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Bogolyubov’s method of derivation of the hydrodynamic equations from a quantum-statistical formalism,
based on the array of distribution operators for clusters of s molecules, is adapted to the derivation of the
hydrodynamic equations for a fluid composed of diatomic molecules. The general form of the hydrodynamic
equations with an additional equation of angular momentum, which is coupled with the momentum equation
through the antisymmetric part of the stress tensor, is obtained and all the interesting hydrodynamic quanti-
ties are calculated. A general procedure of derivation of the hydrodynamic equations by successive approxi-
mations is proposed and the equations of zeroth approximation are discussed.

INTRODUCTION

HE purpose of this paper is to derive hydro-

dynamic equations, taking into account the
internal structure of diatomic molecules. From the
macroscopic point of view the hydrodynamic variables
describing the state of a diatomic fluid at any point
of space and any time are: density g(x;t), velocity
ue(x,2), intrinsic energy e(x;f), and the additional
macroscopic variable called the angular velocity of the
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fluid at given point of space and time, wi(xt). This

latter quantity is coupled by means of the inertia

density tensor of the fluid at a given point and time

with the intrinsic angular momentum of the fluid:
g (o, t)mi (x1,t) = g (1,8 on (20,8).

The phenomenological equations of motion of hydro-
dynamic variables given above follow easily from the
principles of conservation of mass, momentum, angular
momentum and energy. They are:
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where T is the stress tensor (in the usual sense), Qx; is
the stress tensor of couples, and ¢; is the heat flow
vector.

In order to complete the phenomenological hydro-
dynamic equations, the relations between 7', Qxi, and
gr and the hydrodynamic variables must be given.
Various forms of these relations distinguish various
media. However, the full phenomenological theory of
these relations is not known as yet. In the past years
Grad! has given one of the possible proposals for the
above-mentioned relations, based on the thermo-
dynamics of irreversible processes. Naturally, it would
be very desirable—both for the practical importance of
the hydrodynamic equations for diatomic fluids and
gases (e.g., air) and for the methodological role—to
derive the relations between the quantities Tz, Qki, gk,
and the hydrodynamic wvariables from the micro-
scopic assumptions by means of a statistical formalism.
The first such approach, for gases composed of rough
spheres, was done by Bryan, Pidduck, and Jeans. One
of the latest papers about this problem is the work by
Curtiss.? All these works are based on the Boltzmann
equation, that is on the kinetic theory of gases, and
give no information about the antisymmetric part of the
stress tensor. Therefore they give equations in which
there is no coupling between the equation of momentum
and the equation of angular momentum.

The task of this paper is to derive the general form
of hydrodynamic equations for diatomic fluids by
means of the formalism of quantum statistics, which is
not related with the Boltzmann equation. For this
purpose the Bogolyubov method of an array of distri-
bution operators®=” has been adapted and generalized
for diatomic fluids. In this connection the equations of
motion for the distribution operators of clusters of s
diatomic molecules have been derived, the operators
of mass density, momentum, angular momentum, and
energy of the fluid at given point of space have been
introduced, their average values have been calculated,
and afterwards the equations, describing the evolution
of these values in time, have been found. They are the
equations which are the macroscopic hydrodynamic
equations. In this manner the quantities Tz, Qri, gx
are represented by means of matrix elements of distri-
bution operators for one and two molecules f; and fo,
respectively. The parts of Tk, Qri, gr connected with
the fi function are named the kinetic parts and those

1 H. Grad, Comm. Pure Appl. Math. 5, 455 (1952).

2 C. F. Curtiss, J. Chem. Phys. 24, 225 (1956).

3 N. N. Bogolyubov, The Problems of Dynamical Theory in the
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4N. N. Bogolyubov, Collection of Works of Mathematical
Institute of U.S.S.R. Academy of Sciences (in Ukrainian) No. 10,
41 (1948).

5N. N. Bogolyubov, Lectures on the Quantum Statistics (in
Ukrainian) (Kiyov, 1949).
( ;i() P. Gurov, J. Exptl. Theoret. Phys. (U.S.S.R.) 18, 110
1948).
( 7Kj P. Gurov, J. Exptl. Theoret. Phys. (U.S.S.R.) 20, 279
1950).

connected with f. and depending on the intermolecular
influence (which is assumed noncentral) are named the
dynamic parts of these quantities. After finding the
general form of the hydrodynamic equations, a general
scheme of finding distribution operators is proposed,
which is an adaptation of Bogolyubov’s method for
monatomic fluids. Certain peculiarities of this method,
which appear for diatomic fluids and which complicate
the problem to a great extent, are discussed. The
system of equations for the expansion coefficients of f,
matrix elements is so difficult that it has not been
solved until now even for the case of monatomic fluids.
For this reason the problem has been limited to the
qualitative discussion of the equations in the zeroth
approximation. They correspond to the Euler equations
for monatomic fluids. In particular, it has been shown
that the stress tensor has no symmetry properties and
this fact gives the coupling between the equation of
momentum and that of angular momentum, even in the
equations of zeroth approximation. Naturally the
special case, that some peculiar form of the expansion
coefficients of the f,; functions may cause the vanishing
of this coupling, is not excluded entirely. No doubt
further investigations will shed more light on this
problem.

