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Derivation of Hydrodynamic Equations for the Quantum
Systems of Diatomic Molecules
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Bogolyubov s method of derivation of the hydrodynamic equations from a quantum-statistical formalism,
based on the array of distribution operators for clusters of s molecules, is adapted to the derivation of the
hydrodynamic equations for a Quid composed of diatomic molecules. The general form of the hydrodynamic
equations with an additional equation of angular momentum, which is coupled with the momentum equation
through the antisymmetric part of the stress tensor, is obtained and all the interesting hydrodynamic quanti-
ties are calculated. A general procedure of derivation of the hydrodynamic equations by successive approxi-
mations is proposed and the equations of zeroth approximation are discussed.

INTRODUCTION

HE purpose of this paper is to derive hydro-
dynamic equations, taking into account the

internal structure of diatomic molecules. From the
macroscopic point of view the hydrodynamic variables
describing the state of a diatomic Quid at any point
of space and any time are: density g(xt, t), velocity
tt (xtk, t), intrinsic energy e(xt, t), and the additional
macroscopic variable called the angular velocity of the

fluid at given point of space and time, c(oxkt)t. This
latter quantity is coupled by means of the inertia
density tensor of the Quid at a given point and time
with the intrinsic angular momentum of the Quid:

g(xt, t)trtk(xt, t) =t'k (xt, t)( „(xt,t)
The phenomenological equations of motion of hydro-

dynamic variables given above follow easily from the
principles of conservation of mass, momentum, angular
momentum and energy. They are:

Principle of conservation of mass

D
gs(3)'0 =0

m~,
Principle of conservation of momentum

D r

gttkd &e&v
= Tktd fI

Dt" v

Principle of conservation of angular momentum

g( e;k, x, I, +trt)kd()v= (ek,,x;T;I+Qkt)df,
Dt~ p J~

Principle of conservation of energy

B
g (ate + sttttcot+ e)d Is)v= (» T'I+to'Q'I+tlt) d f'tn" v p

*Now also at Institute oi Nuclear Researches, warsaw, Poland.

Equation of continuity

Dg
+gttk, k=0

Dt

Equation of momentum

DNIt,

g =TI~, ~

Dt

Equation of angular momentum

Dmj,
g Qkt, I ek~sjts''

Dt

Equation of energy

D
g (e+ ant to—ot) = tt;, ITq+ (to,Q,I+qt) I
Dt
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where Tet is the stress tensor (in the usual sense), Qet is
the stress tensor of couples, and qI, is the heat Qow

vector.
In order to complete the phenomenological hydro-

dynamic equations, the relations between Tet, Qet, and

q& and the hydrodynamic variables must be given.
Various forms of these relations distinguish various
media. However, the full phenomenological theory of
these relations is not known as yet. In the past years
Grad' has given one of the possible proposals for the
above-mentioned relations, based on the thermo-
dynamics of irreversible processes. Naturally, it would
be very desirable —both for the practical importance of
the hydrodynamic equations for diatomic Quids and
gases (e.g. , air) and for the methodological role—to
derive the relations between the quantities T&t, Qet, qe,
and the hydrodynamic variables from the micro-
scopic assumptions by means of a statistical formalism.
The first such approach, for gases composed of rough
spheres, was done by Bryan, Pidduck, and Jeans. One
of the latest papers about this problem is the work by
Curtiss. ' All these works are based on the Boltzmann
equation, that is on the kinetic theory of gases, and
give no information about the antisymmetric part of the
stress tensor. Therefore they give equations in which
there is no coupling between the equation of momentum
and the equation of angular momentum.

The task of this paper is to derive the general form
of hydrodynamic equations for diatomic Quids by
means of the formalism of quantum statistics, which is
not related with the 8oltzmann equation. For this
purpose the Bogolyubov method of an array of distri-
bution operators' ~ has been adapted and generalized
for diatomic Quids. In this connection the equations of
motion for the distribution operators of clusters of s
diatomic molecules have been derived, the operators
of mass density, momentum, angular momentum, and
energy of the Quid at given point of space have been
introduced, their average values have been calculated,
and afterwards the equations, describing the evolution
of these values in time, have been found. They are the
equations which are the macroscopic hydrodynamic
equations. In this manner the quantities Tqt, Qet, q"
are represented by means of matrix elements of distri-
bution operators for one and two molecules fi and f2,
respectively. The parts of Tet, Qet, qe connected with
the fi function are named the kinetic parts and those

' H. Grad, Comm. Pure Appl. Math. 5, 455 (1952).
2 C. F. Curtiss, J. Chem. Phys. 24, 225 (1956).' N. N. Bogolyubov, The Problems of Dynamical Theory in the

Statistical Physics (in Russian) (Moscow, 1946).
4 N. N. Bogolyubov, Collection of Works of Mathematical

Institute of U.S.S.R. Academy of Scieuces (in Ukrainian) No. 10,
41 (1948).

