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Atomic Photoelectric Effect at High Energies*t
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Total cross sections are obtained for the photoelectric effect from the E shell of an atom of arbitrary
charge, in the limit of high energies. An approximate analytic formula then is deduced to cover the entire
high-energy region. For heavy elements and very high energies the differences from previous predictions
are large. It is noted that these results also apply to other processes, including the one photon annihilation
of fast positrons.

M= e(2zr—)'h ' d'rilo*u ee'"'zPts,

where k is the momentum and e the polarization vector
of the incoming photon, 11 ~ is the electron wave function
for the bound state, and lp, the electron wave function
for the continuum state of momentum p. The differ-
ential cross section is obtained as

da= (2&)-s
( ~ ( s3(Z) dsP, (2)

where the conservation of energy is expressed by

E= (p'+1) &—l'z —e=0, (3)

with e, of order one Le=0(1)j,s the total energy, in-
cluding rest mass, of the bound state. Calculations are,
in principle, straightforward once the wave functions
are specified.
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%. Heitler, Qgaetgns Theory of Radiation (Oxford University
Press, ¹wYork, 1954), 3rd ed. The notation of this book has in
general been followed: in the use of unrationalized units for
charge, free electrons normalized to plane waves, p—= (p~, con-
ventional Dirac matrices, etc. However the units A=c=es, =1 are
used throughout.' In general x=0(y) shall mean x is of order y.

I. INT.RODUCTION

'HKORETICAL predictions of cross sections for
the atomic photoelectric eGect at high energies

are dificult to obtain, and results have been of uncer-
tain validity. In the present paper the use of an approxi-
mate Coulomb wave function, valid for the photoeffect
at high energies, permits a simple derivation of the high
energy limit of the total cross section. Approximate
expressions may then be developed to describe the
entire high-energy region.

The photoeGect is a vertex process in an external
field in which the initial electron state is discrete
(bound) and the final electron state belongs to the
continuum (unbound). Neglecting radiative corrections,
the matrix element is'

For tptz it is customary to assume a hydrogen-like
wave function, thus neglecting electronic interactions
and the finite size of the nucleus. Similarly |p, is taken
as an appropriate solution of the Dirac equation in a
pure Coulomb field. Although the methods developed
here have greater applicability, these approximations
will again be made in the explicit calculations.

The central difficulty in the treatment of the rela-
tivistic photoeffect arises from the wave function zoo of
the outgoing electron. The continuum solutions of the
Dirac equation are only available as an expansion in
partial waves, and for high energy processes a large
number of terms contribute to the matrix element.
Numerical calculations of the E shell have been per-
formed by Hulme et a/. ' for three elements and two
energies (0.35 and 1.1 Mev); for higher energies the
procedure becomes very arduous, although more feasible
with modern electronic computers. It is possible to sum
the series in the two limiting cases of small charge Z or
high energy k. Sauter' thus obtained the energy de-
pendence of the E-shell cross section in the limit of
small Z, and Hall' obtained the charge dependence in
the limit of large k. Combination of these results gives
an extrapolation formula which fits smoothly to Hulme's
numerical values. However, Hall's result, a double
integral for which he was only able to give a rough
estimate, has long been questioned. Prange and Pratt
and later Erberv have verified the double integral, but
it has now been shown by several authors "that Hall' s
subsequent approximation is incorrect.

An alternative Procedure is to establish zPzz in suc-
cessive Born approximations and obtain the cross

' Hulme, McDougall, Buckingham, and Fowler, Proc. Roy. Soc.
(London) A149, 131 (1935).

z F. Sauter, Ann. Physik 11, 454 (1931).
'H. Hall, Revs. Modern Phys. 8, 358 (1936); also H. Hall,

Phys. Rev. 84, 167 (1951).' R. E. Prange and R. H. Pratt, Phys. Rev. 108, 139 (1957).
~ T. Krber, Ann. Phys. 6, 319 (1959); also T. Erber and R. H.

Pratt, Bull. Am. Phys. Soc. 3, 368 (1958), and T. Erber (to be
published).

SF. G. Nagasaka, Ph. D. thesis, University of Notre Dame,
1955 (unpublished), also F. G. Nagasaka and E. Guth, Bull. Am.
Phys. Soc. 4, 13 (1959).' M. Gavrila, Phys. Rev. 113,514 (1959);also Nuovo cimento 9,
327 (1958).' R. H. Boyer, Ph. D. thesis, University of Oxford, 1957
(unpublished), also Phys. Rev. 11?, 475 (1960)."H. Banerjee, Nuovo cimento 10, 863 (1958), 11,220 (1959).

'z R. H. Pratt and T. Erber, Bull. Am. Phys. Soc. 3, 368 (1958).
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section as a power series in the parameter c=Ze',
where Z is the charge of the nucleus. The use of a plane
wave was attempted by Hall and Oppenheimer. "The
diKculty is that the bound state wave functions depend
on a and, in fact, only terms of relative order a survive
in the matrix element. Terms of this magnitude will
also come from the second term in a of the continuum
wave function, which may be obtained by iterating the
plane wave. ~" Sauter's results have been rederived in
this way by Fano, McVoy, and Albers. ' Gavrila' has
iterated twice and so also obtained the second term in
an expansion of the cross section in a, and its energy
dependence. This new information on the energy de-
pendence of the cross section is important in establishing
an extrapolation formula based on the correct a-depend-
ence of the high-energy limit.

A third approach is to introduce for Ps an appropriate
approximate Coulomb wave function, valid for high
energies in regions which contribute significantly to the
matrix element. The best known such function is the
so-called Sommerfeld-Maue (SM) wave function, """
which is expected to be valid neglecting terms of order
a'/k. From the preceding remarks it is evident that
such a function should give the complete charge de-
pendence of the cross section in the high-energy limit,
as well as the energy dependence of the lowest order
term in a= Ze' (Sauter term). The first two terms of an
expansion in a were computed by Nagasaka and
Sanerjee. "Boyer" expressed the total cross section in
the high-energy limit as a triple integral, which he
evaluated numerically for one case (Pb), confirming the
disagreement with Hall's estimate.

For the high-energy limit of the total cross section
even simpler approximate wave functions —"modified
plane waves" —sufBce. The derivation of the Hall
integral can be given in a few lines, the answers are
expressed in a simple form, and the physical signi6cance
of each part of the result is apparent. These features
make it possible to treat fairly easily not only photo-
effect from the E shell but also from the 1.shell (to be
reported separately).

