for an hfs system with
S=~~, I=i. The levels are
characterized by (M,m).

I
2

(- -i)l

2

An applied rf field, represented by a perturbation like
that of Eq. (16), induces the usual allowed transitions
given by Wi of Eq. (21). In addition, the following
forbidden transitions are induced;

Ws(M, m —+M&1) m&1)=Wipe'(M&1) '
sec—' (32a)

Ws(M, m —+ M&1, m&1) =Wipe'(M&1) '
sec ', (32b)

Ws(M, m —+ M&1) m&2)=Wisp'(M&1) '
sec ', (33a)

'7 See, for example, B. Bleaney, H. E. D. Scovil, and R. S.
Trenan, Proc. Roy. Soc. (London) A225, 15 (1954).

G, Feher, Phys. Rev. 103, 834 (1956)."J. M. Baker and B. Bleaney, Proc. Roy. Soc. (London)
A245, 156 (1958),

Ws(M, m ~ M&1, m&2) =Wis~'(M&1) —'
sec—'. (33b)

~0 B. Bleaney, Ph&l. Mag. 42, 441 (1951),
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The positions of the allowed transitions H/~ are
unchanged by the addition of F.„, Eq. (31). However
the transitions 8 2 and 8 3 above are shifted in position
and a term F(1+2m)[(-,') cos'8 ——',]/gP must be added
to Eqs. (13) or (14).

We note that in the quadrupole case 82 and 8'3,
Eqs. (32a) and (32b), are weaker than Wi by the
factor (P/A)', which in some cases will be consider-
ably larger than the factor (A/gPH)' for the magnetic
hfs case of Eq. (22). For example, all the transitions
Eq. (32) and Eq. (33) have been observed in the
paramagnetic resonance spectra of Cu'+" and U'+"
with the intensities only about one order of magnitude
less than the main transitions. There is no evidence in
the resonance spectra of most paramagnetic ions,
however, of an appreciable quadrupole term, i.e., the
data are consistent with 8&A/50, typically. We note
nevertheless that because of random lattice distortions,
etc., there may exist in some cases an appreciable mean
square quadrupole interaction (F )A„with a vanishing
average value of P. Thus the average positions of the
transitions W2 and W3 would be given by Eqs. (13)
and (14), but the intensities by Eqs. (32a) and (32b).

We generally conclude that quadrupole interactions
are an important source of matrix elements for forbidden
transitions useful in dynamic nuclear orientation.

B. Relaxation Transitions

We make no proper attempt here to calculate
transition probabilities due to thermal processes. We
try, instead, to merely represent the various complex
relaxation interactions by simple and approximate
Hamiltonians of arbitrary magnitude. These are
considered as time-dependent perturbations on the
spin Hamiltonian, Eq. (5) or (6), and relaxation
transition probabilities per second are calculated, the
object beirig to find the selection rules and the relative
transition probabilities for certain simple assumptions.

We assume that the most important relaxation
interactions may be approximately represented by

TK(1) Q [SapgalHl (1)+Skoal(t)HL+Iapg Hi (1)

+SaFai(&)Ii+IkPai(&)Ii+SaAi(&)Si]. (34)

The first and second terms represent the electron
spin-lattice interaction where Hi (1) is an equivalent
fiuctuating magnetic-field component due to thermal
agitation of the lattice, and Xki(1) is a fluctuating
component of the g tensor due to thermal modulation
of the spin-orbit coupling. The third term represents the
direct nuclear-lattice interaction and will usually be
quite negligible. The fourth term represents the thermal
modulation of the magnetic hfs interaction, where

"B.Bleaney, K. D. Bowers, and D. J. E. Ingram, Proc. Roy.
Soc. (London) A228, 147 (1955)."P.B. Dorain, C. A. Hutchison, Jr., and E. Wong, Phys. Rev.
105, 1307 (1957).

Q SaFai"Ii=GS,I.+B S I+.+BUS+I +C S+I+

+C~S I +D SpI,+D+S I,
+F. S,Ii+E+S,I, (36)

where 4B~——[F„"+Fv„"+i(F,v" F„")],4'=—[F„"
F„v"+i(F„"+F—„,")],2Dg ——[F„"&iF„,"],2' ——[F„"

+iF,v"], G=F„".Using zero order functions |to(M,m)
we find the following transition probabilities per
second for the most general assumption that the nine
components Fai" (1) are all independeiit and completely
uncorr elated:

rWi(M, m —+ M&1, m)
=[I„(vi)+Iv, (vi) ]Rp'm'/16k',

rW~(M, m ~ M&1, m&1)
=[I**(»)+I-(»)+I*.(»)

+J„g(vg)]R~'r~'/64Ia', (37b)

rW3(M, m —+ M+1, m&1)
=P-(»)+I-(»)+I.,(»)

+I (v)v]3Rp'rp'/64h', (37c),

(37a)

rW4(M, m —& M, m&1)
= [J„(v4)+J,„(v4)]M'r~'/16''. (37d)

Fai(t) is a fluctuating component of the A tensor. The
fifth and sixth terms similarly represent the Quctuations
in the nuclear electric quadrupole interaction and in
the crystal field interaction, respectively.