A similar program based however on classical
statistics was already published by the author.?

1. DISTRIBUTION OPERATORS AND THEIR
EQUATIONS OF MOTION

Let us assume that V diatomic molecules are present
in a certain volume V. The Hamiltonian of this system
may be written in the form

B N
H=——7% {Aat+Apt+Ui(r @)}
2m =1

N
+ 2 6ii(re @ 0 ), (11)

i<i

where 7, describes the position of the first atom of
the 7th molecule and 7,(® gives the position of the
second atom of the ¢th molecule. ¢;; is the interaction
potential between the ith and the jth molecule (an
intermolecular potential), and in the case =7 it is an
intramolecular potential. U; represents interaction
potential of the 7th molecule with the wall of a vessel,
which in our system must be present since the fluid
stays in a fixed volume V.

A complete description of the state of system should
give the density operator p, defined by its equation of
motion dp/dt=H,p = (Hp—pH)/i% with the normali-
zation condition Spp=1 and by the specification of
the kind of statistics. In our case we assume that the
molecules are subject to the Bose statistics, i.e., we
require that Pp=pP=p, where P is the permutation

8 R. Zelazny, Bull. acad. polon. sci. Classe III, 6, 203 (1958).
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operator. The average value of any dynamical variable
Z may be calculated by means of density operator
according to the formula Z=SpZp. However, as it is
impossible to find an explicit form of a density operator
(N is a very great number), following Bogolyubov?—°
and Born and Green® we introduce the distribution
operators for one, two, - -, s molecules according to
the formula

F S:Q;’ Sp 12

(s+1,...,N)

where Qy is the volume of the configurational space of
diatomic molecules, corresponding to the real volume
V of the system.

Using these operators, the average values of any
dynamical variable of the form

A(j17j27' : ’7].8)

can be calculated according to the formula

_ (N
Z=( )Q?/ SpAF,.
s

Acting with the operator “Sp” on the equation of
motion of the density operator and multiplying by
Qy, the equations of motion for the F, operators are
easily available, namely

oF, N s
= [HS)F-‘E]_}—_(I__—)
ot Q N

14

X Sp [ X ¢ier1,Fer]+[ g U,F.],

(s+1) =1

where H, denotes the Hamiltonian of a cluster consist-
ing of s molecules.

We shall now consider the asymptotic case, character-
ized by the expansion of the domain V into the whole
space (the influence of the walls of any vessel will now
be neglected) and by the increase of the number N
to o, such that Qy/N=w=const. This passage to the
asymptotic problem is characteristic of the kinetic
theory of fluids, even in such cases, in which is explic-
itly not formulated. In the asymptotic case some of
our previous formulas are changed into the following
forms:

Fo= lim Qy Sp p;Z= SpAF,, (1.2)
Vs00, N—oo (s+1, -+ -, N) slw®
dF, 1 s
- = [HS,F_J—{-—- SP [ Z b, S+1;Fs+l]- (13)
at W () =1

The operators F, thus defined have the following

9 M. Born and H. S. Green, Proc. Roy. Soc. (London) A188,
10 (1946).
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properties:

(1) They are Hermitian operators.
(2) They are normalized in the following manner:

1
lim — SpFi=1.

V-, Now

1
lim — Sp Fyq,

V300, N—>00 QV (s+1)

F,=

(3) They are invariant under the action of per-
mutation operator.

Moreover, the F, operators must comply with the
condition of “decreased correlation,” expressing the
fact that when the distances between s molecules tend
to infinity, the F, operators tend to s times the corre-
sponding F; operators.

Let us distinguish one state from all the other
possible states of our system and call it the spatially
uniform state. This state is defined as the state in which
the F; operator matrices, in a coordinate representation,
will be invariant under the influence of a translation of
the coordinate system

(rd W r, O 3/ AD L p O g TGOy )
7 D O | Fy |7y oy @ 10D 4y @
7 DA, O 3 1y OV () AL g 102
7 OO OO | Byl 100 g0

)
7»};”(31)’ rk//(s2)>_

By performing the coordinate transformation
Rk(i)=%(7k(i1)+7k(i2))’

we divide the variables into two groups; one of them is
invariant under the translation, and the second one is
covariant under the translation of the coordinate
system. These new variables can be so transformed
that only one of the four vector variables of the Fy
operator matrix will be covariant under the coordinate
translation:

(r O, RO Fy[r,"®, R Y= A3 (R O 4R D),
L) Oy O Ry O — R D 7D — g 17
— [¢)] ) [¢d] 1)
= f1(&:L, pr®, m®, 01 D).