The present paper begins with a discussion of approxi-
mate Coulomb wave functions (II), followed by a
general derivation of the high-energy limit of photo-
effect cross sections (III). Specializing to the E shell,
the first three terms of a power series in a for the total
cross section are obtained (IV). More important, the
total cross section is then evaluated numerically for
all a (V). Since there is considerable disagreement in
the published literature, these calculations are given in

some detail. The results are then reported and a new
energy-extrapolation formula established (VI).

It should be noted that the photoeffect is one of four
closely related vertex processes (the photoeffect, the one
photon annihilation of positrons, and their inverses). In
an appendix it is shown that at high energies the total
cross sections for all four processes are essentially
identical. In a second appendix previous work on the
photoeGect is discussed.

II. MATRIX ELEMENTS AND WAVE FUNCTIONS

We begin by determining the regions in r space which
contribute to the photoeffect matrix element at high
energies. For this qualitative purpose, it is sufhcient to
replace fbi by e '", where 1/8=0(1) is the bound state
radius ' " and fs by the plane wave e"&'. Then the
matrix element is characterized by the integral

Sx8
E= d'r exp—(—iA r—br)=

(82+ps) 2

where the momentum transfer 6=—p —k is introduced.
It is clear from (3) that in the high-energy limit d, ~& e.
Hence, if the matrix element is not to be negligible,
d, =O(1). The relation of k, p, and 4 at high energies
is shown in Fig. 1. Taking a coordinate axis along k,
pi(=Bi), the component perpendicular to k, is O(1):
at high energies electrons are mainly emitted very
close to the forward direction. Also AII, the component
of 4 parallel to k, equals e. These results will also be
needed for the derivation of total cross sections.

It is easy to establish that regions r=O(k"), tt/0, do
not contribute to (4) at high energies, i.e., the important
regions are r= 0(1). Similarly, a small angular interval
of extent k ", e&0, will give a vanishing contribution
unless it is in a direction such that 4 r=0. From Fig. 1
and the previous discussion it may be determined that

FIG. 1.Relation of photon
momentum L, electron mo-
mentum p, and momentum
transfer A, imposed by the
requirement of energy con-
servation. (a) very high
energies, (b) the limit of
high energies. Dimensions
are exaggerated.

"H. Hall and J. Oppenheimer, Phys. Rev. 38, 71 (1931).
'4 U. Pano, K. W. McVoy, and J. R. Albers, Phys. Rev. 116,

1147 (1959).
'~ A. Sommerfeld and A. W. Maue, Ann. Physik. 22, 629 (1935);

W. H. Furry, Phys. Rev. 46, 391 (1934).' H. A. Bethe and L. C. Maximon, Phys. Rev. 93, 768 (1954).
'~ H. Olsen, L. C. Maximon, and H. Wergeland, Phys. Rev. 106,

27 (1957).

(b)

' Here all parameters are considered of order of magnitude one
in comparison to the energy k. This also implies that the limit of
high energies would be taken before the limit of small Z.

'9 For a treatment of relativistic bound state wave functions in
the Coulomb 6eld, see H. Bethe and E. Salpeter, EacychoPeChu of
Physics (Springer-Verlag, Berlin, 1957), Vol. 35, Part I.
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for no 4 of interest can this direction coincide with k

[&=90' implies 6=0(k)). Thus, if cylindrical coordi-
nates p, g, s are introduced with s axis along k, the
important contributions to the matrix element come
from p=. O(1), s=O(1). An approximate Coulomb wave
function must be valid in these regions.

To obtain such a wave function we begin with the
Dirac equation

(e„—V P—+in V)gy=0

for an electron of energy e„ in the Coulomb potential V.
Alultiplication on the left with the operator (c~—V+P
—in V) gives the iterated equation

[V2+p' 2e—„U+V'+in (V.V) )py =0. (6)

Following now with the substitution P, =e'~'Fu,
where e is taken as a free-field spinor, yields

[2ip V+V2 —2c~V+V2+in (VV))Fu=O (&)

When e„'f is large F may be chosen as a solution of the
differential equation

[2ip V+V' 2e„V)—F=O (8)

This choice leads to the SM wave function "
For some high-energy problems an even simpler

function suffices. This is obtained by solving (8) without
the factor V':

The general solution for x is aln(s+r), to which
arbitrary constants (which may be functions of p, p,
etc.) may be added. By adding &a lnp, —a lnp', etc. ,
precisely the results (11) are obtained. In other words,
for a Coulomb 6eld the desired solutions are

x+= Wa 1n(pra y. r). (12)

Computing V F/e„VF at high energies, the additional
condition for the validity of these wave functions is
found to be primp rla.rge. Indeed, (12) may be ob-
tained as the limit of the conAuent hypergeometric
functions of the SM solution for pr+y r large. ' For
the photoeGect at large energies we have shown that
we need a wave function valid in the region for which
both s=O(1), p=O(1). The modified plane wave (12)
is accurate in these regions. " For the Coulomb field
the approximate wave function is essentially the asymp-
totic form of the exact wave function. But more
relevant, for r=O(1), it is the high-energy limit of the
exact wave function.

III. DERIVATION OF PHOTOEFFECT
CROSS SECTIONS

In view of the preceding discussion we take for the
wave function f, of the outgoing electron

p =ue'&'+'~- x = a ln(pr+ p r).
(ip V e„V)F=—O (9) We also now introduce t:he notation

Writing F= e'x, the solutions for y at high energies are

z

V(.,")d", (10a)

(10b)

which are chosen to satisfy the boundary conditions
incoming (outgoing) plane waves at +~, respectively. "
(The requirement of plane waves also specifies the
normalization. ) x is the solution needed for the photo-
eGect, y+ for the inverse photoeGect. An inspection of
the argument indicates that to obtain the similar
positron wave functions the sign of the potential is to
be reversed and the free electron spinor I is to be
replaced by the free positron spinor e~.

For a pure Coulomb field V= —a/r the integrals (10)
diverge at ~~, corresponding to the well-known fact
that for such a field it is not correct to impose plane
waves as a boundary condition. "Instead, the incoming
(outgoing) electron near W~ should be described by
the distorted plane wave

~i p -r~ ~ in (primp r)

~ The SM function actually also includes a spinor term of the
next order in energy, which is not needed for the high-energy
limit of the photoeGect."Later it will be shown that for present purposes only the
d Qi"ereece y (s,p) —x (s'p) is needed, and consequently it is not
actually necessary to impose the boundary conditions.