We write Eq. (34) as rK(1) =P~ r3C„(t) and assume
that each of the time variables has a broad and smooth
frequency spectrum so that a typical term in Eq. (34)
[e.g., S,F,(t)I,] may be represented by ABC„(t)
=P„z3C„"(t) where rK„"(t)=b„"Q„cos[2irvt +y„"(t)]
is the Fourier component at frequency v; Q„ is a spin
operator (e.g. , S,I,). We assume that the phase y„"(1)
is a random variable such that the correlation function
(q „"(I)q „"(t+r))&,=f„"(r) is sharply peaked aboutr= 0
with a width r„"=self-correlation time. Then in a
way similar to that for Eq. (20) we find an average
transition probability per second due to rK„(t) for
times 7.)&r„".'

W„(M, m —+ M', m') =P„~a„"(r)I'/r
= (25) 'J'„(v')

~
(Mm ( Q (

M'm')
~

' (35)

where v'= (E—E')h, and J'„(v')hv=
~

b„"'~'=mean
squared Auctuation energy density between v' and
v'+hv due to the term rX (I) alone. Other terms with
the same matrix elements, i.e., the same frequency v',
will simply add to this if we assume, for the moment,
that the cross terms vanish because of incoherence,
i.e., r))r„"=cross-correlation time, defined by (&p„"(1)
X &pm" (&+rem))Av g (pn" (0) pm" (0))Av

As an example we consider separately the magnetic
hfs relaxation term, expanding in the laboratory
coordinates the component at frequency v ..
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Here we have introduced the spectral densities J„(vi)
= i,F "&~'hr, etc. , where iih is the energy difference
for transitions S'~, etc.

From Eqs. (37b) and (37c) we note that if we
assume a reasonably flat spectral density, J„(r2)
=J„(i3), then zW3 ——zW2, i.e., the probability that an
electron and a nuclear spin be simultaneously Qipped
in the same direction is equal to the probability that
they be Qipped simultaneously in opposite directions.
This could cause the dynamic nuclear orientation
obtained by saturating allowed transitions to vanish in
first order, as shown below. On the other hand, if we
assume the other extreme case, namely, that the nine
components F~i"(t) are completely coherent, r&&r„",
then pt/t/ ~ and ~t/t/4 are unchanged but cross terms add
to &t/t/'2 and subtract from zt/I/"3, so that they are no
longer equal.

Furthermore in many cases, e.g. , when S is a real
spin vector, " the 3 tensor is symmetric and we expect
the F tensor to be likewise: Fl, i"(/) =Fiq" (t). This
assumption does not change p8 ~ or pS'4 but the
bracketed factor in Eq. (37c) becomes LJ„+J»+4J,„j
and in Eq. (37b) it becomes fJ„+J»], again making
z H/2/ ~B'3, unless the o6-diagonal term J „is negligible.
Finally if we assume complete coherence, Ii =I'»,
and vanishing off-diagonal terms (F,„=O, etc.), then
~$'2/0, pt/1/'~= zlV~= TW4 ——0, which is the special case
previously considered by Abragam. 4 Consideration of
a definite model is necessary for a more specific estimate
of the transition probabilities but we generally conclude
from this discussion that ~H/~, ~t/t/'2, ~t/t/'3, pw/'4 may all
be of the same order of magnitude, perhaps even
zW2= z 8 3 in some cases, but only in special cases does
gag ——0.

Similar consideration of the first two terms of Eq,
(34) show that they will produce relaxation transition
probabilities rW essentially given by Eq. (21)—Eq. (27)
if we replace C by P'/4l' and grzHi, ' by E,(v), etc.,
where Z (r)b, v is a component of the fluctuating
magnetic energy density between i and v+hi. The
transition probability z t/t/'j corresponds to the classical
paramagnetic relaxation and will probably be dominant,
particularly for paramagetic ions in hydrated crystals.
The transition zW2' is weaker by the order (J3/gPH)'
and must be added to rWz of Eq. (37b), which may
dominate it at high fields but not at low fields. For
z~~H, rW3' ——0 but for z' J H, rW3' may be an important
addition to rWz of Eq. (37c).

