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Least-squares analyses have been performed on a set of atomic masses using standard and generalized
semiempirical mass laws. Presumably because of errors in the assumed form of the standard mass law, its
least-squares coefficients can be determined at best to an accuracy of about 10%, and masses are predicted
with an uncertainty of several Mev/c'. The standard mass law has been generalized by addition of shell
effect and deformation terms. While the least-squares fitting of the generalized mass law is better than
for the standard mass law, it is still not possible to predict atomic masses to an accuracy better than a few
Mev/ 'c. The nuclear deformations and the well depth of the nuclear interaction obtained from the additional
mass-law terms are in reasonable agreement with more accurate determinations by other methods. A
similar statement applies to the nuclear radius constant as obtained from the least-squares coefhcient of
the Coulomb energy term. A study has also been made of the effects of additional terms propertional to the
absolute value of the isotopic spin, exchange and surface corrections to the Coulomb energy, and the surface
correction to the normal isotopic term.

I. INTRODUCTION recent analyses along these lines are reported in the
literature. ' The present paper will discuss one such
investigation with the standard law and with generalized
forms of the Weizsacker semiempirical mass law.

~ 'HE Weizsacker semiempirical mass law'' was
developed in an attempt to correlate observed

atomic masses with theoretical estimates obtained by
computing the average potential and kinetic energies
of the A nucleons in a nucleus, taking into account the
difference between the Z protons and N neutrons.
This computation resulted in the following mass law
(hereafter referred to as the standard mass law).

II. ANALYSIS OF THE STANDARD SEMI-
EMPIRICAL MASS LAW

Least-squares analyses of the standard semiempirical
mass law have been performed on an electronic computer
using the experimental odd-A masses tabulated by
Wapstra and Huizenga. 4 The results are listed in
Table I. Figure 1 compares the absolute value of
63E=LM(calculated) —M(experimental)] with the ex-
perimental uncertainties of the input masses for the
standard mass-law analysis listed as the third case of
Table I. Figure 2 gives a plot of this 63f versus mass
number for the stable isotopes. The other curves of
Fig. 1 and Fig. 2 will be discussed below. From the
local smoothness of the curve of Fig. 2 as well as the
small uncertainty in experimental masses relative to
least-squares computed masses in Fig. 1, it may be
concluded that the largest source of uncertainty in
such mass law calculations arises from fundamental
errors in the assumed form of the mass law. This
conclusion is emphasized by the variation in Table I
of the least-squares determined coeS.cients as a function
of input data and its weighting. While the 5 to 20%
standard deviations from the mean of the least-squares
coefficients listed in this table are at best a coarse
measure of uncertainties arising from an incomplete
or incorrect mass law, it seems reasonable that the
least, -squares coefficients and, hence, the nuclear radius
constant cannot be determined to better than about
10% from analyses of experimental masses by the
standard semiempirical mass law. It follows from this
conclusion that the standard mass law cannot be

M(Z, A) =ZMrr+fVcV„otA—
Is Z(Z —1) 1

+P—+yA l+ e +—4, (1)
A 2

'

where M(Z, A)=atomic mass of the atom containing
Z protons, N =A —Z neutrons, and Z electrons;
M~ ——atomic mass of hydrogen; M„=neutron mass;
I=N —Z; and

'0 for A odd
b~= ~ positive for A even, Z and E odd

.negative for A even, Z and N even

The coeKcients cr, P, y, 8z, and e are theoretically
related to independently observable physical quantities.
For a uniformly charged sphere of radius E.=E.pA',
the Coulomb energy term multiplying factor is

3 e' 0.928
C=

5 Eo Ro(fermis)

0.864
mMU = Mev. (2)

Eo(fermis)

Thus, a least-squares analysis of the standard mass
law yields a value of the nuclear-radius constant as
well as estimates of masses of unknown nuclei. Many

~ Supported in part by the joint program of the ORice of Naval
Research and the U. S. Atomic Energy Commission.

' C. F. Von Weizsacker, Z. Physik 96, 431 (1935).
'H. A. Bethe and R. F. Bacher, Revs. Modern Phys. 8, 16

(1936).