Among the arguments £V, pp @, 7,®, 0@ the first
one, i.e., £© is covariant under the coordinate trans-
lation. Similarly in the matrices of F, operators we may
also distinguish only one vector variable, namely £,
which is covariant under the coordinate translation:

<¢k’(1)’ Rk,(l), e ”’(8)’ R,/ ® {FSI””(I), Rk”(l)’ e

71O, RSO) = f[H (RSO RSO),
%(”’(I).;_yk"(l))’ Rk'(l)_Rk”(l), yk’(l)_“”(l)}
LRy @+4R,® =R/ O =R D) Ly, @y, @)
Rk’(ﬂ)_Rk”@)’ rk’(2)...rk"(2)) e
%(Rk’(w_}_Rk”(S)_.Rk’(l)_Rk”(l)>, %(“’(s)+””(s)),
'Rk’(s)_.Rk"(S), rk’(S)_rk”(ev)]:fs(sk(l), pk(l)’ 77k(1>,

: Ek(s), pk(s>’ nk(s), ak(s))

The suitable transformation is apparent from the

7@ =g, (D — g @)

O'k(‘), Sk(w’ pk(‘-’)’ nk(2)’ Uk(2), ..
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formula given above. According to this transformation, the equations of motion of the F, operators in the

coordinate representation have been transformed, namely

&f, 1 &f &,

s Ziﬁ[ s
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+— 3 (ii— i) [ot—2 | | @i, i1y =i, o117) Foril ey o —o@ T @p 0, (1.4)
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where by ¢;;» and ¢,-;» we understand (r,’®, Ry,
7' @D, Ry D |py|r @, RS D, /@) RSDY and (r" ),
RO "D R D |y 7D R D /D) RO ex-
pressed by £©, £@, pp @) ) g, 0] £ 5, D p, D)
o1 @ according to the transformation formulas. By
@i, (srnyrr and @irv, or1y-r we understand (r,’ @) R,
71D RG] R G gD R D)
and (r’®, RO, 560 RIS g ],
R, @ g))! D R,V (s+D)) with exchange of arguments as
discussed above.

2. OPERATORS OF HYDRODYNAMIC VARIABLES
AND THEIR AVERAGE VALUES

For the computation of observables which are
interesting from the hydrodynamic point of view, the
following operators are introduced:

the density operator at the point «;,
N . .
Gw)=m L {8 (R —x)+de (ReD—xs)};  (2.1)
=1

the momentum operator at the point w,,

_ 2m 2m
G(xe) =— f J1(%,0:0,0,0)d 3yp "V =— f [fidd@e®,
w w

; ih (T 9f1
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d

w T n
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]
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ih N A
ne)=——% ‘ b (R 1)
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6 3 (R @ xs)
(3) s ‘
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l

]; (2.2)

the angular momentum operator at the point «;,

ih N
Ml(xS): _—Z

=1

33 (R, —,)
aJ
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N
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N
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Fow (RO —w)di};  (24)

where 7'; denotes the kinetic energy operator of the ith
molecule. Average values of these operators are:

2
{ Z [elmn'rm(ij)
=1

A, G

+5(3) (Rs(i) - xs) Elmnrm(ij)

the energy operator at the point «x,,

(2.5)

(2.6)

(2.7

E(x,b)= ——ﬁ—z— [

mw

T T d(3) ®
00k DAcLV 4 I DI 16 agk<1>agk<l>]

1 1
+*f[¢1'1'f1]d<sm“’+~2*;f[¢1'2'f2]d(3)P(”d<3)P(Z)d(3>5(2), (2.8)
W' o)

where the meaning of [ ] is clear from the first
formula. For the spatially uniform state all average
values given above (without the external part of
angular momentum) do not depend on the x,, since the
/1 and f, functions do not depend on the £&®, in place
of which one should put «°. It follows that if a spatially

uniform state is also independent of the time, it is a
state in which our system has a constant density,
momentum, intrinsic angular momentum [the second
term in the formula (2.7)7, and energy at any point
of the medium, at any time.