The nuclear quadrupole term in Eq. (36) may be an
important process in some cases. Even if the static
tensor P&& vanishes, e.g., because of cubic symmetry,
the fluctuating tensor p, i(t) does not necessarily do
so. This term induces relaxation transiti. ons of the
types W(M, m —+ M, m& 1) and W(M, m ~ M, m&2)
and could even be the dominant process if P~~ is
unusually large ( 0.03 cm ').

23 B.Bleaney and M. C. M. O' Brien, Proc. Phys. Soc. (London)
869, 1216 (j.956).

Fxo. 3. Relaxation transi-
tions for an hfs system
with I=-,', S=-', . The levels
are characterized by (M,m).
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The crystal field splitting term dpi(t) may also be
important particularly if the static term D&& is large.
In zero order it induces relaxation transitions of the
types W(M, m~ M&1, m) and W(M, m~ M&2, m).
In first order, transitions of the type W(M, m —+ M+1,
m&1) may also be induced, weaker by (8/AH)z.

We summarize this section by means of Fig. 3,
which represents schematically for the case I=-,',
S=—, the various relaxation transition probabilities.
For example, w= P rWi is the sum of all the transition
probabilities per second for the transition (M, m —+ M
&1, m) due to the various terms in Eq. (34); bw is a
similar quantity for (M, m —+M, riz+1), where b is
a dimensionless factor; etc. In view of the above
discussion we consider that it will not be unrealistic to
suppose that c, b, and f may have almost any values
between zero and unity, approximately. In the following
section we calculate dynamic populations for several
"typical" cases.

dN;/dt= Q [N;(W, ,+U;,) N;(W;;+U,;)), —
jwi

z=1, 2, rz (38).
Here W, ;=W;,=W(M, m+-+ M', m') is the rf-oscillator-
induced transition probability per second between
P; and f;; U;; = rrt, ,p; is the effective relaxation transition
probability per second from P; to P; and U,,=w, ,p,
is the e6ective relaxation transition probability per
second from P, to P;, where p, =exp( —E,/kT) and
m;;=a;; is the total transition probability per second

C. Populations, Polarization and Alignment

We have S 10" electron-nuclear hfs coupled pairs
to be distributed. over a closed group of e= (2I+1)
(2S+1) energy levels; let N; be the population of the
ith level. Under the simultaneous action of applied rf
fields and relaxation processes the populations are
given by the rate equations
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due to all thermal perturbations as calculated in 8
above. The Boltzmann factors p, , p; are introduced to
reQect the fact that the relaxation transitions are the
result of thermal processes and, in the absence of rf
fields, yield after sufficient time the steady-state
solutions 1V;/1V, =p, /p;, corresponding to thermal
equilibrium. If, in addition, rf 6elds are applied, we
refer to the resulting steady-state condition as dynamic
equilibrium, Take 8'A, ~/0 and all other 8',;=0. The
resulting rate equations may be solved directly, or they
may be put into the following form:

I,=O= P [(V;—V;)/It.'„J,
j'Qi

i=1, 2, I, Wk, l, (39a)

I& I& ——P[—(V;———Vi) It'-;&]

Neglecting the hfs splitting A/2 in comparison to
gPH in the expressions for the Boltzmann factors,
the resulting nuclear polarization in the erst order
approximation, cd=1+6, is

(-~/2) (1+c)

2c+1+fi
(40)

where A=hi/kT. The exact behavior of pi with 6 is
shown in Fig. 4 for various values of c and b. W'e note
that pi is independent of f and not very sensitive to c;
pi is appreciably affected by b only if b approaches unity.

2. For the same system, Fig. 3, we instead induce
strongly the allowed transition Wi(s, s —+ —s, s) so
that 1V(is, si) =1V(—is, xs). The resulting nuclear Polariza-
tion to first order is

= —2 r(VJ—V.)/~'j, (39b) (—~/4)(f —c)(1+&) .
(1+9+c)(1+5+f)—1 (41)

if we define R;s= [w;ip;psj ', V, =1V;/p, , and Ii
= (1Vi—1Vi)Wi, i. This result, previously obtained by
Bloch'4 by a different method, shows that the rate
equations are formally equivalent to the Kircho8
equations Eqs. (39a) and (39b) for the net current
I;, II„ I&, , out of each junction point i, 0, l, , of
a network of resistors R;~, E;~, -, where the potentials
at the junction points are V;, VI„V~, ~ . Thus the
problem of finding the dynamic equilibrium populations
is equivalent to finding the potentials in the passive
network problem, subject to the normalization condition
P; U;p, =P;1V;=1V. We have used this method to
calculate the resulting steady-state nuclear orientation
in the following cases:

1. For the system of Fig. 3 the nuclear polarization
is given to a good approximation by pi ——[1V(s,s)
+1V(—s, k) —1V(k, —k) —1V(—s, —k)j/Z1V;. Let us
induce the forbidden transition Ws(is, —is—& —si, si)

with a sufficient rf field to equalize the populations:
1V(—„—s) =1V(—s, s); i.e., we saturate this transition.