&( d'r exp( iA r —ix )e 'r". '—S(r), —(15)

S(r) =u*(y)n ef~,

where again 4 = p —k is the momentum transfer.
Introducing cylindrical coordinates for p with axis

in the k direction, the total cross section for the photo-
eGect is

0 = (2~)-' t d'p, dp„(i iv i')„b(E)

= (2 )-' I d'p, dE, (dp„/dE)(i Mi'),„8(E) (16)
U

27r

2m) ' i d8 p dp (i~i')~—
pl/ (}

~' The wave function is also valid for the region p=.o(e„) and
s =Q(6p) important in bremsstrahlung. "

P =—(25)&+&r& 'e 'P ~—(14)

for the bound state wave function, "where r = (»' —a') &

(»= j+2, j the total angular momentum of the state),
and 6= (1—e')& (e, as before, the total energy of the
bound state). The spinor PN consists of spherical har-
monics and polynomials in r; it is finite for r= 0. Kith
these substitutions the matrix element may be re-
written

M = —e(2~) ~k-'(2S) +~
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using Eq. (3) for E.The matrix element is to be summed
and averaged over spins and polarizations, depending
on the experimental situation. In Sec. II it was shown
that 3/I is large only if p&=O(1). This justifies the
replacements P/P~) —+ 1, J02'-+ J(')", leading to

.=(2 )- d p, &~~~ ).„

Substituting (15) for cV and using the result of Sec. II
(see Fig. 1) that, when cylindrical coordinates are
introduced in r space with z axis along k,

4 ~ 1'= pi ~ 8+ez,

the cross section becomes"

fe'
o = (28)2&+' d'rd'r'

d'p expLiP2 (8—8')+ie(z —z') j
Xei[x (r)—2 (r')]e-2(t+r')(red)2 )F(r r ) (19)

F(,")=9'(")~*(r))",

where orders of integration have been interchanged.
The P, integration gives (22r) b(8 8);with t—his require-
ment it can be shown that E is a function of s', s', and p,
but not of the direction 8/p. Thus the expression (19)
reduces to the triple integral

(22re)'
— (28)2+2 "dzdz'pdp e'( ")-

(r+z )'
X~ —

~
e '("+"')(rr')& 'F(r, r'), (20)

&. +z )

where r'= p'+ z', r"=p'+z", and (13) has been inserted
for x . Summing over final electron spins and averaging
over initial photon polarizations, for high energiesap*—
F(, ')=20 *() 4 (')

26p

where the z axis is taken along p (or k). The remaining
sum (or average) is over initial electron states. For the
E shell 8=a, y=2= (1-a')&, and

I
F= — 1+ (cosg' cosg+ sing' sing)

82rI'(2y+1) 1+e

(1—2) '
+i~ ~

(cosg —cosg') . (22)
(1+e)

"The notation here has been taken to conform to that of
reference 6, which however contains several misprints.

The cross section (20) is easily reduced to a double
integral by performing the integration over p."A further
integration can be expressed with incomplete beta
functions; a Anal integration apparently leads to
generalized hypergeometric functions. 7' As such func-
tions are not tabulated, two alternative procedures may
be investigated: (a) expansion of the integrand as a
power series in its parameters, leading to simpler
integrals and an answer in the form of a power series,
or (b) direct numerical evaluation of the integral. Both
these methods have been used, and the results for the
E shell will be reported in succeeding sections. Since
the choice of an expansion parameter is not unique,
various analytic forms can be obtained. A satisfactory
discussion of their convergence does not appear possible,
and it is necessary to use the numerical work as a guide
in determining the suitability of alternative forms. For
this reason, while the power series work is instructive,
the numerical work must be considered more reliable.
In practice the two methods will complement each
other, fo'r the numerical calculations become increasingly
dificult as u approaches zero.

For numerical purposes it was desired to make one
of the integrations as simple as possible. This may be
done by introducing the substitutions

z'-z z'+z
3r'+r r'+r

(23)

(22re)' +1 ~+1
(8)27+'I (2&+2)

~

dxdy
—1 —1

(1—xq
(t')+ibex) ( ~+ ) (1—x y ) ~

(].+xj
I'(2y+2+ 22)xg 2 "(8+iex)

I'(2y+2)

xL(1 x2) (1 y2) jn/2F (x y) (23)

The y integrals are comparatively simple and may be
recognized as incomplete beta functions. Numerical
methods may then be applied to the x integration
(Sec. IV).22

'4 This would not be true for a screened potential.
'5An alternative procedure, recently used by Boyer' for one

choice of parameters, is to numerically obtain M in (15) as a

For convenience also rewrite (21) as

F(r,r') —= P p"F„(8,8'), (24)
n=o

where the F„defined by (24) are polynomials in
cosg=z/r, sing= p/r, etc. , but do not depend on p or r
separately (they are also functions of the parameters
a, 8, e, etc.). This finite series in p arises from the
polynomials in r of the bound state wave function.
Then, performing the p integral,
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If the integrand is to be expanded as a power series
in its parameters, several approaches are possible, de-
pending on which parameters are expanded. Since 8, y, e

are all functions of a, an obvious method is to attempt
to expand the integrand in powers of a and perform the
resulting integrals. This is essentially the method which
has been followed here. "It is, however, not straight-
forward to expand the integrand of (25) in powers of a.
Setting a= 0 gives a term x 4 and so a divergent integral,
although in fact (for the E shell) the integral must be
of order as. The leading term can be extracted from (25)
with a more careful analysis, but to obtain higher terms
of the power series in this way is very tedious. Looking
back at the triple integral (20), it becomes evident that
setting a=0 removes the exponential that guarantees
the convergence of the integral, although the limit
a —+ 0 yields a well-delned integral. A transformation
is hence desired which will explicitly display the be-
havior of the integral for small a. Such a form can
indeed be obtained, although it is more complicated
than (25).

In (20) make the substitutions

s= p sinhw, s'= p sinhm', (26)

X (coshw coshw')" (27)

where K, as before, is related to the total angular
momentum by K=j+s. Now make the transformation

x= w iA, y=—w'+iA, (2g)

and, verifying (for finite a) that there are no intervening
poles or branch cuts, return the contours to the real
axis. Using the relations

coshw= (cosh'x —sin9, ) '

Xexp[+tan '(taunt tanhx)]

function of n and then integrate ~3f ~' over h. This has the
advantage of giving the distribution in momentum transfer as an
intermediate step in the calculation. However it requires at least
two integrals t,'the real and imaginary part of M) and in Boyer's
case actually six integrals, for each of many values of A. The
present method requires only one, somewhat more complicated,
integral.