5N.
¹ Bogolyubov, Lectures on the Quantum Statistics (in

Ukrainian) (Kiyov, 1949).
'K. P. Gurov, J. Exptl. Theoret. Phys. (U.S.S.R.) 18, 110

(1948).
K. P. Gurov, J. Exptl. Theoret. Phys. (U.S.S,R.) 20, 279

(1950).

connected with f2 and depending on the intermolecular
influence (which is assumed noncentral) are named the
dynamic parts of these quantities. After finding the
general form of the hydrodynamic equations, a general
scheme of finding distribution operators is proposed,
which is an adaptation of Bogolyubov's method for
monatomic Quids. Certain peculiarities of this method,
which appear for diatomic Quids and which complicate
the problem to a great extent, are discussed. The
system of equations for the expansion coeKcients of f,
matrix elements is so dificult that it has not been
solved until now even for the case of monatomic Quids.
For this reason the problem has been limited to the
qualitative discussion of the equations in the zeroth
approximation. They correspond to the Euler equations
for monatomic Quids. In particular, it has been shown
that the stress tensor has no symmetry properties and
this fact gives the coupling between the equation of
momentum and that of angular momentum, even in the
equations of zeroth approximation. Naturally the
special case, that some peculiar form of the expansion
coefFicients of the f, functions may cause the vanishing
of this coupling, is not excluded entirely. No doubt
further investigations will shed more light on this
problem.

A similar program based however on classical
statistics was already published by the author. '

1. DISTRIBUTION OPERATORS AND THEIR
EQUATIONS OF MOTION

I,et us assume that lV diatomic molecules are present
in a certain volume V. The Hamiltonian of this system
may be written in the form

1+~ 2+ ~,(re"'",re"'") 1
2m &~&

+ P p "(r &'& re&'& re&"& re&s &) (1.1)

where rI, &'" describes the position of the first atom of
the ith molecule and r~&'2) gives the position of the
second atom of the ith molecule. @;; is the interaction
potential between the ith and the jth molecule (an
intermolecular potential), and in the case i= j it is an
intramolecular potential. U, represents interaction
potential of the ith molecule with the wall of a vessel,
which in our system must be present since the Quid

stays in a fixed volume V.
A complete description of the state of system should

give the density operator p, defined by its equation of
motion Bp//Bt= $H,p)= (Hp pH)/if' with the nor—mali-
zation condition Spp = 1 and by the specification of
the kind of statistics. In our case we assume that the
molecules are subject to the Bose statistics, i.e., we
require that Ip =pI =p, where I is the permutation

R. Zelazny, Bull. acad. polon. sci. Classe III, 6, 203 (1958).
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operator. The average value of any dynamical variable
Z may be calculated by means of density operator
according to the formula Z=SpZp. However, as it is
impossible to find an explicit form of a density operator
PV is a very great number), following Bogolyubov2 '
and Born and Green' we introduce the distribution
operators for one, two, , s molecules according to
the formula

P& =Qy Sp p,
(8+1, ~ s ~ N)

where Qy is the volume of the configurational space of
diatomic molecules, corresponding to the real volume
V of the system.

Using these operators, the average values of any
dynamical variable of the form

~(i )i 2 f.).
1&j1& ~ ~ ~ & je& N

can be calculated according to the formula

(Ei
)nv Sp~F'

&s)

Acting with the operator "Sp" on the equation of
motion of the density operator and multiplying by
Qy, the equations of motion for the F, operators are
easily available, namely

BF, E / s i= [H„F,j+ (1——~—
Bt Dv 0 f)/)

S S

X Sp [p p...+1 F +11+[2 f/' F.3
(s+1) i=1 4=1

F,= lim 0) Sp p; Z= SpAF„(1.2)
Oo, +~Op (g+1, s ~ ~ +) S tQ)8

BP. 1
- = [H„F.]+ Sp [g 4;,+1,F,+—,j.

M (s+1) i-1
(1 3)

where H, denotes the Hamiltonian of a, cluster consist-
ing of s molecules.

We shall now consider the a,symptotic case, character-
ized by the expansion of the domain V into the whole
space (the influence of the walls of any vessel will now
be neglected) and by the increase of the number E
to 00, such that QyjÃ=(0=const. This passage to the
asymptotic problem is characteristic of the kinetic
theory of fluids, even in such cases, in which is explic-
itly not formulated. In the asymptotic case some of
our previous formulas a,re changed into the following
forms:

lim —Sp Ii,+1,
oo, +-+oo Qy (8+],)

lim —SPP1——1.
P-moo, Pf-moo Qy

(3) They are invariant under the action of per-
mutation operator.

Moreover, the Ii, operators must comply with the
condition of "decreased correlation, " expressing the
fact that when the distances between s molecules tend
to infinity, the I", operators tend to s times the corre-
sponding Ii1 operators.