Ke note that: for c=b=0, this polarization is half as
large as that of Eq. (40); if f=c, pi vanishes; pi is
appreciably reduced if fi approaches f in value. The
more exact behavior of pi with 6 is shown in Fig. 5
for selected values of c, f, and b; it shows that at
sufficiently large value of 6 there is a nonvanishing
second order term in pi, even if f=c, etc.

3. For the hfs coupled system I= j., S=~ of Fig. 6,
we calculate the nuclear alignment, given to a good
approximation by

p, = [1V(-', , 1)+1V(——',, 1)+1V(-,', —1)+1V(——,', —1)
—21V(-', ,0) —21V(——',, 0)j/Q IV .

First we assume 6=0, c=0 and saturate the allowed
transition Wi(is, 1~—is, 1). The resulting dynamic
nuclear alignment is shown in Fig. 7(A). If, instead,
we saturate the forbidden transition Ws( —si, 1 ~ si, 0)
the resulting alignment is as in Fig. 7(B); etc. for the
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FIG. 4. Dynamic nuclear polarization p1 versus 5 for saturation
of the forbidden transition W~(-,', ——', —+ ——,', —,') of Fig. 3, for
various relative values of relaxation transition probabilities.

s', F. Bloch, Phys. Rgv. 102, 104 (1956),

-I 0
0 2 3

6 = h&/kT

FIG. 5. Dynamic nuclear polarization p& versus 6 for saturation
of the allowed transition 8'1(-,', —,

' —+ ——,', —,') of Fig. 3, for various
g|;lative values of r|;laxation transition probabilit;its,
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other transitions. If the dc magnetic field II is slowly
varied with constant applied rf frequency v, the
transitions corresponding to Fig. 7(A), 7(B), , may
be successively saturated and the resulting pattern
of the steady-state nuclear alignment ps versus H is
shown in Fig. 8 for the case b=0, c=0, which yields
the maximum alignment. One finds that the alignment
produced by the forbidden transitions is not appreciably
reduced unless c and b become comparable to unity,
whereas the alignment produced by the allowed transi-
tions is, in 6rst order, reduced to zero if c=f, or if
b))f. The results are similar to those for pi in Figs. 4
and 5, and one draws these general conclusions:

Polarization or alignment produced by the saturation
of the forbidden transitions is a process in which the
nuclei are directly flipped (simultaneously with an
electron) by the applied rf fields; since the transition
probability for this process can, in principle, be made
as large as desired by increasing the rf power, the
competing relaxation processes, bm and ne in Fig. 3,
do not appreciably reduce the orientation unless they
are comparable to the major process m. On the other
hand, the saturation of the allowed transitions produces
in first order in 6, an orientation only through a cross
relaxation process, say fw. That is, the nuclei are
indirectly flipped by a relaxation transition and the
orientation is appreciably reduced if the competing
relaxation processes nv and bm become comparable to
fw; this is a more severe restriction. For 6&1, second
order effects partially nullify this advantage of using
forbidden rather than allowed transitions. For example,
Fig. 5 (E) shows that at 6& 1, saturation of the allowed
transition will produce a polarization pi=a even in
complete absence of the cross relaxation transitions
cw or fw.

In all of these methods the dynamic orientation is
obviously reduced to zero at all values of 6 if b))1;

l.0
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FIG. 7. Dynamic nuclear alignment P2 verses 6 for rf saturation
in Fig. 6 of these transitions: curve A, Wi(s, 1 ~ —i» 1);curve 8,
Ws(-', , 0~ ——',, 1); curve C, Wi(-', , 0-+ ——,', 0); curve D, Ws(-', ,—1~—ss 0); curve E, Wi(-,', —1~ ——,', —1). It is assumed
b=c=o.

however, this is not a very realistic assumption, at
least for paramagnetic ions in hydrated crystals.

For a general spin I in a system similar to Fig. 6
with c=0, b=0, the saturation of the forbidden
transition Ws(~„m —+ —is, r)s+1) yields the polarization
and alignment

1 (e a ea) L—I(I+1) m(m—+1)]
1 (42)

2I (1+e a) (I—m)+ (1+en) (I+res+1)

Ps ——P i(2m+ 1)/(2I —1).