"Alternatively, one could seek to make the "minimum expan-
sion" in parameters needed to obtain tractable integrals. This
method has been followed by Erber, ' who hoped thereby to obtain
a more rapidly converging expansion. However the resulting
integrals are not completely tractable, and the analytic forms
obtained are complicated and dificult to interpret. Also, as dis-
cussed in the Appendix, it appears unlikely that the convergence
of the procedure is any better.

and introduce a new parameter X defined by cosh=—8,
obtaining

(2zre)' 00 00

(2&)'r+' '

dp p'r+' )' dw dw'
k 0 —00 —Qo

t'a(tL' —tti') —p [cosh(u. '—sX)+cosh(ttz'+t', h)]Xe

X(coshw coshw')& "P p"F„(w,w')
n-0

coshw'= (cosh'y —sin9, ) l

Xexp[ —tan '. (tanX tanhy)], (29)
defining

8(x)=ax+(y —~) tan '(tank tanhx), (30)

and performing the p integral, one obtains for the cross
section

(2zre)'
o =— (28)'&+'F(2y+2)e "~

k

00 s QO

X I dx dy e'"" 't&"

[(cosh'x —sin9, ) (cosh'y —sin9)]&& "&"

X
(coshx+ coshy) '&+'

F (2p+2+zz) [cosh(x+iX) cosh(y ih)—]"
xg

F(2y+2) (coshx+ coshy)"

The integrals are now well defined for a=0; however,
they appear of order one rather than order a'. The
final step is to expand the remaining exponent, ob-
taining a real integral which can be explicitly factored
into parts even and odd in x and y. Then terms which
are not even in both x and y will vanish; the terms
which survive are of order a'. This will be demonstrated
for the K shell in the next section. The limits of integra-
tion may then be taken from 0 to ~.

The factor exp( —2a'A) = exp( —2a cos '8) of (31)
should particularly be noted. It appeared in a natural
manner during the attempt to obtain a power series;
if it were expanded in powers of a the resulting series
would converge only slowly. It is tempting to argue that
this is a characteristic factor, and should not be ex-
panded. For the E shell, at least, the numerical results
indeed justify this. It may be noted that this factor is
closely connected with the so-called Stobbe factor' of
the nonrelativistic photoeffect. Indeed, it is easy to see
that in the integral (31) for the total cross section only
two differences result from the use of correct wave
functions rather than a plane wave —this factor and the
oscillatory factor expi[8(x) —8(y)]."

u= sinh'(six), s= sinh'(-,'y), (32)

2~ In the form (25), however, the difference is entirely repre-
sented by the oscillatory factor ((1—x)/(1+x) j'~.

IV. DEVELOPMENT IN POWER SERIES

If the procedures (26)—(31) are applied, using the
form (22) for P, the total cross section for the K shell
is obtained as a double integral, in a form suitable for
development as a power series in the parameter a.
However, to permit direct comparison with previous
work, we first make the further transformation
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and finally obtain

a = aors (a)I(a), (33)

a o =4zre'as/k. (34)

where 0-p is the high-energy limit of Sauter's result for
small a:

where
(1+u)&+u&

P(u) =In,
(1+u)f —uf

(2(1—a') &[u(1+u)]f)
R(u, a) =tan 'i

a(1+2u) )
(39)

The factor II(a) is"

II(a) = s (1+2m) (1+v) '(2a) "~"
)&exp( —2a cos 'a),

and the integral I(a) is given by

(35)

f

I(a) = s
~o ~o

A (u)A (v)

(1+u+v) '+'&

cos8(u) cos8(v)+B(u)B(v)X— (36)
[u(1+u)]&[v(1+v)]l

in which

A(u) = ([u+coss(-', zf)][u+sin'(-', z))]}&&&
—",

B(u) = (1+2u) cos8(u) —2[u(1+u)]& cot(-', zf) sin8(u),

To this order, all the integrals over I and v are con-
vergent. However, expansion to order a4 would lead to
integrals divergent at u or v=0. The factor R(u, a)
requires careful treatment, even in order a'. To this
order (but not in the order a', where it also occurs)
E appears only multiplying functions which are finite
at N=o. This is sufhcient to permit the replacement

zr a (1+2u)
R(u, a) —+ ———

2 2 [u(1+u)]'
(40)

valid to order a. In (40) order a' is not required, since R
appears in (38) multiplied by a, and indeed R can
probably not be obtained as a simple power series.

The integral I(a), its integrand now written as a
power series in a, to order a' becomes

(1+u)&+u"
8(u) =a ln

(1+u)&—u'*

6 00 00

j=l 6p (1+u+v) 4

2(1—a )t[u(1+u)]t-
+(y—1) tan —'

a(1+2u)
(37) X (41)

[u(1+u)]&[v(1+v)]f ~=&

and sing=a. This is precisely Hall's result. ~ The Hall
formula is then obtained by setting I(a) = (a/2)'&& ".

It is now desired to expand the integrand of (36) as
a power series in a to order a'. It is unlikely that (36) can
be represented by a Taylor series; if an expansion was
desired to order a', terms of the type a'lna would
probably also have to be included. Indeed, the known
factor II(a) cannot be expanded to order a' without
including log terms, but for I(a) we will 6nd that this
is possible.

With this understanding, the expansion of com-
ponents of (36) is as follows:

A (u) 1—-', a' In[u(1+u)]'*,

1+a' In(1+u+v)

(1+u+v)'+" (1+u+v)'

where, de6ning

T(u) = (1+2u) —4[u(1+u)]'P(u),
then

Jt——1+T(u) T(v),

Js= oral [u(1+u)]~T(v)+ [v(1+v)]'T(u) ),
Js——zrsa'[u(1+u)]1[v(1+v)]l,
I4= —a'(l [P'(u)+P'(v)]

+T(u) [(1+2 ) (-:P'( )+1)
—2[v(1+v)]'*(sP'(v)+ sP(v) )]
+T(v) [(1+2u)(sP'(v)+ 1)

—2[u(1+u)1'*(SP'(u)+-'P(u))] )

Js———-', a'[1+T(u) T(v)] ln[u(1+u)]**[v(1+v))',
Is= a [1+T(u)T(.)]In(1yugv).