I,et us distinguish one state from all the other
possible states of our system and call it the spatially
uniform state. This state is defined as the state in which
the F, operator matrices, in a coordinate representation,
will be invariant under the inAuence of a, translation of
the coordinate system

(y '(ll)+.y„(0) y s(12)+y (0) . . . y„'(sl)+.y„(0)

yk +yk ~Fs~yk +yk s yk +yk s
' '

y

~~(sl)+yk(0) yk~~(s2)+yk(0)) —(yk~(11) yk~(12)

(») y& (»)
~ P ~ y '(11) y„"(12) . . . y '(») y (»)$

) p y k ) / ~

By performing the coordinate transformation

yk(') —y (sl) yk('2) g (")—1(yk('1)+yk('2))

we divide the variables into two groups; one of them is
invariant under the translation, and the second one is
covariant under the translation of the coordinate
system. These new variables ca,n be so transformed
that only one of the four vector variables of the F1
operator matrix will be covariant under the coordina, te
translation:

(yk'(1) gk (1)
~

jr
~

yk" (1) g '(1))—f1[1(gk (1)+gk's(1))

=f1((k") Pk") nk") ~k(")

Among the arguments tk"), pk(', 2)k ', ok") the first
one, i.e., $k(" is covariant under the coordinate trans-
lation. Similarly in the matrices of F, operators we may
also distinguish only one vector variable, namely )k")
which is covariant under the coordina, te translation:

(y„'(» g '(» . . . y„'() gk« ~F ~y
(1) gk'(1)

1 (g 1(2)+g SS(2) g ~(1) g SS(1)) 1
(y ~(2)+y ~S(2))

g /(2) g //(2) y /(2) y //(Q)

properties:

(1) They are Hermitian operators.
(2) They are normalized in the following manner:

The operators I', thus defined have the following

M. Born and H. S. Green, Proc. Roy. Soc. (London) Aj.88,
10 11946). The suitable transformation is apparent from the
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formula given above. According to this transformation, the equations of motion of the F, operators in the
coordinate representation have been transformed, namely

8f, 2i5 ~ 8'f, 1 Hf, 1 ~ ( 8'f, 8'f,

i=& Qp&
(i )Q a)( i) 4 &)t (1)&))) o) 4 &=2 & Bq (1)&)( (i) &))) (i)&)( (s))

+ . 2—(&'s' &'"s—')f+ . 2—, I(4', (+()"—&'", (+))")f+)l„.i")=..("& ad=(3)k'+"d(3)p'+", (14)
$$ &~C ~ K$Q )'=1

where by g, , and i));, we understand (r)„."",R),"",
rq'&') Rq' ') Iy "Irq'(') R ' ') rq'&') Rq' ' ) and (r-" '

R ss(i) r ss(&)R "(s') lw'.. Ir "(i) R s'ii) r «(i) R «&s)) exk )~k ) k ~~ijI~k ) k ) ~k ) k

pressed by t&"' $k"' p),.&i' ))), &i' o.)."' g)„&s) p).."'
o-k(&' according to the transformation formulas. By

&,+)) ~ and p;" &,+)) ~ we understand (r),
' ",R), ' ",

(s+)) R s (s+)) I w I r (i) R (i) r (s+)) R ss(s+)))~k ) k k

&p»(i) g «(i) ~ «(~+&) g «(~+i) Iw. I «{i)
) k ~~i, s+l~ ~k

R&"&') r),"&s+" Rq" &s+')) with exchange of arguments as

discussed above.

2. OPERATORS OF HYDRODYNAMIC VARIABLES
AND THEIR AVERAGE VALUES

For the computation of observables which are

interesting from the hydrodynamic point of view, the
following operators are introduced:

the density operator at the point x„

$7' N

iV, (x,) = ——P
2 i=1

2

&bnnrsss &) ( q) (R &
') —x )

+B(g)(R,(*')—x,)e) „r ("'&); (2.3)
Br (')

the energy operator at the point x„

E(x ) ='g s) (T,6&» (R &') x )+&)&3) (R &') x )T,
1

+q.,~(3)(R &') x)+&&.)(R &"")—x)y, )

+l 2 (~';~& )(R.&' —.)

i5& 8
Ii(x,) = ——Q &)(,)(R,&') —x,)

8
+&)(s)(R &' x); (2.2)

gg (')

the angular momentum operator at the point x„

G(x,) =m P (l)(p)(R, &') —xs)+5(3)(Rs("—xs)) I (2.1)

the momentum operator at the point x„

+&(»(R.")—x.)4')); (2 4)

where T;. denotes the kinetic energy operator of the ith
molecule. Average values of these operators are:

g(x„~)= f)(x„p."',0,o)d &»p"'=—
i

Lf)]d(»p"', (2.5)

ik ( i)f)
I)(x„t)= ——

~

d(3)p&'), (2.6)

$5 $ Bf)
M)(x„t)=e)„„x„I(x„t) e( „p—&'—) d(, )p&'),

07 80-„(')
(2.7)

5' (' 8'f) 1 8'f( 1
@(xssm) = II +— +— d(3)pu)

m(a" &)a), &') &)a ),
&') 4 &)g)&')Bg),") 16 B(go)a)Pg &')

1 1
+—

II L4') ( f)]d&3)p"'+ L4') 2 f~]d&»p"'d&»p"'d&3)6"), (2 g)
M 2' ~

where the meaning of L ] is dear from the first.
formula. For the spatially uniform state all average
values given above (without the external part of
angular momentum) do not depend on the x„since the
f& and f2 functions do not depend on the P(, &'), in place
of which one should put x'. It follows that if a spatially

uniform state is also independent of the time, it is a
state in which our system has a constant density,
momentum, intrinsic angular momentum

I
the second

term in the formula (2.7)], a,nd energy at a,ny point
of the medium, at any time.