The saturation of the allowed transition Wi(is, r)s —& —s,

Pp
O.I—

FIG. 6. Relaxation transi-
tions for a hfs system
arith I= 1 S= z-

bw
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FIG. 8. Dynamic nuclear alignment p& eersgs field H for rf

saturation, at two different values of 6, of the transitions A,
B~ ' ' '~ of Flg. 7.
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m) yields
1 (es —e s)[I(I+1)—m(m+1)g+(1+e s)2m

Pl
2I 1 e~ l m 2

2=
I(2I 1)—

( + )( + )+ +(1+e )(I m)

(es—e ~) (m+ s)[I(I+1)—m(m+1) j+(1—e ~)[3m' —I(I+1)]
(1+e-s)(I+m)+2+ (1+e')(I—m)

(44)

(45)

We have considered only steady-state values of
dynamic nuclear orientation. Pipkin and Culvahouse"
have discussed the transient case, important in
systems with long relaxation time, such as in doped
silicon. We note further that dynamic orientation by
forbidden transitions is in a rough sense the steady-state
analog of Feher's" transient method using two successive
adiabatic fast passage inversions of populations.

III. DIPOLAR COUPLING

The case of an electron and a nucleus in weak dipolar
coupling in crystals has been discussed by Abragam, 4

who showed that essentially no dynamic nuclear
orientation was to be expected upon saturation of the
usual allowed electron transitions. However, forbidden
transitions which simultaneously Rip an electron spin
and a nuclear spin will indeed produce a dynamic
polarization, as was first demonstrated by Abragam
and Proctor" in a slightly modified way in a crystal of
LiF: the nuclear spin involved was that of Li' and the
"electron spin" was in eRect that of F". The method
has been used to obtain appreciable nuclear polarization
of H' ""Si","F","and others, Here we are concerned
principally with nuclear alignment, however.

We do not treat the general case of an electron spin
surrounded by many nuclear spins, but instead take a
simpler model in order to estimate the dynamic p-ray
anisotropy obtainable. Consider a single diamagnetic
crystal containing a small fraction of paramagnetic ions
and an even smaller fraction of some radionuclei of
diamagnetic atoms, all at helium temperatures and in
an external dc held H of a few thousand gauss. For a
"typical pair" consisting of a paramagnetic ion S and
a radionucleus I, separated by a distance r, we take as
the spin Hamiltonian in the principal coordinates
(x'y's') of the ion g tensor

K=g«PS;(H;+D;)+giP[5;(H +D;)
+~w (Hw+Dw))

+g„P(H, I, +H„ I„+H;I,)+Kw, (46)

"F.M. Pipkin and J. W. Culvahouse, Phys. Rev. 109, j.423
(1958);J. W. Culvahouse and F. M. Pipkin, Phys. Rev. 109, 319
(1958); F. M. Pipkin, Phys. Rev. 112, 935 (1958).

"G.Feher, Phys. Rev. 108, 500 (1956).
'~ E. Erb, J. L. Montchane, and J. Uebersfeld, Compt. rend.

246, 3050 (1958).
28 J. Borghini and A. Abragam, Compt. rend. 248, 1803 (1959);

O. S. Leifson, P. L. Scott, and C. D. JeGries, Bull. Am. Phys. Soc.
Ser. II, 4, 453 (1959).

'9A. Abragam, J. Combrisson, and I. Solomon, Compt. rend.
247, 2337 (1958).' M. Abraham, M. A. H. McCausland, and F. N. H. Robinson,
Phys. Rev. Letters 2, 449 (1959).

where the magnetic dipolar field at S due to I is given
by D=g„Pr '[I—3rr '(I r)], and K„ is the nuclear
electric quadrupole interaction of I. For simplicity we
omit all other interactions of the paramagnetic ion.

We transform Eq. (46) to the laboratory coordinates
(x,y,s; r,8, p) as in Sec. II A for s'~~s~~H. For 3C„, g PD
«g PH, the first order wave functions are

A, (M,m) =dog'(M, m)+if++(M, m+1)
+d it'(M m —1) (47a)

where

et+ ——~(ss)g»Pr 'H ' sin8 cos8Mrp exp(pp). (47b)

An applied rf field, Eq. (16), induces the allowed
transitions Wi given by Eq. (21), and in addition, the
forbidden transitions

Ws(M, m ~Ma1, m&1) =Wir~'o' sec ', (47c)

Ws(M m —+M~1 m~1)=Wiry'o' sec ' (47d)

where o.= (s)g„Pr 'H ' sin8 cos8.
For s'J H one obtains it, by replacing g~& by g, in

P», and rf perturbation, Eq. (17), induces the allowed
transitions Wi of Eq. (24) and the forbidden transitions
obtained from Eqs. (47c) and (47d) by replacing g[[ by
g& in the expression for g. Thus anisotropic ions where

g J.))gl l 0 may be used for inducing the transitions S'2
and W3 if one takes the orientation s~~H J s'J Hi.