(42)

(43)

B(u)- I (1+2u)—4[u(1+u)]tP(u) I

+2a[u(1+u)]e(u, a)

—a'{~P'(u) (1+2u) —
2[u (1+u)]'

&&[sP'(u)+kP(u)3, (3g)

~8 The deinition divers froni that of reference 6 by transfer of
the factor 2'&~'& from E(a) to H(a). In that paper, too, y was
defmed as —1+(I+a')&, rather than (I—a')&, which has been
used here to conform to standard notation. " r= s(y+~), a= s(V —a) (44)

Now integrate by parts to remove odd powers of P(u)
and P(v), noting that P'(u) =[u(1+u)]—l. (In Is, which
is the most diKcult term, the odd powers cannot be
completely removed. ) Is and Is are then simply in-
tegrated. For the remaining terms it is more convenient
to use the transformations (32), returning to the a, y
variables, and extending the limits of integration to

~. Introducing new variables
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now separates the double integrals into products of
single integrals for all cases except I5. The Anal results
are

Ig= j., I4 —ga——'(m' —4),
Ip = —4s a/15, Ig

——a'[2 ln2 —(11/12) —4x'/45], (45)

I3= (s'/16) a', Iq= a'[(17/6) —2 ln2].

metrics of the integrand to reduce the limits to 0 to 1,
the integral to be computed is then

dg[g2+ (1 g2)g2]—(2+»){[(1+t2/g2)g (g g2)

—2 (g/u)'x'8 (u, x')] cosC(a, x)

The total cross section for the E shell is then given as where
—(2P/u)xB(a, x') sinC(a, x)}, (49)

0.= 0 OII (a){1—(4'/15) a+a'[(2y —' ——')
~ ((4/45)+6 x. 6)]}

=«H (a)[1 0 837a+0.678a']. (46)

It is evident that the approximation I(a)-1 (Hall) is
poor. The term of order a was first found by Nagasaka, '
and has since been given also by Gavrila, ' Sanerjee, "
and Erber. ~ Further discussion will be deferred to
Sec. VI, after the numerical results have been presented.

(1—~')'
C(a,x) =a ln —(4+2$) tan '— x. (50)

1+g 8

.1

dy (1—x'y')»+'A (a,x') =
Jo

x2"+2

The incomplete beta functions A(a, x') and B(a,x')
which result from the y integration can be calculated
from their power series expansions:

~=«{L(—28+3)/26&")I (47)

V. NUMERICAL METHODS

The transformations (23) lead to a particularly
simple expression for the E shell total cross section:

=1-(1+5)Z '(—t)
(2r+3) (r+1)

j.

8(a,x')= " dy (1—y')(1 —x'y')»
0

(51)

where 00, as previously defined, is the small-u high-
energy limit of the cross section, the notation $=——1+&
—= —1+(1—u') & is introduced, and the integral I (which
must be proportional to a' for small a) is given by

~+' (1—x) '~

dy] ) [a+i(1 a')» ]x—&4+'»&

4 —I

X{(1—*y)» [1+(q/.) ]+2(1-y)
X (1—x'y')»[(~g/~)x —(~/~)'x2]). (48)

Though the integrand is complex, consideration of the
substitution x —& —x shows thaI; the integral is indeed
real. In this form the physical significance of the
various factors is easily traced. Thus, it has already
been noted that the oscillatory factor [(1—x)/(1+x)]

'

is the only consequence of the use of correct outgoing
electron wave functions rather than plane waves; here a
reQects the strength of the Coulomb potential acting on
the outgoing electron. In [@+i(1 a')& ]x—&4+'»& the a
arises from the bound state radius and (1—a')& from
the total energy of the bound electron [compare (20)
and (25)].The power 2P of this factor originates in the
characteristic radial dependence of the relativistic
bound state wave function r& '=—r», as does the power $
in (1—x'y')». The factors ($/a) arise from the "small"
components of the bound state wave function.

The form (48) is also advantageous for numerical
purposes, since the y integration leads to easily com-
putable functions, leaving only the x integration to be
performed numerically. Fpr this purpose it is necessary
to write (48) explicitly in real form. Using the sym-

—g (g g2) [g (g g2) (1 g2)»+&]

X (1—g')/2x'(g+ 1),

where c„(e)= (»»+r 1)!/(e—1—)!r!.
The Coulomb factor ln[(1—x)/(1+x)] of (50) causes

the integrand (49) to undergo an inlnite number of
oscillations of slowly-varying amplitude in the region
near x=1. For this reason, numerical integration was
performed from x=0 to 1—6, for 6 small, yielding a
value I'. The remaining integral from x= 1—3 to 1 was
obtained analytically as a power series in 6, through
order 6'. Again, this is not a true power series, for
careful analysis shows that in addition to terms of
order 6', there are also terms of order b, '+&. For values
of a of physical interest, $ is small and such terms are
also expected to be small. "

The integral (49) from 0 to 1—6 was programmed on
the UNIVAC I of the Operations Research I.aboratory
of the University of Chicago, and I' was obtained for
sixteen values of u. In addition, several values were
computed using the plane wave approximation [i.e.,
omitting the log term of (50)].The contributions from
the oscillatory region were evaluated by hand and
added to I' to obtain the complete result. These con-
tributions are large, especially for small a, as will
shortly be discussed further. The machine integration
was carried out with Simpson's rule. Thirty terms were
kept in the power series expansions of the beta func-

"However, for a=1, g= —1, and the terms will be of the same
order. Thus also there is no contradiction in the fact that the
coefFicient for 6' separately diverges for g= —1. For u near 1,I' is much larger than the term in 6, and it is not necessary to
compute higher terms.
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tions. Sufhcient freedom was left in the program so that
the region from 0 to 1—6 could be divided into three
intervals of arbitrary length, each with its own arbi-
trary mesh. This permitted a reasonable matching to
the characteristics of the integrand in the various
regions of integration. For each point of the mesh was
obtained (a) the value of the integrand~ (b) total value
of the integral to date, (c) fourth-differences estimate
of error since preceding point, and (d) sum of estimated
errors to date. Thus (a) displayed the function being
integrated and (b) showed the relative importance of
various regions and how cancellation occurred. By
fitting the numerical values to the analytic corrections
for various choices of 6 both the equations and the
method of integration were checked. Finally, (c) and (d)
provided estimates of the Simpson's rule error of the
final result and also provided the information from
which appropriate mesh sizes and ranges could be
determined.

The general behavior of the integrand (49) is fairly
easily understood. The magnitude is mainly determined
by the factor La'+ (1—a')x'j ~'+&~ and hence is largest
near x=0, decreasing to O(1) near x= 1. For x near 0,
the magnitude is increasingly large as a~0. This is com-
pensated by the phase factor (4+2$) tan '(1—a2)&x/a
which causes a complete oscillation between @=0 and
x 2a. The Coulomb factor a in/(1 —x)/(1+x)j pro-
duces further oscillations which decrease the integral
from the plane wave result. As previously noted, near
x=1 there is an infinity of oscillations, but even for
a= 0.6 the sharp oscillations do not begin until x exceeds
0.997, and for smaller a they are confined to an ex-
tremely small region. However, since there is appreci-
able cancellation, especially for small a, the contribution
from regions near x= 1 is not negligible; the difference
between Coulomb wave functions and plane waves is
large even for small u, although (for the total cross
section) it does vanish in the limit a —+ 0.