The average values calculated above have clearly a



QUANTUM SYSTEMS OF
straightforward interpretation. In order to avoid the
necessity of putting in place of £® the coordinate
of the point of observation, £ ® will be identified with
" x and will be written £;. Then

_ 2m
86 =G (e =— [ (1o, (2.9)

g(Eeui(Ert) =T(£1,0) = “——f[ ek ]d(s)p‘l) (2.10)
a"ll( )
g(gkyt)ml(gk:t) =Ml<£k;t) - 6lfrrm.gg'm”/"n
i ofi
= elmnpm(l)[ ]d(3)p’ (211)
w aﬂ'n(l)

38 (ErD)ur(Ex,t)mi(Er,t)
+38(Er,)mi(Er,Dwi(Er,t) +g (Ert) e(Eryt)
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=E(Ekal): I [
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4 9, Vo,

9o, Vdg;

1 &f:
16 089,

]dmp(”‘f‘ f[mq'fl]dw)p‘”

1
+E—;f[¢’1'2'f2]d(3))0(l)d(3>p(2)d(3)£(2). (2.12)
w

3. METHOD OF SOLUTION OF THE EQUATIONS
OF MOTION FOR THE DISTRIBUTION
OPERATORS BY MEANS OF
A SERIES EXPANSION

To calculate the hydrodynamic variables the f; and
f2 functions are needed. Therefore some method of
solution of Eq. (1.4) must be given. We are interested
in the so-called normal solutions, i.e., in solutions which
are uniquely determined by specifying hydrodynamic
variables throughout the domain of the fluid (see
Greenl?),

Instead of specifying the values of hydrodynamic
variables throughout the domain of the fluid, the values
of hydrodynamic variables and their spatial derivatives
at given point may be applied. In this case the Taylor’s
expansion of hydrodynamic variables in the vicinity
of a given point is used. Then the functions f, must
comply with the following conditions:

(1) They do not depend explicitly on £, because the
spatial dependence of the f; functions is included in the

WH. S. Green, Molecular Theory of Fluids (Interscience
Publishers, Inc., New York, 1952).
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dependence of the hydrodynamic variables on the &.
This situation does not vary on passing to the specifi-
cation of these variables and their spatial derivatives at
a given point. -

(2) They do not depend explicitly on the time,
because in the normal state the dependence on the time
is caused entirely by the time dependence of the hydro-
dynamic variables and their spatial derivatives which
are arguments of f, functions.

Further on it has been assumed that we are interested
only in such states in which the gradients of hydro-
dynamic variables and the higher derivatives of these
quantities are quite small. Then it is possible to expand
the f, functions in the Taylor series

fs=fs(0)+fs(1)+fs(2)+' -, (3.1)
where the f; do not depend on the derivatives of
hydrodynamic variables, the f,V are linear in their
first derivatives, the f,® are quadratic in the first
derivatives and linear in second derivatives, and so on.
It may be said that the first term of this expansion
describes the state of the fluid which is determined only
by the values of hydrodynamic variables but not by
their derivatives. To see whether this is a solution
corresponding to thermodynamic equilibrium, one
must find the integro-differential equation which this
term must satisfy.

Taking into account the postulate formulated above,
the derivatives which are in Eq. (1 4) may be written
in the form:

6f8 (9f3 (")dk 6f3 62ak
= —_— (3‘2)
at aak ot 8ak/6$l atagl
0/, 8 0f, dak
afiam(l) a‘r)-;(l) aak 6&-
1e] st azak
Foe (33)

+
™ dar/0& 0¢:0¢,

To expand Eq. (1.4) into a system of equations, one
must know the manner in which the expression da/d:
expand with respect to the derivatives da;/9£;, where
now the a; stand for all the hydrodynamic variables of
interest. For this purpose the general form of the
hydrodynamic equations must be calculated.

4. GENERAL FORM OF HYDRODYNAMICAL
EQUATIONS

Let us calculate the time derivatives from Egs. (2.9)
to (2.12), which are needed in the calculation of the
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hydrodynamic equations:

ZELAZNY

ag(&rl) 0 (2m fr
=— f[fl]dmpm} f[ ]dm)p(‘) (4.1)
at ot w at :
—_— - [ ]dmpm I =—— [ fl]fh w®, (4.2)
at 615 w I, @ IV ot
_— —_—— elmnpm(l)[ ]d(?)p(l) }= —_felmnpm( )[ fl]d(3)p(1) (43)
ot at w o, @ do, Y at

7 & o
*{1 gur+sgmuwitge} = —— [

mw Ldo; Ve, @ ot

6f1

4 aﬂk(l)a'r]] ® at

1
+— ]d(a)p(1)+ f[¢1'1~{|d(3)p(1>+—
16 9£,0& Ot 20

afz‘
dyo py dpPd@p@dE®.  (4.4)

If now the equations of motion for the f, functions are used, the successive hydrodynamic equations may be

obtained. First, the equation of continuity is given by

ag(fk,t) 2m I:Ztﬁ 62f1 . i 62f1 1

T
m 3p; Mg,V

2m €0,V ik

ih
Xd(3)P(2)d(3>5(2)]d(3)9(1) =

When deriving the momentum equation one must take
into account the following property of the f; functions.
As the system of molecules obeys Bose statistics, it
may be written