The energy levels are shown in Fig. 9 for the case
S=—,', I=1. The transitions 82 and 5'3 were first
observed by Livingston and Zeldes" and appear on the
paramagnetic resonance spectra as two satellite lines
spaced ag„H/g gauss about the main transition line Wi.
The relative intensity is of order W&/Wi~o' 10'r 'II '
where r is in angstroms and H in gauss. For r 10 A,
characteristic for a paramagnetic ion concentration of
~10 ', and H~104 gauss, the relative intensity (T' 10 '
is too small to permit direct observation of 8'~ and H/"3

but they may nevertheless be eRective in dynamic
nuclear orientation if they are theoretically resolved,
which, for the moment we assume: the electronic line
width AH «g„H/g.

We assume' "that the important relaxation processes
are represented by the first, second, third, and fifth
terms of Eq. (34); i.e., we neglect the fluctuations in
the dipolar coupling. The principal relaxation transitions
will be: wt(M, m —+ M ~1, m) and to2(M, m ~ M+1,

"H. Zeldes and R. Livingston, Phys. Rev. 96, 1702 (1954);
G. J. Trammell, H. Zeldes, and R. Livingston, Phys. Rev. 110,
630 (1958).

'2 N. Bloenibergen, Physics 15, 386 (1949).
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m~1) =ws(M, m —+ Ma1, m+1) due to the first
and second terms (electronic); and w4 (M, m —& M',

m&1.) and wr(M, nz —& M, m&2) due to the third and
fifth terms (nuclear). These relaxation transitions are
represented schematically in Fig. 9, where f, b, and d
are dimensionless parameters; we expect f rrs, and b

and d to be determined by residual paramagnetic
impurities and quadrupole interactions.

I.et us saturate the three coincident allowed transi-
tions Wi(-'„1 —+ ——',, 1), Wi(-'„0~ ——',, 0), and W'i(-', ,—1 —+ ——,', —1) in Fig. 9. Then the populations of
all the levels become equal in the steady state and the
dynamic nuclear orientation remains zero for all
values of h=hv/hT.

Let us, instead, saturate the two coincident forbidden
transitions Ws( —'„0-+ —si, 1) and Ws(sr, —1 —& —xs, 0).
If b, d, f&&1 the steady-state dynamic populations take
the values shown in Fig. 9(a), corresponding to a
nuclear Polarization (Pi) ws= (1+e a—e~—e'~)/(2+2ss
+e—a+e'~) =—(ss)h and to a nuclear alignment

(p2)ws
——(e ~ es 1+e'~)—/(2+—2ea+e ~+e'a) =dP/3.

If instead of 8'2 we saturate the two forbidden transi-
tions W3(rs, 1 —+ —s, 0) and Ws(sr, 0 —+ —xs, —1), the
populations become those of Fig. 9(b), corresponding to
a polarization (pi) ws —=—(pi) ws and an alignment

(Ps) ws= (Ps) ws. Thus the polarization is reversed, but
the alignment, being only a l9 effect, is not. At a
frequency v 3&(10" cps and a temperature T 1'K,
the second order alignment is considerable, however,
and would yield p-ray anisotropies of 10%%uq, typically.

It is clear that the values of pi and ps thus calculated
are optimum values and will be appreciably reduced if
b or d or f become comparable to unity.

In the event that the electronic hne is homogeneously
broadened over a width DH&)g„H/g, the transitions
8 ~, 8"2, and 83 can essentially occur simultaneously
throughout the sample, equalizing the populations,
with a neg1igible resultant nuclear orientation. However,
if the line is inhomogeneously broadened" a polarization
is observed, ""reduced by a diGerential eO'ect due to
the fact that (pi) ws= —(pi)ws. Since (ps) ws —=(ps)ws
one would not expect a corresponding

differential

reduction in the alignment and the p-ray anisotropy.
For an inhomogeneously broadened line width AH
&g„H/g it may be possible at feasible rf powers to
sweep through the line, saturating the 8'~ and 83
transitions, in a time short compared to the times

(fw) ', (bw) ', (dw) ' required for the saturation of
the lV& transition to destroy the alignment produced by
8'2 and H/3.

Finally, if we consider the case where the quadrupole
term K~ in Eq. (46) is comparable to the nuclear
Zeeman term, then the (~s,m) levels and the (—~s, m)
levels in Fig. 9 are no longer equally spaced. Instead of
two, there are four forbidden satellites about the main

"A. M. Portis, Phys. Rev. 91, 1071 (1953).
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Fio. 9. Magnetic energy levels (M,m) and relaxation transitions
for S=-,' and I=1 in weak dipolar coupling. Column (a) gives the
populations for rf saturation of forbidden transitions IVg, Eq.
(47c), assuming b, d, f«1. Column (h) is for saturation of transi-
tions 5'3, Eq. (47d).

line. Saturation of any one of them produces a first
order term 6 in the alignment.