In the numerical evaluation four sources of error
must be considered: (a) round-off, (b) series expansions
of the incomplete beta functions, (c) power series for
the oscillatory region, (d) Simpson's rule and mesh size.
It was desired to reduce the error from each of these to
less than 0.1%. The difFiculties in achieving this arise
from the oscillatory nature of the integrand which, for
small a, causes severe cancellation. The UNIVAC
carries eleven places, and the errors in its function
routines are known. After investigation it was concluded
that round-off errors would be entirely insignificant,
except for small a, where, for example, the estimated
error was 0.02%%uo for a= 0.10 and 0.6%%uo for a= 0.05.

It is easily established that the error in ending the
series for the incomplete beta functions after n terms is
bounded by

L(1+&)/2~3 '"'"-.(-i). (52)

This is proportional to both $ and 1+$, and so the
error introduced, which is negligible except for x near 1,

becomes important only for a near 0.8. Kith 30 terms
kept, even for a=0.8 the total error is less than 0.01%.

The accuracy of the analytic expressions for the
regions near x= 1 is estimated by assuming the error
is of order d,&+', as already discussed. For g near —1,
where this error is of the same order as the 6' terms,
the contribution of the whole oscillatory region is small
in comparison to I'. For the smaller a' s, the use of
6=0.01 leads to an error of 4)& 10 ', which is suKciently
small in comparison to the value of the integral to
limit the error to 0.1% for a&~0.15, while 6=0.005
suKces for a~& 0.05.

The remaining question is simply to choose mesh
sizes sufhcient so that 4th-derivative contributions are
small. Both because of the increasing degree of cancella-
tion and the extremely sharp initial oscillation, it is for
small a that larger numbers of points are required to
represent the function accurately. Practical considera-
tions set an upper limit of 300 points for an integral;
this permitted accuracy to within 0.1% at a=0.15 and
1% at a=0.10. No attempt was made to compute the
integral for a=0.05. These considerations then deter-
mined the values which could be obtained, and their
accuracy.

The program itself was checked by evaluating the
special (nonphysical) case a=1, for which the integrals
may be obtained in closed form. "The numerical result
agreed mell with the value of Prange and Pratt. '

VI. RESULTS AND EXTRAPOLATION
TO LOWER ENERGIES

The high-energy limit of the total cross section for
photoe8ect from the E shell may be characterized by a
function F (a), where

0=0OF(a) = (4me'a'/k)F(u). (53)

Values for F(a) obtained numerically with the methods
of the preceding section are summarized in Table I and
compared with previous predictions. For small a the
numerical results agree well with the power series
expression (46). A smooth curve may then be drawn
for F(a), as in Fig. 2, and the comparison again made
with previous work. Disagreement with the Hall for-
mula' is large, even for small a; for large a (the only
case of experimental interest in the high-energy region)
the Nagasaka formula' is not much closer. The one
value obtained numerically by Boyer' agrees fairly
well. This previous work is discussed in Appendix B.

A simple analytic expression may be extracted from
(46) which provides a reasonable representation of F(a)
for all a. Equation (46) may be expected to be valid
neglecting terms of order u' (including a' lnu, etc.). lf
the factor —,'(1+2') (1+y) '2'& of H(a) is expanded in

'0 In fact @=0.99 was computed, since to obtain a=—1 would
have required inserting into the program a definition of .the value
of {51)for P= —1, which to the machine would otherwise appear
as 0/0. Such a definition was indeed used in the same expression
for x=0, but the case e=—1 was not so provided for. Indeed, more
of the program is checked by eoI taking c=—1.
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powers of a and folded into I(a), the power series
becomes

I
1—(4a.a/15) —0.098as). In this form the

term of order a' is negligible except for a so large that a'
terms (which are not known) may be expected to
dominate it, and consequently this a' term may be
neglected whenever a is small enough for (46) to be
applicable. This leads to the simple form

l.o

o =opa'& exp( —2a cos 'a)L1 —(4s/15)a),

t= —1+(1—a') & =—a'/2, (54)

TABLE I. Total cross section for the E-shell photoeffect in the
high-energy limit. o'/o'p=t(o) is given for various o, according to
{I) the present numerical work, {II) Hall, (III) Nagasaka,
(IV) the simple numerical form (54), and (V) other work. The
numerical values (I) are accurate to about 0.1% except for
a =0.10, which is accurate to 1%.

I II III IV
Present work Hall Nagasaka Eq. (54)

v
Others

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.80
0.87'
0.99
1.00

0.6964
0.5957
0.5138
0.4475
0.3942
0.3504
0.3145
0.2846
0.2599
0.2396
0.2224
0.2082
0.1963

0;1698
0.1601

1.000
0.872
0.781
0.711
0.658
0.616
0.580
0.552
0.526
0.504
0.485
0.468
0.452
0.436
0.420

1.000
0.834
0.712
0.619
0.550
0.498
0.461
0.431
0.409
0.397
0.389
0.386
0.387

1.000

0.6987
0.5960
0.5137

0.3913

0,3065

0.2455

0.2005

0.1665

0.158

0.163

0.235b

0 159c

a (3)1/0/2
b R. H. Boyer, reference 10.
o R. E. Prange and R. H. Pratt, reference 6,

for which some values are listed in Table I. Even for
a=0.6 (Pb) this differs from the exact values by only
10%%uq. Equation (54) is very similar to the formulas of
Hall and Nagasaka (especially with the approximation
2$= —a' valid except near a= 1) and may be viewed as
a proposed replacement. However it provides only a
convenient approximation, justified primarily by its
accord with the numerical results presented in Table I
ance Fig. 2.