The average values calculated above have clearly a
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2ss f'
g(h, t) =~(b, t) = j-' Lf ]d(.»"' (2 9)

i7i ( (tfi
g(kk, t)«(b, t) =I)(h~, t) = —

I' — a(i)p"', (2 1O)

g(b, t)mi(P(„t) =Mi(g)„t) e(„„—g$„ii„

straightforward interpretation. In order to avoid the
necessity of putting in place of $(,") the coordinate xi
of the point of observation, b(') will be identified with
x), and will be written $~. Then

dependence of the hydrodynamic variables on the $z.
This situation does not vary on passing to the speci6-
cation of these variables and their spatial derivatives at
a given point.

(2) They do not depend explicitly on the time,
because in the normal state the dependence on the time
is caused entirely by the time dependence of the hydro-
dynamic variables and their spatial derivatives which
are arguments of f, functions.

Further on it has been assumed that we are interested
only in such states in which the gradients of hydro-
dynamic variables and the higher derivatives of these
quantities are quite small. Then it is possible to expand
the f, functions in the Taylor series

i7i ( Bfi
I e) „p d(i)p, (2.11) f —f (o)+f (i)+f (i)+. . . (3 1)

ig(b&t)Qi(gi&t)Q)(b&t)

+-',g(b, t)m&(b, t)~&(b,t)+g(()„t)c(P(,t)

Ii' 1 8 fi=E(b t) = ——
~

+-
mes" Bo i ')80~ ' 4 ~pi "5i"

1 8'fi 1 (+ (t(3)p"'+—
' L0 i'i'fl]d(8)p

16 BpiB)i CO

1
+ ~l 4'i i fi](t(i)p d(i)p '(t(i)k2„J (2.12)

where the f, (') do not depend on the derivatives of
hydrodynamic variables, the f, ('& are linear in their
first derivatives, the f,"' are quadratic in the first
derivatives and linear in second derivatives, and so on.
It may be said that the first term of this expansion
describes the state of the Quid which is determined only

by the values of hydrodynamic variables but not by
their derivatives. To see whether this is a solution
corresponding to thermodynamic equilibrium, one
must find the integro-differential equation which this
term must satisfy.

Taking into account the postulate formulated above,
the derivatives which are in Eq. (1.4) may be written
in the form:

3. METHOD OF SOLUTION OF THE EQUATIONS
OF MOTION FOR THE DISTRIBUTION

OPERATORS BY MEANS OF
A SERIES EXPANSION

8fg &f8 (lay 8fg 8 ay
+

(Ia), (lt ()a),/Bgi Bt8$)
(3.2)

To calculate the hydrodynamic variables the fi and
fi functions are needed. Therefore some method of
solution of Eq. (1.4) must be given. We are interested
in the so-called normal solutions, i.e., in solutions which
are uniquely determined by specifying hydrodynamic
variables throughout the domain of the fluid (see
Green" )

Instead of specifying the values of hydrodynamic
variables throughout the domain of the Quid, the values
of hydrodynamic variables and their spatial derivatives
at given point may be applied. In this case the Taylor's
expansion of hydrodynamic variables in the vicinity
of a given point is used. Then the functions f, must
comply with the following conditions:

(1) They do not depend explicitly on b, bees, use the
spatial dependence of the f, functions is included in the

'0 H. S. Green, 3foleculur Theory of Fluids {Interscience
Publishers, Inc. , New York, 1952).

8 fg cl (Ifg clay

())& (l)I ('& (I)I "& (la

8 (If8 8 ay
+- . (3.3)

Bit;") (Ia(„/Bpi 8$,8$(

To expand Eq. (1.4) into a system of equations, one
must know the manner in which the expression Bai,/Bt
expand with respect to the derivatives Ba(/Bpi, where
now the a& stand for all the hydrodynamic variables of
interest. For this purpose the general form of the
hydrodynamic equations must be calculated.

4. GENERAL FORM OF HYDRODYNAMICAL
EQUATIONS

Let us calculate the time derivatives from Eqs. (2.9)
to (2.12), which are needed in the calculation of the
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hydrodynamic equations:

Bg(ps, t) B 2m
I

„i Lf(ld(s)p") =
2m f Bfi

d(q) p
rv ~ Bt

(4 1)

Bg((„,t)ii, ((„,t) B
t

i)s I. Bf1 z&st t. B

Bt Bt l co" B&&(&') co ~
(4.2)

Bg())e,t)mc($2, t) B il I' Bf1 z)rs

p (~) g( )p(~) ——
~ $) p ( )

Bt Bt a) ~ 80.„(') M

B Bf1
d(3)p( )

Bo-„(') 8t
(43)