IV. y-RAY ANISOTROPY

She angular distribution of 7 radiation from oriented
nuclei has been adequately treated" and we use the
results and notation of Steenberg. '4 Consider a system
of nuclear spins distributed over a set of magnetic
energy levels of the types in II or DI above, where X;
is the population of the ith level. Assume, for the
moment, that m; is a good quantum number: Q, l I.l P;)
=m;. If the nuclei are radioactive and decay by
emission of a series of p-rays and particles, the angular
distribution of a given p-ray transition can be written
in the form:

G(9) =g, 1V,Gm;(0)/Q; X,, (4ga)

Q 11s——0,

the first two being IIs (m, I)=3m' —I(I+1), and

II4(m, I) = (P,) [35m4 —5 (6I'+6I—5)m'

+3I(I+1)(I+2) (I—1)j.
'4 N. R. Steenherg, Proc. Phys. Soc. (London). A65, 791 (1952).

G„(8)=1+pi, oblli, (r~s,I)Pi(8), k = 2,4 .
,2P. (48b)

Here 0 is the angle between the y-ray detector and the
z axis; the o.I, are nuclear parameters given explicitly
by Steenberg, '4 which depend on the various angular
moments involved in the decay scheme; the Pi(8) are
the Legendre Polynomials: Pi (ss) cos'tl —(sr), Ps (ss)—— ——
XL(35/3) cos'0 —10 cos'9+1j, etc. The 11s are essen-
tially Clebsch-Gordan coefficients and. have the property
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where

—A&2 2
—SQ4 4&

ps'=Q; X,lls(m;)/Q N;, k=2, 4. (51)

It is seen that the alignment ps defined in Eq. (2) is

simply a normalized generalization of ps' to include
the case where nz; is not a good quantum number; etc.
for p4, p4'. If p4 or n4 are negligible, and the forbidden

The upper value of k is restricted to 2p, where p is the
smallest of the various angular momenta involved in
the decay scheme, including those of the initial and
intermediate nuclear states and the y-photon. We
restrict our discussion to k=2, 4, which is sufhcient to
include dipolar and quadrupolar radiations.

For the system of II the angular distribution G(8)
will show an anisotropy even in the absence of a
dynamic nuclear orientation because of the various
static orientation processes. In the usual static orienta-
tion experiment one observes the temperature variation
of this anisotropy at very low temperatures, in order to
determine, say the hfs coupling constants and the
nuclear spin. It is convenient to do dynamic orientation
experiments at a constant temperature in the liquid
helium range, where the anisotropy from static processes
is usually quite small and negligible in comparison to
that from dynamic processes. Then it is useful to
deGne a dynamic anisotropy

.=I G(~/2) —G(O) j/G„ (49)

where G(sr/2) and G(0) are the y-ray counting rates in
the directions perpendicular and parallel to the H field

(z axis), respectively, under conditions of dynamic
orientation, and Go is the average (essentially isotropic)
counting rate in the absence of dynamic orientation.
This differs somewhat from the usual definition of
anisotropy, but it is the parameter actually measured
in our experiments. ' ' The anisotropy can be re-written

transition 1Fs(-'„I——+ —-'„I—+1) is saturated, e=
—36n&I(2I—1)(2I+1) ', which has the typical order
of magnitude e 0.05 for b, =hv/kT 0.3, ns 0.05,
I 2. If the various transitions, forbidden and allowed,
are in turn saturated by varying the dc Geld at constant
frequency a p-ray anisotropy pattern similar to the
ps pattern of Fig. 8 will be observed, from which the
spin I and the hfs constant A may be directly det'er-

mined. In eGect the paramagnetic resonance spectrum is
observed through the p-rays, an idea suggested by
Bloembergen and Temmer. "

To estimate the sensitivity of this type of experiment
we note that the number of nuclear decays necessary is
of order D (s/e)'(C/I"), where s is the signal to noise
ratio in observing an anisotropy c in each of a total
of C "channels" of the resonance spectrum, and Ii is
the p-ray loss factor due to geometry and detector
ineKciency. With the typical values s 10, e 0.01,
F 0.003, C 100, the total number of decays required
is of order D 3&10".For a half-life of a few hours we

may equate this number to the minimum number of
radionuclei required; this is to be compared to direct
paramagnetic resonance absorption where approxi-
mately 10"nuclei are required in a typical experiment.