The foregoing account of the high-energy limit of the
E shell photoeGect total cross section is the main result
of this paper. For practical purposes, however, it is
necessary to make some statement as to how rapidly
the limiting values are approached, i.e., to make some
further estimate of the energy dependence of the cross
section. The procedure adopted here is to combine
present results on the charge dependence of the cross
section with the work of Sauter' and Gavrila' on the
energy dependence. Predictions may be compared with
Hulme's' numerical work at 1.1 Mev and indeed very
good agreement is obtained. However similar conclu-
sions were obtained in turn by Hall' and Nagasaka, '

.I

0
I I I 1 I I.4 .5 ~ .6 .7 .8 .9 IQ

. aaZe

FIG. 2. Total cross section for E-shell photoeffect in high-energy
limit. o-/o0=F(a) is plotted against a=Ze' according to Hall (I),
Nagasaka (II), and the present work (III). Boyer's numerical
value is shown (X), as well as the limiting case obtained by
Prange and Pratt (0).

o =opS(k),

leading to the composite formula

a=opS(k)J (a),
which neglects terms of order a/k. Here

S(k) = [jets/k4(1 —Ps) fjM(P),
a,nd the electron velocity p is given by

e„= (1—p') &=k+ (1—a') &,

, LI —2(1-p')"jLI-(1—p')lj
~(p) = s+ P'(1-P')'

1—P' 1—P
X 1+ ln

2P 1+8

(56)

(57)

(58)

(59)

(60)

It may be objected that to be consistent a' should be
omitted in (59); however, for large a this has a serious
effect on (58) owing to the high powers which appear,
and since there is agreement as to the correct functional
form" it should probably be preserved. The eGect on
M(P) would be much less severe; however, according to
Nagasaka, in (60) it is more correct to make the re-
placement

1—2(1—P')'* ~ 1—I:1+(1—a')'j(1 —P')' (61)

and hence it is desirable to enter a note of caution. The
extremely close agreement of the extrapolation at so low
an energy is accidental, considering the magnitude of
terms being omitted, and hence the formula must be
used with caution. The expected accuracy will be dis-
cussed later.

If the high-energy limit of the cross section is written

o =osP(a),

Sauter's result for the energy dependence of the cross
section in the limit of small a may be written
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Txszz II. Energy dependence of the E-shell photoeffect total
cIoss section, according to {65).o'/harp is computed as a function of
u=Ze' and the photon energy k (in Mev).

10

0.0
0.1
0.2
0.4
0.6

2.79
2.13
1.71
1.22
0.96

1.67
1.26
1.00
0.71
0.59

1.41
1.0S
0.82
0.58
0.48

1.24
0.90
0,69
0.47
0.38

1.12
0.80
0.60
0.40
0.31

1.00
0.70
0.51
0.31
0.22

where M(P) was previously defined ancl

»(P) =—— +——(1-P )'
P' 15 (1—P')'* 15 15

25 8
+—(1—P')+—(1—P')'*+(1—P') '

15 15

1 1—P
&&L1-2(1-P')~j[1-(1-P'):j—l.

2P 1+P

The term —~a/P comes from expansion of the Coulomb
exponential; this suggests that the energy dependence
M(P) multiplies this Coulomb factor.

To incorporate (62) with the present results, write
for the high-energy limit

o=ooF(a). .

=00u'&[exp( —2a cos—'u)/[1 —(4n/15)a+R(u)], (64)

where R(a) is defined by the equation. From previous
discussion R(a) is small for all a; this would not be true
if the Coulomb factor had not first beeix factored out
from the power series. One is hence lead to the inter-,
polation formula,

It is now desired to modify (57) so as to incorporate
Gavrila's' recent further results on the energy de-
pendence. "This work is a complete evaluation of the
cross section to order a; the result essentially is

p' '
t' ~a~

0——00 —M(P)
~

1——(+ma%(P), (62)
u4(1 P')-: & P)

Gavrila's work supplied is very important in deter-
mining (65). Although E(P)/M(P)= —4/15 for P=1,
in the limit of low energies it vanishes, and even for
energies in the 0.5—2.0-Mev region vraiV/M is small in
comparison to one. This also means that the limiting
values (55) are approached very slowly: for Lead the
cross section differs by less than 10% from (55) only
above 50 Mev.

The form (65) is presumably valid neglecting terms
of order a'/k, and thus should be quit. e useful in the
high-energy region, even for heavier elements. How-
ever the extremely close agreement with Hulme, even
for heavy elements, at so low an energy as 1.1 Mev is
fortuitous. The following remarks demonstrate this
rather strongly. The complete energy dependence of the
Coulomb exponential (as distinguished from the factor
M(p) which multiplies it) is known, ' ' and indeed non-
relativistically it becomes the Stobbe factor. Noting
that R(a) is very small, it is tempting to insert this
Coulomb energy dependence and suppose that the main
energy dependence of the cross section is thereby in-
cluded. In fact this makes the result worse. From the
power series work it may be seen that the smallness of
R(a) is the result of the cancellation of many factors.
There is no rea, son to believe that these have the same
energy dependence or that the cancellation continues
to occur at lower energies. Such sects must to some
extent compensate the additional energy dependence of
the Coulomb factor.

Hall and Nagasaka used similar interpolation pro-
cedures. Since Hall omitted the —%ra/15 factor from
his high-energy result, it is not surprising that he could
get good agreement with Hulme's low-energy result,
for at low energies the factor indeed becomes negligible.
Likewise, the large positive u' term in Xagasaka's
power series tends to give a high-energy result similar
fo Hall s, and so again it is possible for him to obtain
a,greement with Hulme without having the correct
energy dependence of the power series. For Lead the
Ha, ll a,nd Nagasaka interpolation formulas are also

I.O

~=00.a2&M(P) exp[ —2(a/P) cos 'g]
u'(1 —P'):

X(1+~a[iV(P)/M(P) j+R(~)), (65)

where $= —1+(1—u')'.
Some calculations with the formula, (65) are pre-

sented -in Table II, and for Lead the predictions are
shown in Fig. 3. Good agreement is obtained with all
three of Hulme's numerica, l values at 1.1 Mev. The
energy dependence for the term —%ra/15 which

@I have been informed by Dr. Bengt Nagel that he has obtained
a siinilar result by iterating the SM function.

.7
bo

b 6

.2
0

I I .6 .8
1/k

LO

I xo. 3. Energy dependence of the IC-shell photoeffect total cross
section for Lead, according to Hall (I), Nagasaka (II), and the
present work (III). 0./op is plotted against inverse photon energy
1/k in (Mev) '. Hulme's numerical value ()() is also shown.
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shown in Fig. 3. It. is seen that the errors of these esti-
mates do not appear until quite high energies —above
3 Mev for even a 10%%uz effect.