PiiFy=F,P;=F, (4.6)

where P, is a permutation operator of molecules
“g” and “4”. This property is transferred without
change to the fs functions. It may be written, e.g.,
fors=2:

f2(£k)pk<l))7lk(1);o'lc(1);Ek(2)7pk(2);11k(2))0k(2))
= fo(&s+E@, 0@, m®, 01 @,

1
- (¢1'1'—¢1”1”)f1+—‘—
wih

{(Pro—d1727) f2} 1,6 conw =0

df1 a
[ ]dmp(” = —a—g_g(ék,t)ui(ék,l)- (4.5)

w 0~ Lan®

fs(gk,pk(l)’nk(l),ok(l), .. ',S/c(i),Pk<i),"7k(i),0k(i), .. )
:fs(gk’ Pk(l), 77k<1), O'k(l), e, Ek(’u),
_pk(i); nk(i)) _O'k(i)7 o ')7 (4'8)

which stems from the identity of atoms of our diatomic
molecule; and the form of the potentials ¢11 and ¢12 may
be specified:

pu=¢u(|r®]), (4.9)
$12=0(| RO~ RO+ (O —r®)|)
+v(|R(l)—R(Z)—}—%(r(U—I—r(”) D)
+v(IR(I)_..R(Z)_..%(,,(D.{_,;@))])
+v(lR(l)_R(Z)_%(y(l)—_y(Z)) | ), (4.10)

[P0 = (r, Or, )2,

— 5@, pp®, 9D g, ) (4.7
L Then the following relations are of interest, and are
Moreover, the following relation may be written: easily available from formulas (4.9) and (4.10):
[ 9p(1.1) 94(1.1) p@
(¢1'1'"¢1"1")]= Lovv]= = )
[ 90, @ 3™ AW alpW]| |pW|
[Oprar  OPrrrar 9 9¢(1.2)
- ]= - [pre]=— [prra]=— , (4.11)
| 9 o ® 0L L@ 9&,®
[Op1rarr  OPrrrgr 9¢(1.2)
_ :Iz [¢1/2u]= [¢1712!I]E .
[ 90 ® 9o ® | 9p® dpp® dpr®
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From these facts we obtain: the equation of momentum,

l(fk; ) aul(gkrt) 9
g(&wt) = —g(&rt)u; (1) —Ty;, (4.12)
where ’ ’
’ e *f . 39(12)
=g(&,l £yui(Er,t)+ —
1= 8 (&) (&) (Enyt) 4 mef[anl(l)aﬂj(l)] P +2w o5,
1 af: 1 3’ f
X[f2""—fi(2)'—‘+—&<2’5n(2) - "]d@)p(”d(x)l)(?)d(s)’é‘2); (4.13)
20 9& 3! EQE,
the equation of angular momentum,
dma(Exyt) Imi(éut) 9
4 = —gU; + Ql] eZmn mny (4.14)
at 0&;
with 2f @f @¢.@) Wy @@
0*f1 PP P EP 450,V p, PE
Q g(gkyl)uJ(Ebz)ml(skJ) +_—'— fzman( )[ ]d(3)p(l)+—f€lmn7), i ’ !
2mw ;Mg , D |£(2)+%(p(1)+p(2))]
1 3f 1 (o O +pp®)E,P£,®
X[fz**—&@)_-i‘ o ']d(sw(‘)d(sw(2)d<3>€'(2)——'fezmnv' -
20 9% w? [E@45 (oD +p®) ]|

1 1 8f
X[‘z"frg"&‘”— . ']dw)p(”d(a)ﬁ(2)d<3>5(2)

a¢;
' d @41, @)
= v 3z ; 4.15
ey T (4.15)
and the equation of energy,
a J 1?
—{3g’+ge,+ge} = ——{ guj(—+er+ 6) }"f‘ (i Trj), i+ (01Qrit¢5), 5 (4.16)
at 0¢; 2
erE%mle,
where
L ih® 9 9% f1 1 1 92 | 1 9% P
qj_uj(ge_fgu _‘ger)—2m2wf[6nj“)(607;(1)601-(” l ;a‘l]i(l)a’m(l) I 16 6&6&)] @P
9fs ih o o(1.2)
+——f[ jld(s)Pm"f'*l:f ] ;
8mewtd 9@

- Ek(2)+ (Plc(l)+Pk(2))
X fr—3 (2)““*‘ d(S)P(”d(a)P(z)d(a)E‘”“—f Py,
;@ am"") [E®+3 (p“)+p‘2))|

o 2 &, 7
X| f —%Sim——‘f""]d(s)Pmd(aw(2)‘1(3)5(2’— f[——]ukd<3>p(“—2—— €xmnPm D
d¢;