V. COMPARISON WITH EXPERIMENTS

In Table I are brieQy summarized some of the results
at Berkeley of Abraham et al. ,

s and Kedzie et al. ,
r'

in attempts to dynamically orient radionuclei of para-
magnetic ions in strong hyperfine coupling, Sec. II.
Several crystal structures with widely di6ering para-
magnetic parameters are represented. All the experi-
ments were performed at an rf frequency of v=9X10'
cps and a temperature T=1.5'K. For each case, all
the p-rays in the total decay scheme were counted in
measuring the anisotropy. The counting rate was such
that an anisotropy e~ 10 ' would have been detected.

TABLE I. Summary of dynamic nuclear orientation experiments on radionuclei at Berkeley (Abraham et ut. ,
' and Kedzie et at. ).

Experiment
No. Nucleus

Co~

Co~

Mnl 3'

Ce141

Np238, 239

Crystal

LasMga(NO3)» 24 DuO, site I
La2Mg~(NO, )» 24 D~O, site II
La~Mg, (No3)» 24 H20, site I

LasMgs(NO3)~s 24 HsO, site II

'La2Mg3 (No3) 12.24 H20

UO2Rb (NOg) 3

Paramagnetic parameters

gi~=gq=4. 3; A =8=0.006 cm '

gq 8, gfi 2 3=0.018 cm ', 8=0
D=0.025 cm ~ A (54) =B(54)=0.0075 cm ~

gq=gl1=2; A (52) =8(52)=0.0035 cm '

D=0.006 cm ' A(54) =B(54)=0.0075 cm '
gi=g~~=2; A (52) ~B(52)=0.0035 cm '

gfi o.2, gz=&.8; A 0, 8=0.013 cm 1

estimated:
2~0.1 cm '
8~00j. cm '

g&&=3.4, go=0 8~0.03 cm '

7-ray

observed

0

See footnotes 6 and 8.
b See footnotes 7 and 9.
ss N. Bloembergen and G. Temmer, Phys. Rev. 89, 883 (1953).
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If Co'+ ions are substituted for Mg in LasMgs(NOs) rs

24HsO, there are two possible sites, magnetically
unequivalent. In experiment 1, Table I, we are con-
cerned with Co" in the almost isotropic site. A p-ray
anisotropy of ~ 0.01 was observed when the forbidden
transitions 8'2, Fig. 2, were saturated. Essentially no
e was observed for saturation of the allowed transition
Wt, this is probably because of appreciable relaxation
transitions ne or bm, Fig. 6, as discussed in Sec. II 8
above.

In experiment 2, we consider Co ions in the other,
very anisotropic, site in the same crystal. No 7-ray 6

for saturation of either forbidden or allowed transitions
was observed. We explain this as follows: For z~~H,

approximately, the transition probability lV2 is too
small because of the size of 8 to allow for the forbidden
transitions to be saturated. For zJ H, approximately,
we see from Eqs. (25) and (26) that since A))B,
TV~=@ 3. These would give rise to equal but opposite
alignments at very nearly the same dc Geld resulting
in a greatly reduced net anisotropy. Dynamic nuclear
alignment by saturation of allowed transitions fails
probably for similar reasons: f((b at z~~H and c=f
at zJ H.

If Mn'+ is substituted for Mg'+ in the double nitrate,
two sites are possible, one with a considerably larger
zero-Geld splitting than the other. In experiment 3 no
clearly detectable ~ was observed for radioactive
Mn" or Mn'4 at the site with the larger splitting. In
experiment 4, for the site with small splitting, anisotro-
pies of the order e 10 ' were observed corresponding to
saturation of either types of forbidden transitions S'2 or
8'3, which occur in the case of Mn'4 at appreciably
diferent dc Gelds; also saturation of the allowed
transition 5& produced an anisotropy. These experi-

ments have resulted in a measurement of the nuclear
moments: I(Mn ') = 6,

~
p(Mns')

~
=3.00a0.15 nm,

I(Mns4) =3, ~, (Mns4)
~

=3.29~0.06 ~.
In experiment 5, Ce"' was substituted for La in

the double nitrate crystal. Since g» 0.2 required a dc
Geld higher than was available the forbidden and
allowed lines were saturated in the orientation zJ H.
No p-ray e was observed, probably because the in-
equality B&&A makes 8"2=8'3, these transitions would
be nearly superposed for Ce"'.

In experiment 6, Np" and, separately, Np"' were
substituted for U in a uranyl rubidium nitrate crystal.
No y-ray e was observed for the approximate orientation
z~~B by saturation of either the allowed. or forbidden
transitions. Possibly the appreciable quadrupole inter-
action I' in this case makes the relaxation process bm

stronger than any others, signiGcantly reducing the
maximum alignment attainable.

Many miscellaneous pieces of information point to
spectral dimensions™ effects as additional and independ-
ent reasons for the failure to observe an alignment in
some cases.
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