Iis &' Bs Bf1 1 O' Bf1—(-s, gits+ —s,gmco)1+go} = —
~ +——

Bt rn(u~ 80-g(')Bc g(" Bt 4 Bgi, (')8q(. (') 8t

1 O' Bf1 1 Bf& 1
+ d(s)p + it'1'1' d(s)P + I

itel'2'
16 B$2B$2 Bt Go Bt 2'

Bfs
d(s)t' ' (44)

If now the equations of motion for the f, functions are used, the successive hydrodynamic equations may be
obtained. First, the equation of continuity is given by

Bg ($2,t) 2m
1

2i7i B'f1 iI'2
Bs f & 1 1

+ + ($1'1' itel''1 )f1+ ( (ct)1'2" ct'1 2")feei) ze( ) = e& ) =o
Bt co ~ m Bp, & )Bo'.& ) 2m B$ Br&

&') iA ce)25~

iI1 B t' Bf1 B
Xd(s)p d(s)$ d(s)p ' =— ' d(s&p

' = —
g(g)e, t)zi, (g)„t) (4.5).

co Bt, Bs&,
&1) B&;

When deriving the momentum equation one must take
into account the following property of the f, functions.
As the system of molecules obeys Bose statistics, it
may be written

P;;F,=P,I';,=I'„ (4.6)

where I';; is a permutation operator of molecules
"i" and "j".This property is transferred without
change to the f, functions. It may be written, e.g. ,
for s= 2:

f ($ p
(1)

2&
(1) o (1) $ (2) p (2) rt (2) cl (2))

f ($ +$ (2)
p

(2)
rt

(2) o (2)

(2) p (1)
2&

(1) o (1)) (4 7)

Moreover, the following relation may be written:

fe(PS P)e
'

»2
'

&l2
' ' ' ', ()e "',P2 ",r11e "',irk ', ' ' )

f (e p
(1)

2&
(1)

&r
&1) . . . P

(i)

P2(i) st~(1) o 2(c& . . .) (4 g)

which stems from the identity of atoms of our diatomic
molecule; and the form of the potentials P» and c(» may
be specified:

~»= 0»( I

r"'
I ) (4.9)

ate]2 —v(~ E")—E("y—'(r")—r('))
~ )

+ (i+&)—g()+ ( &)+„())~)
+1)(i@&1)—g(2) —1 (l(1)+r(2))

~ )
+2)(~R "&—R&') —-'(r&') —r(")

~
), (4.10)

i
l (1)

~

= (r (1)ls &1)) e

Then the following relations are of interest, and are
easily available from formulas (4.9) and (4.10):

B B By(1.1) By(1.1) pi&'&

1'1' 1"1" 1'1'
Bo. "' Bp "' Bp "' B~p"') ~p"'~

Bit)1 seee
Qg~ (&) ()g@(&)

pl 2I I

B() (2)

B Bit (1.2)
gl I 2l I

B~ (2)
(4.11)

By(1.2)
[e) ' j= [V1-']-=

Bo-gO) Bo-I,(" 8pg(') BpA(" pA")
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From these facts we obtain: the equation of momentum,

where

Be)((0,t)
g($3,t)

8t

B23,((„t) a
g—(&3,t) 23, (b, t) + (4.12)

1 Bfi 1 B f2
)( f2 P. (—2) —+ ].(2)( (2)

2! B$, 3! Bg,ap
the equation of angular momentum,

am( (&0,t) Bm 1 ((0,t) B
g = g233 + Qlj «mn7 mn)

with

&22

t
B'f1 1 t By(1.2)

~lj g(gkqt)+l(hk&t)Qj($3&t)+ d(3)P +
2m0)~ Bi)1")Bi&."' 2(02~ a/1"'

p( )d p( )d& )$( ) ' (4 13)

(4 14)

« =g(&.,t) (&,t) (&.,t)+
2m'~

B2f (2)( (2)( (2)+1 (1) (2)( (2)
—d(3&p' '+—

i «mni)
Bi) ~ (1)ag (1) (02 J

I
$(2)+1(p(1)+p(2))

I

af2
—

1
t

(p (1)+p (2))$ (2)g. (2)

X f2 $3 + ' ' ' d(3)P d(3)P d(3)$ 0(mni& .

I

((2)+1(p(1)+.p(2))
I

1 1 Bfi
f2 k*—"' —+— d(3)p"'d(3)p"'d(3)8")

2! 3! BP;

and the equation of energy,

~l ~(1$"'+2(P +P"') I);
$ (2 ) +1

(p (1)+p (2)) I

(4.15)

where

(2gil'+—ge„+g0) =—B (23
g&jI —+~.+ 0

I + (N3~.j)j+(~3,Q.j+Vj)1,
ag; E2 )

1e,= 2m~co~,

(4.16)

i7i' B ( B'f 1 B' 1 B'f1 )a=~ (g lg~' g') —— '
— —

I +-,+-
2m2(0" B &'& (.Bo,(»a(T &" 4 Bi),(')B3I,(') 16 B&;Bt;&

i5 ( af, i71 Bfi i7i
I

B&(1.2)+ ! lt (1.1) d(, )p&'&+ y(1.2) d(3)p
1 d(3)p('&d(3) (")—

2m(0 J B2)j(') 4m(02 " B)) "' Sm(02~ Bg "'