2maw

i I, W e
e PP EDE® L1y 1y @@ 1
X “—‘*’—“;Iwkd(s)l)(l)_”‘ €rmnl Wk - ’ ’ ! [f _’*Ez@)'“j'._—*" ]
| 6,6, D ke |E®41(p04p@) [T oE:
1 (on W +pn®) £, P EOr 1 9/
Xd(z)P“)de(2)61(3)5(2)+—f6kmn ’ [~ 9“—&(”—4— ]dmp(”d(ammd(sﬁm- (4.17)
o g0+ (0 +p@)] Lo at;

Using the expansion of the f, functions given in the preceding paragraph, one may expand also the quantities
T4, Quj, and g¢; as a series of derivatives of hydrodynamic variables:

le_ le(0)+le(1)+le(2)+ ceey Qlj—Qlj<0)+Qlj(l)+Qlj(2)+ RN qj:qj(0)+gj(1)+qj(2)+ cee (418)
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where
2 PIAC 2 p o W4p @) O+ 5@
Ty =gumt [[ ]d<3)ﬂ(1)+—fv,2 ; L0 pVdmpPdE®,  (4.19)
2med Lo ®oy;® o [E®+3 (0D +p®) |
B2 32f1(1) l(pz(”‘l‘pz@))f 4 (2)5 .(2)
T,;0= f[ ] <3)P“)+~—f :
2mesV LoD an;® [E® 45 (oD +p®) |

8 f,©®

X [f2<1) —1£,®
9

]d<s)p“)d<s)l)<2)d<s)E(”, (4.20)

n

0) # @) (92f1(°) 1
sz =gujmz+ €mnPm | T d(s)ﬂ()

2mw I; Vg,
__1. 6 v,(pm(l)_Pm(z))gn(z)‘}‘pm(l)l)n@)g.(2)[](_ Oy p P f®, (420
) G0 )] i OLf O M mpPdmpPd@E®, (4.21)
00 = ” félmnﬁm(l)[ Fht ] ()p(l)_—-—J €1mn? oD o TNt onDpn
2w In; Mg,V [EO+L (oW +p®)]

o ®E D E D+ 10, 0, DO
|E0+3 (o0 +5®)|
(on O+ pn®) e, (2)3f2<o>]
[E® 43 (0 p)| LT g,
Xd@pPd@p®dpE®, (4.22)
0O =g ger—hgu) i f[aa ( *f©® (1 #f,@ )]d<3>p<1>+——f[ 11)6f (Oj]d(g)p(l)

2m2wd 10,0\ 90080, ® 4 39,0 dg,®

3, ® i os(1.2) PR
+— [¢(1 2) )]dmp“’dmpmd(a)ém— f E;'(”[( + )fz“’)]

1
XEDLf20]d 5ypVd 5)pPd (5,5 — ;;fflmnvl
)

af2(0)
X[En(’” o ]dmp(l)dw)p(”d(s)é(”+—f

n

Ao ;¢ 8met) 9 ™
2 P340 )
Xd(:npmd(s)ﬁ(ﬂ)dmé(”—*;fSf(z)“k” oS L2 Jd@pWdmp®dE®
w [E@+3 (o0 +p®) |

7 Pf,© 72 & f1©
f[_‘""‘_ ]ukd(ﬁ)p“)_ fekmnpm(l)[__———-]wkd@)p(l)
2me 199D, D 2mw ;Mg , @

1 . (Z)E (2)5 (2)+ Lon (1)Pm(2)£
€kmnl W k 1
" €9+ +p®)|

1 (Pm(l)"i_l?m(?))sn(mgj@)

| et M@0 300 50 @Od i ED . (4,
+2w2 €x vwklg(”—i-—;-(p“)-l-p(”)l Lfe@Jd5pNd 5pPd @,  (4.23)

[ /29 )d 5pMd 5)0Pd 5@

and so on.

5. INTEGRO-DIFFERENTIAL EQUATIONS FOR THE EXPANSION COEFFICIENTS OF f, FUNCTIONS

As is easily seen from the general form of the hydrodynamic equations and the formulas for T, Qy;, ¢; derived
above, all the quantities da,/d¢ which are in Egs. (3.2) begin with the term linear with respect to the gradients of
ax, with the exception of

gamk/3i= —guimlc,i'}_ij,j(O)" 6Iwnn:rmn(m‘*_ Y (5-1)

where the term €zmnl ma® is of zero order. This term vanishes in the case of central intermolecular forces. For this
reason the integro-differential equations determining the zeroth térm of the expansion of the f, functions in series
have the form
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Zih’ s 82]'6(0) s a?fs(o) a2fs(0) 1 2
—{ > ——% ( —— . )}-I—_—Z (Girjr—irrjr) fs©
m | =1 aph(l)o-k(l) =2 ank(l)agk(‘v) ank(l)ask(z) hi<i
1 s af,©®
+—3 | L@, sty =i, o) fot1 @ Lot —gpiomn o8 @A ) T = ——€xmnTmn @
w’pﬁ, =1 g amk
1 8f,® (om O+ o ®) £,©
= f v’ T ; [f2©0d3pPd 3p@PdE®.  (5.2)
gu* dmy [E@+5(pM+p®) |

From this equation it may be seen that f,() does not correspond to the thermodynamic equilibrium. f,© is the
equilibrium solution only in a case when the right side of the equation vanishes. This takes place, for example,
in the case of a central intermolecular potential. Not excluded is also the possibility that for the equilibrium
solution the right side of this equation vanishes, but to date no proof of this fact has been found.