A definite prediction has thus been made for E-shell
photoeGect total cross sections at high energies. "In the
high-energy limit these cross sections are smaller (by a
factor of two for heavy elements) then had previously
been believed; however the limiting values are reached
very slowly, and photons of at least several Mev are
needed to demonstrate large deviations from previous
theories. "It has also been shown that in the high-energy
limit the four vertex processes of Appendix A have
identical cross sections. In particular this predicts that
the one photon annihilation of fast positrons is even less
common than had been realized.
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APPENDIX A

Four closely related bound vertex processes are
(a) the photoeffect, (b) its inverse, (c) the inverse of
one photon pair annihilation. of positrons, and (d) the
one photon pair annihilation of positrons. The matrix
elements are essentially:

(a) ti'ke 'p r iX eik rgb
(b) iP e&—ik r&iP r+ir+Si (66)

(C) P rreik re iP.r+iy~p. —

(d) &4&ip r ix
&

ik rg, — —

where the signs have been taken so that the x's of (12)
"For many experimental purposes it is also necessary to know'

the cross sections from higher shells, as these are not distinguished
from the E shell. The calculation of these will be the subjec. of a
later paper.

» For surveys of theory and experiment at lower energies, see
references 1, 5, 19, and also G. %. Grodstein, U. S. Department
of Commerce, National Bureau of Standards Circular 583 (U. S.
Government Printing Once, Washington, D. C., 1957),

apply both to electrons and positrons. From (12)

x-—x =~»(pp)',
so that, in the square of the matrix element

(67)

ki-p y, si~ ti. (70)

The second of these has no eGect m the high-energy
limit. For (c) and (d) the energy conservation require-
ment.

(p'+1)&= k+ e (71)
is replaced by

k= (p'+1) &+ e, (72)

which in the high-energy limit is again obtained through
the substitution (70). All four total cross sections are
thus the same, provided the weighting of states summed
and averaged is equivalent. For the E shell, if (a) and
(d) are defined as cross sections for capture by botIs E
electrons, then in the high-energy limit

(T~= fTg=Og= 0 d. (73)

The equality of these processes at high energies is
needed in the discussion of dispersion relations for the
scattering of light from a bound electron, to guarantee
the convergence, at high energy, of an integral over
energy of the diGerence of two cross sections. ' However
the main contributions to the integral come from low
energies and the value of the integral is not greatly
altered by introducing present predictions for the
photoeGect at high energy. '4

A recent and interesting application of photoeGect
cross sections has been to connect the cross section for
the inverse photoeGect and the cross section for brems-
strahlung near the high-frequency limit (the "tip")."
For small Z, the matrix element for these processes
(involving respectively a bound electron and a free
electron of low energy) are shown equivalent up to a
numerical factor. It is also argued that the connection
of the cross sections is not restricted to small Z, and in
this way Nagasaka's predictions for the photoeGect

r' J. S. Levinger and M. L. Rustgi, Phys. Rev. 103, 439 (1956);
also J. S. Levinger, M. L. Rustgi, and K. Okamoto, Phys. Rev.
106, 1191 {1957)."U. Fano, H. W. Koch, and J. W. Motz, Phys. Rev. 112, 1679
(1958). Also reference 14, U. Pano, Phys. Rev. 116, 1156 (1959),
and K. McVoy and U. Pano, ibid. , 1168.

x (r) —x (r') =x+(r) —x~(r')+a, ln(p/p')'. (68)

However it has been shown that the integrals for the
total cross section vanish unless p=p'. Hence, for a
discussion of total cross sections, no error is introduced
by setting p =x+ in the matrix elements. Then

(69)

In the high-energy limit the densities of states and the
expression for energy conservation are pairwise the
same, and hence so are the total cross sections.

M, and Mz (and likewise M& and M,) are related by
the substitutions



have been translated into predictions for the brems-
strahlung tip. Agreement with experiment is good,
except for the case of highest energy (15 Mev). It is
interesting to note that, of the cases reported, this is
the only one in which (according to the present extrapo-
lation) Nagasaka's result is appreciably in error. It is
uncertain, however, how seriously this can be taken as
an argument in support of the present predictions for
the photoeGect.

APPENDIX B

Discussion of previous results for the E-shell cross
section evidently should begin with the work of Hall, '
who originally obtained (33) and then made the approxi-
mation I(a) = (a/2)s&. The nonanalytic form should be
disregarded, and in estimating the accuracy of the
approximation Hall essentially estimated the magnitude
of the next term of a power series in u, taking the first
term as 1. He concluded that the next term was small,
rather than the large factor —karat/15 which has now
been established. Hall's argument, which has been
checked by Gavrila, ' rests on the assumption that the
main contributions to (35) come from I and e near 0,
and that in slowly varying factors I and n can be
replaced by 0 (or by an "average" value, taken to
be 1/7). It is, however, ambiguous which factors may
be considered slowly varying, and with similar pro-
cedures Nagasaka could obtain a much larger value. '
Presumably' the integrand of (36), like that considered
in Sec. V, is oscillatory, and although the magnitude
may be greatest near I=~=0, the cancellations have
the consequence that it is diffjjcult to estimate in advance
which regions of I and e contribute to the integral.

The next relevant work on the photoeffect is that of

Nagasaka, ' whose final result for the high-energy limit
is essentially" (54), with the added term in the power
series 1.476a' instead of —0.098m'. It is this large
positive u' term which causes Nagasaka's cross section
to rise for large a. It is believed that more con6dence
can be placed in the present results, where the power
series (which was checked independently) and numerical
computations are consistent. Nagasaka was apparently
the first to realize the importance of the term of order a,
as well as to point out the incorrectness of Hall's non-
analytic factor for I(a).

Boyer' obtained for Lead the value a=0.235o.o, in
contrast to the Hall value 0.451o s (our result is 0.222o.s).
In this way the disagreement with the Hall formula for
large a was established. The small di6'erence between
Boyer's number and the present result is probably due
to the errors of Boyer's numerical method. "

Recently Gavrila' and Banerjee" have independently
obtained the term —4rru/15, and Gavrila also derived
it from Hall's double integral. Erber's' method of
evaluation yields a complicated expression in which the
term —4ira/15 can be identified in the limit of small a.
His expansion parameter is $, the parameter a being
otherwise treated exactly. Thus in (43) Is and ls
correspond to an expansion in $, whereas Is and I4
result from a further expansion in a. From (45) it does
not appear that $ is a more suitable expansion param-
eter, since all the integrals are of similar magnitude.
The term Erber obtained is in moderate agreement with
the present results, but no better than would be ob-
tained simply from —4ira/15.

"In consequence of a minor arithmetic error, 4s./15 is con-
sistently evaluated as 0.832 instead of 0.837."R. H. Boyer (private communication).