( B B ') t', Bf2 l 2 ( 4"'+2(P0"'+P3"')+ II f2 28 "' + '
I d(»P d(3)P d(3)t

(,Bi& &') Bit(2)) E Bp„/ (0'J I('+-'(p'+p')I
8

X fi ', $,"' + d—(3)—p"'d(3)p d(3)$"'—
B),

~d p&» — "0 p &»

2m(0 B&) B&I ' 2m(d J

B fl p (2)( (2) P.(2)+1p (1)p (2) $ .(2) I Bf2

I
5"'+l (p"'+p"')

I

( "'+P-"')5-"'5 "' 1 1 Bfi
Xd( "'d p"'d 5")+—

~t 03 2)'(03 f~ $, (2) + —d(3—&p
—"&d(3&p&'&d&3)p(2). (4.17)2J

I
((2)+1( (1)+. (2))

I
2! 3(

Using the expansion of the f, functions given in the preceding paragraph, one may expand also the quantities
Tl;, Ql, , and q, as a series of derivatives of hydrodynamic variables:

.(0)+2' . (1)+2' .(2)+. . . Q .—Q
.(0)+Q .(1)+Q .(2)+. . . &J. ~ (0)+q (I)+q (2)y. . . (4 1g)
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{
- B2f1(0) —

2 f
1(p&(1)+p&(2))(.(2)+(3(2)$.(2)

Tv( ) =gu&u&+ ' d&3)P' '+—
i

2) Lf2 ]~(3)p d(3)p
I
&"'+-'(p"'+p"')

I

(4.19)

y', .(&)—
S2 f B2f (1) 1 1

(p (1)+p (2))g (2)+P (2)$ (2)

d(3)p'"+—
'

0'
Bn&")Bn "' ~'"

I
$")+-'(P")+p"')

I

Bf (0)-

f2(1) 1~„(2) d(3)p (3)p d(3)( ', (4.20)

Qtj =gujm&+ ' 3bnepm.(o) (~)

2m' ~

B2f1(0)

,

d(3)p"'
8g (')Ba-„o).''

I

](2)+1(p('&+p&2))
I

(p (1) p (2))t (2)+p O)p (2)

k1"'Lf2"'Ed(»p"'d(3)p"'d(»t"' (4.21)
248 ~

52

Qlj.(1)—
&lmnpm (1)

2ffkv

B2f (1)

d(g) p(')—
Qg ~ (~)gg (~)

1 t~(p(1)p(2))$(2)+p(1)p(2)
~tmn&

2&02"
I
((2)+1(p(1)+p(2))

I

p (2)
P

(2) f (2)+1
p (1)p (2'&

$ (2)

Xf, (2 Lf2' ]d(3)p ' d(3)p d(3)$ 2'
I
5"'+2 (P"'+P"')

I

(p "'+p "')5 "'6"' Bf '"'
d(3)p(')d(3)p(2)d(3)((2)+ 6)~„2)'

Ik"'+l(p")+ p"))I-

Xd (3)p d (3)p "'d (3)$(", (4.22)

0) - iS { By(1.2) p B B
+ I 4 (1 2) d(3)p"'d(3)p"'d(3) k"' — 5&"'

I + If&"'
4m&0" B2&,

&') 8m&02" Bp, (2) &B2&,(') B2&,(2))
$3")+2 (P3")+P3"))

Xd p" d "d, $" I p" „'—— tf, 'g, "'d,
It"'+2(p +p ')I

iS
&

B ( B'f1"' 1 B'f1"' ) 2S { Bf1&')
q"'=u(g v lgu') — —

I
—

I
+-

I
d(&p'"'+ ~' O(11)

2m200& B2&
&'& &B&r (')B&r &'& 4B2& (')B2& (')) 2m&0~ B2&

"'

B2f1(0)

Nkd (3)p(')—
2~ J g»(~)g&. (&)

t
(s)~k~npm

27ÃCO

B2f1(0)

.a& (»a~ (»
G)pd(3)p( )

p (2)( (2)],(2)+lp (1)p (2)]

Lf2 Pd(»p d&»P' d(3)t
&04

I
$( &+1(p(1&+p( &)

I

(P +P ")&-"'4"'
Lf2"')d(3)p"'d(»p"'d(3)("', (4 23)

I
t(2)+1(p('&+ p(2&)

I

BDd so on.