Now the integro-differential equations determining the first term of the expansion of the f, functions have the
following form:

2k s O, W s o f,m 027, 1
—{ T i L ( - )]+—z (Grv—ur) fu®

. 4 . X . .
m | =1 apk(t)aak(l) =2 ank(l)agk(l) ank(i)agk(@) i

1 s 1 d afs(o) 0ai
+— | L@, cryr— b, 110 for1® o — oy co@ap Ty £ = —— — e ———

wih =1 2m oD da; 9&
af.® da; 1 Af.w  3f,0 3 1
- "EimnTmn(l) + - _’"ekmnTmn(O) ) . (53)
da; ot g Om; Omy/dt; L\ g

In a similar manner the integro-differential equations for the higher expansion coefficients of the f; functions may be

easily written.
The equations described above do not determine uniquely the expansion coefficients of the f; functions: The

following requirements must be added:

(1) The zeroth expansion coefficients must give all the hydrodynamic variables,

2m
g(fk,t)=“‘f[f1(°):|d<3>i>(”, f[fl(k)]d(sm(”=0, (5.4)
w
i (191Y denp® Of® doap®
g(Sk,t)uz(Ek,t)——-;—flanl(l)] @p®, f[ 617!(1)] @p® =0, (5.5)
in 31, © a7 ®
g(Ek,t)mz(Sk,t)z——w—fwmnpm(”{aan(l)]d(:sw”), fezmnpm(” aanm]d(:swmz(), (5.6)

2 £ (0) 2 £.(0)
FHO 1 Ph

T
90, W3c D 4 3 O ®

h? 1
Sgu+ge,+ge= ——[[ ]dw)p(”+—f[¢(1-1)f1(°)]d(3>pm
M- @

1
+—2 2f|:¢(1~2)f2(0)]d(3)P(1)d<3>P<2)d(3)$(2);
1)

aa@-(l)éai(” I 46174;(1)(9171'(1) 16 651651 -

72 62f1(k) 1 62f1(k) 1 aZf(k—2) 1
[ + = Idw)p‘”-!-— [[¢(1-1)f1(k)]d(3)p(1)
w

mw

1
+2—*2f|:¢<1-2)f2(k):ld(3)PF1)d(3)P(2)d(3)$(2)=0, (B=1,2,--2). (5.7
W
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(2) The condition of the decrease of correlation
must be also split with respect to the gradients of
hydrodynamic variables,

© ey £ O ©®
J2 (E®E®) — o HORY,

fo® 5 O fOL A [O L (58)

(5O} 5o

6. HYDRODYNAMIC EQUATIONS OF THE
ZEROTH APPROXIMATION

The equation of the zeroth approximation from the
preceding paragraph may be treated in a manner
similar to the classical case, i.e., the right side of the
equation may be treated as a small perturbation
(which vanishes, as we know, in the case of a central
intermolecular potential). For these purposes we may
attach to it the parameter A and expand the f,© with
respect to this parameter:

fs(o):fs(m)+fs(01)+fa(02)+ - (6,1)

Now it must be required that f, gives also all the
hydrodynamic variables. It is the solution of the
equation of equilibrium. Some information with
respect to its form may be obtained from considerations
of Gibbs distributions, as was done for the classical
case.® But the known methods of calculation of the
Gibbs distribution, based on the development with
respect to the powers of %, are not suitable for our
problem and give enormously complicated results. For
this reason we must now give up the attempt at
effective calculation of the f,© functions or the f,@0
functions and limit ourselves only to the qualitative
analysis of the solutions of the equations in the zeroth
approximation. With this in mind, let us introduce the
functions 7. These are the solutions of the equations of
equilibrium in the case #;=w;=0 (the case of the rest
of our system) for given density and intrinsic energy
g, €. Since for gases at normal temperatures the equa-
tions of equilibrium have only one solution, the 7,
functions must be invariant with respect to all trans-
formations for which the equations of equilibrium
remain invariant.

Such transformations are: (a) the rotation and
translation of the coordinate system, (b) the trans-
formation 7;® — —m?, ¢, — —g;P, and (c) the
space reflections (pr®, 0@, 1@, £ change the signs
of all components or some of these components).