5. INTEGRO-DIFFERENTIAL EQUATIONS FOR THE EXPANSION COEFFICIENTS OF f, FUNCTIONS

As is easily seen from the general form of the hydrodynamic equations and the formulas for T&, , Q&, , q, derived
above, all the quantities B&33/Bt which are in Eqs. (3.2) begin with the term linear with respect to the gradients of
a~, with the exception of

gBm3/Bt= gu, m, ,+Q~„,, (0)—03 „T „—"'+
where the term ~I„„„T„")is of zero ord.er. This term vanishes in the case of central intermolecular forces. For this
reason the integro-differential equations determining the zeroth term of the expansion of the f, functions in series
have tke form
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2iI'2 ~ &Pf, (0)

m ~1 Bpl (')01,(')
( g2f (0) &&2f (0)

'I I — r1 'l l

~2 &8»k(')8& &" 8» ")8$ ")) 2A'&&

1 s f gf (0)

+ Q ~

$(4S'(S+, 1)" 4(", (S+1)")fSy1 ]0S&s+i& =SS&s+» =pd (8)p d (8)f — ekm&STmn,
ONSET i=1 4 Bmg

(&f, (0)
& (p (1)+p (2))( (0)

I f2 '3&f(»p d&»P 'd(2)t' ' (5 2)
g&02 (&mk s&

I
f( 2) +—1(PO)+p(2))

I

From this equation it may be seen that f, (0) does not correspond to the thermodynamic equilibrium. f, "& is the
equilibrium solution only in a case when the right side of the equation vanishes. This takes place, for example,
in the case of a central intermolecular potential. Not excluded is also the possibility that for the equilibrium
solution the right side of this equation vanishes, but to date no proof of this fact has been found.

Now the integro-differential equations determining the first term of the expansion of the f, functions have the
following form:

2212 ~ 82f &'& ~ f 82f &'& 82f,") ) 1
—.
—-' P —

.
—

I +—. 2 (ei 1
—e&-1")f."

m *=1 Bpk(')&&ok('& '=2 &8»k&')B)k(') &&2&k(')Bpk(')) 2A'&&

iI2 && Bf,(0) Bu,

gf (0) gg. I gf (1) (If (1)
&& (+ + esmss2'ss, ss +

I
ekmssTmss I

~ (5.3)
8&2; at g Bm; Bmk/8&; (&g; ( g

+ 2 I (st&(', (s+1)" st'(", (s+1)")f+1 3».&+»=ss&+»=od(2)p d(2)5
0)Zfg & 1 sj 2m BT/&s( ) 8&2s Clgk

In a similar manner the integro-differential equations for the higher expansion coefficients of the f, functions may be
easily written.

The equations described above do not determine uniquely the expansion coefficients of the f, functions. The
following requirements must be added:

(1) The zeroth expansion coefficients must give all the hydrodynamic variables,

281
g(&k, &) = — I:fi"'jd(2)p"', Lfi(k) jd(2)p(1) =0 (5.4)

(If (0)-
1

(if)(k)--
g(b, ~)N&(4&~) = ——'

d(2)p"'& d(2)P"'=0&
g~ (1) g g~ (1)

(5.5)

i5 &,Bfi(0)'
g(kk, &')m&(4, t) = —— «P &f(2)p

, Bo-„(')

gf (k)-

& IImnpm d (3)p(1) d (1)—
(1)

(5.6)

&&I2 ~
— g2f (0) I g2f (0)

2gg'+ge, +ge= —-+ d(2)p "+
l L4(1 1)fi jd(2)p"'

m&0~ 8&rk(')B&T &" 482&k(')82& &') &0J

+ L&(12)f "'jd
26' ~

I&2
— g2f (k) 1 g2f (k) 1 g2f(k —2)

+- +— d(2)p"'+— L&(1.1)f&"'3~(2)p"'
m0&" 8 T")8&&r;") 4 8»,")8»,") 16 8$,8$, .

+ ~L&(1 2)f2(")j&(2)p")&g(2)p")&I(2)P'=0, (&=1, 2, ). (5.7)2'
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fq(i) ~ fi(o)f i()i+fi(i) fi(o)
($I, (2)gI, (2))~ k oo

(5.8)

6. HYDRODYNAMIG EQUATIONS OF THE
ZEROTH APPROXIMATION

The equation of the zeroth approximation from the
preceding paragraph may be treated in a manner
similar to the classical case, i.e., the right side of the
equation may be treated as a small perturba. tion
(which vanishes, as we know, in the case of a central
intermolecular potential). For these purposes we may
attach to it the pa.rameter )( and expand the f,") with

respect to this parameter:

f (0) f (oo)+f (ol)+f (02)+. . . (6 1)

Now it must be required that f, (oo) gives also all the
hydrodynamic variables. It is the solution of the
equation of equilibrium. Some information with

respect to its form may be obtained from considerations
of Gibbs distributions, as was done for the classical
case. ' But the known methods of calculation of the
Gibbs distribution, based on the development with

respect to the powers of A, are not suitable for our
problem and give enormously complicated results. For
this reason we must now give up the attempt at
effective calculation of the f,&" functions or the f, ("&

functions and limit ourselves only to the qualitative
analysis of the solutions of the equations in the zeroth

approximation. With this in mind, let us introduce the
functions r, . These are the solutions of the equations of
equilibrium in the case uk ——(ok=0 (the case of the rest
of our system) for given density and intrinsic energy

g, e. Since for gases at normal temperatures the equa-
tions of equilibrium have only one solution, the r,
functions must be invariant with respect to all trans-
formations for which the equations of equilibrium

remain invariant.
Such transformations are: (a) the rotation and

translation of the coordinate system, (b) the trans-
formation q)k

' —) —q)k(' ok ') -+ —ok(', and (c) the

space reflections (pk("', ok"', qtk"', $k"' change the signs

of all components or some of these components).
The r, with such properties do give definite values of

g and e and NI, =cop=0. The stress tensor for the r~ and

r2 functions reduces to the diagonal form and defines

the pressure. Hence the r, functions are special solutions
of the zeroth approximation equations (5.2) (because
the antisymmetric part of the stress tensor vanishes).
Therefore the solutions of Eqs. (5.2) fulfilling the
conditions (5.4) to (5.7) are assumed to have the form