The 7, with such properties do give definite values of
g and e and #z=w,=0. The stress tensor for the 7; and
7. functions reduces to the diagonal form and defines
the pressure. Hence the 7, functions are special solutions
of the zeroth approximation equations (5.2) (because
the antisymmetric part of the stress tensor vanishes).
Therefore the solutions of Egs. (5.2) fulfilling the
conditions (5.4) to (5.7) are assumed to have the form

1,0 = exp[ (i/1)h® Trs. (6.2)

JELAZNY

The knowledge of the 4, may be limited to only a few
terms of the following Taylor expansion:

N
By ® = [, © ] kz1(Oli(k)'ﬂi(k)+,81'(k)Ui(k)"l’“'Yij(k)O'i(k)ﬂj(k)
Fai;®n; ;W 48,0 ;Bg; 4. ) (6.3)

It may be easily seen that the first term of the develop-
ment is responsible for the changes of density and
energy, which are caused by the existence of the
velocities #;, and w;. Using the conditions (5.5) and
(5.6), the following relations for the /4, expansion
coefficients are obtained:

g(ék,t)’llf'l(fk,i)
1
. f O Lr] expL (/M) ©Tdp®,  (6.4)

w

from which, using

2m 4
[ L] expL6/MIn® s =g
w

we obtain
al(l) = 217“4[,

(6.5)

and

g(ErDmi(Eryt)

1
_ f etmnon®Bn L7 expl (/) ©Tdwp®.  (6.6)

&)

In order to use the last condition, we introduce into
our considerations a new operator: the operator of the
moment of inertia of the fluid at given point x:

N
Tia(xs)= 2 m{erpas7p'V€10957 V8 (3 (R, D — 1)

i=1

F0e) (Re D =) €rpazrsPereqzr eV}

(6.7)

The average value of this operator has the form

_ m
Ikl(xs,t) = Z_f fkpqpp(l)eltqpt(l)Efljd(S)p<1)y (6-8)
w

by means of which the density of inertia tensor of the
fluid at the point £ and the time # is defined :

m
'ikl(fkyt)=E—fekpqu)(l)eltqpt(l)[fljdci)p(l)' (6-9)
W

The above-mentioned condition may be written in the
form

11 (Ex )i (Er,)
1
=°*f€kmnpmmﬁnm[7’1] CXP[(i/ﬁ)hl(o)]d(a)Pm; (6~10)
W

from which it follows that

Bn® = (m/2) €rtnpe Vi (£ryt). (6.11)
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In this manner we have two terms of the Taylor
expansion of the /7, function; the remaining coeffi-
cients are the unknown functions of #x and wx, which
for #r=wr=0 ought to vanish identically. Writing
equations for the functions %, from the Eqs. (5.2) is

%

Tkl(0)=

,Ek(2)+%(pk(l)+pk(2))
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naturally a trivial operation. Using the expansion of
the %,© functions, we may calculate the forms of
Tr®, Q@ and ¢+ according to formulas (4.19)
and (4.21).

For T, we obtain

1

n? 1
f[—‘—] exp{ (/1) [ @ J}d 50D+ fakz(l)[h] exp{ (i/B) [ ©J}d 3)p®
2mwJ Lo, Dan,© himew

2
J £+ +5®) |

The first term corresponds to the kinetic part of
hydrostatic pressure. The second term depends on the
coefficient eV vanishing for #p=w,=0, and is sym-
metric with respect to the indices & and /. The third
term, joined with the intermolecular potential, has not
a definite symmetry (provided that [4.®7] has a very
special structure) and behaves quite similarly to its
classical analog, giving in general the coupling between

£ [ry] exp{ (¢/m)[h O T}d 50V d 5)pPd 5P, (6.12)

the equation of momentum and that of angular mo-
mentum. There may be of course some quantitative
differences following from the quantum effects, which
exists on the level of Gibbs distributions and which
may be modified by the existence of the velocities
and wy.

Q1 has the form:

7
le(°)=2 hfékmnpm(l)Ykn(l)[flj eXp{ (i/ﬁ)[h1(°):]}d(3)l)(”
me
1 (o = o @) £n O p D, @
. ) ; © WG, @ . £@
o €xmnl T 1301 ®)] £ exp{ (i/B)[ @ ]} [r2]d 5pVd 5)p@d ). (6.13)

In hydrostatic equilibrium, Qx®=0. The quantities
T @ and Q4 should be tensors expressible by means
of the vectors #; and wi. The parts of these tensors
which do not vanish for #;=w;=0 may be called the
hydrostatic ones, and the vanishing parts must be
called the hydrodynamic parts of the tensors 7'x;©®
and Q.

Quite analogous forms may be obtained for the
vector ¢ @.
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