(2) The condition of the decrease of correlation
must be also split with respect to the gradients of
hydrodynamic variables,

fq(o) ~ fi(o) fi(o)
(QI (&)QI, (2))~ —+ ao

The knowledge of the h, '"' may be limited to only a few
terms of the following Taylor expansion:

g (4,t)«(5,t)

1

J
co('"'[rij exp[(i/fi)hi( )7d(o)p('), (6.4)

from which, using

2m
[rij exp[(i/&) i i(o) ld(o) p"' =a

we obtain
n)(') = 2mni, (6.5)

a(b, ~)~i((k, t)

=—
I o,~„p„")P„")[rij exp[(i/Ii) hi(o)]d(o) p('). (6.6)

In order to use the last condition, we introduce into
our considerations a new operator: the operator of the
moment of inertia of the fluid at given point x:

N

lk, (x,) = P m(ok„, -', r„&")o„,—,'r, (")t)(,) (z, (') —x,)

+&(o) (&,"'—~.)ok, q ,'r„"'«„',r, "-'). (6.7-)

The average value of this operator has the form

Iki(~, t) =—«.qp. "'«(qpi"'Lfi jd(o)p"' (6 g)
2GO

by means of which the density of inertia tensor of the
Ruid at the point (k and the time f is defined:

qki(kk i) ~«yqpy oi(op i [f1]d(3)p ~ (6 9)
2M'

The above-mentioned condition may be written in the
form

ii )(h, t)(oi((k, t)

ok „p "'P ("[ri) exp[(i/h)h, 'j(d)(, p )'()(6.10)
CO~

from which it follows that

)q (O) [iq (O)j+.P (~ (k)& (k)+P.(k)~.(k)+& . .(k)~.(k)&.(k)

k=1
+~, , (k)~ .(k)~.(k)+p. , (k)~, (k)~.(k)y. . . ) (6 3)

It may be easily seen that the first term of the develop-
ment is responsible for the changes of density and
energy, which a,re caused by the existence of the
velocities uq and (ok. Using the conditions (5.5) and
(5.6), the following relations for the hi"' expansion
coefficients are obtained:

f, &') = e px[(i/A) lz, (o)gr, (6.2) p„"'= (q))/2)o(i pi"'(o((gk)t). (6.11)
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In this manner we have two terms of the Taylor
expansion of the h~&" function; the remaining coe%-
cients are the unknown functions of NI, and ark, which
for N&=ooI, =O ought to vanish identically. Writing
equations for the functions h, (o) from the Eqs. (5.2) is

naturally a trivial operation. Using the expansion of
the h, "' functions, we may calculate the forms of
T),&(0), Q~&") and &tl,

(0) according to formulas (4.19)
and (4.21).

For T»") we obtain

8 1']
Tq&") = exp{(i/h)[h&' &]}d&3&p&'&+ — nq&

' [r)] exp{(i/h)[hr(o)5}d(3)p&')
2m') ~ Bgj,(')B~)(') ' Asks

4 + (pa +pa"')
+— ' ()' $&(')[r2] exp{ (i/5)[h2' ']}d&»p"&d(3)p&'&d(3)$"' (6.12)

I
k")+2(p")+p"))

I

The first term corresponds to the kinetic part of
hydrostatic pressure. The second term depends on the
coefficient n&&"' vanishing for N&=co&=0, and is sym-
metric with respect to the indices 0 and /. The third
term, joined with the intermolecular potential, has not
a definite symmetry (provided that [h2 ' ] has a very
special structure) and behaves quite similarly to its
classical analog, giving in general the coupling between

the equation of momentum and that of angular mo-
mentum. There may be of course some quantitative
diGerences following from the quantum eGects, which

exists on the level of Gibbs distributions and which

may be modified by the existence of the velocities I&

and cop.

Q~&(0) has the form:

Qa&") =
27RM54'

e& „„p„"'rA „' [r)] exp {(i/5) [h& ' ]}d (»p
'

~

((2)+~ (p(()+p+))
~

(p o) p (2))$ (2) +p (1)p (2)
I

~A:mn&

2GP ~
P&(2) exp{ (i/h)[h)(')]}[r2]d(3)p("d(3)p(2)d(3)t"). (6.13)

In hydrostatic equilibrium, Q), &(o)=0. The quantities

TI,&(') and Q),)(') should be tensors expressible by means

of the vectors NI, and ~g, . The parts of these tensors

which do not vanish for NI, =~I,——0 may be called the

hydrostatic ones, and the vanishing parts must be

called the hydrodynamic parts of the tensors T»")
and Q), &(0).

Quite analogous forms may be obtained for the

vector qA,
"'.
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