' A. E. S. Green, Revs. Modern Phys. 30, 569 (1958).
5 4A. H. Wapstra, Physica 21, 367 (1955), and J. R. Huizenga,

Physica 21, 410 (1955).
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TABLE I. Analyses of the standard semiempirical mass law.

Input data

300 odd-A nuclei with Z) 28

93 stable odd-A nuclei with Z) 28

300 odd-A nuclei with Z)28

162 odd-A nuclei with E)82

Least-squares
analysis on

f= (M—A)/A

f= (M —A)/A

(mMU)
(Mev)

16.839
15.679

16.809
15.652

17.798
16.572

15.173
14.128

P
(m MU)
(Mev)

24.667
22.968

24.936
23.219

27.266
25.388

22.738
21.172

(mMU)
(Mev)

19.259
17.933

19.236
17.911

22.253
20.721

12.448
11.591

(mMU)
(Mev)

0,75730
0.70515

0.75005
0.69840

0.82146
0.76489

0.67957
0.63277

Ro
(so-» cm)

1.225

1.237

1.130

1.365

applied to the prediction of unknown masses to an energy,
accuracy better than several Mev/c'.

III. INCLUSION OF SHELL EFFECTS
IN THE MASS LAW

In Fig. 2 it is seen that the largest apparently
uncorrected effect contributing to an uncertainty in
the assumed form of the standard mass law is that due
to nuclear shell structure. Shell effects contribute a
relatively greater stability to the nuclear system both
at closed shells, due to the shell closing, and between
closed shells, due to nuclear deformation. Two terms
have been added to the standard mass law in an
attempt to account for these effects and thereby deduce
more accurate least-squares coefficients and mass values.
The resultant mass law will be referred to as the general-
ized mass law. Its form is as follows

and the separation energy,

5=V .. —T. ,

implies a velocity dependence of the nucleon interaction
potential V. The quantity V, is the interaction
potential of the nucleon having the maximum kinetic
energy T, . Assuming the same velocity dependence
in the Fermi and shell models, the shell-function term
becomes

5(Z,A) =A (T, TI). —

The average Fermi kinetic energy E~ is related to the
maximum Fermi kinetic energy T~, by

f 3~/= 5~/ max

M(general) =M(standard)+S(Z, A)+D(Z, A), (3)

where M(standard) is given by Eq. (1), 5(Z,A) is
the shell function term, and D(Z,A) is the deforma. tion
energy term.

The deformation energy term will be obtained by
computing the maximum energy gain with quadrupole
deformation from a spherical shape. This maximum
results from the competition between the first order
decrease in kinetic energy with deformation, and the
second and higher order changes in the surface and
Coulomb energies.

The shell-function term will be computed from the
sum over all nucleons of the difference of the nucleon
separation energies S„colnputed on a shell model,
and Sy, computed in terms of the maximum statistical
Fermi kinetic energy, T~,, Thus, the shell-function
term is

5(Z,A) =+~ (Sr—5,),
where the sum is over all of the nucleons, A in number,
in the nucleus.

Keisskopf' has shown that, neglecting surface and
isotopic sects, the equality of the average binding

s V. F. Weisskopf, Nuclear Phys. 3, 423 (1957).
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FIG. 1. Least-squares deviations of masses. (A) Experimental
uncertainties in measured masses. (8) DM) = (M(calculated)

Mexperimental) ) for analysis —using the standard mass law.
(C) nM( for analysis using the generalized mass law with
square-well nuclear interaction potential.
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FIG. 2. Deviations between calculated and experimental masses
for the stable nuclei with odd atomic mass. Dashed curve:
masses calculated by least-squares methods, using the standard
mass law. Solid curve: masses calculated by least-squares methods
using the generalized mass law with square-well nuclear interaction
potential.

intermediate between two closed shells with respect to
the nucleon type of interest. For example, for the proton
shell with 50(;Z~(82, the stable nucleus with Z=66
is «Dy'", hence A&=161. In Table II, the AI, values
corresponding to the above definition are listed.

In mass law analyses involving the shell-function
term 5(Z,A), the factor (V,„—n) has been left as an
arbitrary coefficient determined by least-squares anal-
ysis. Values of this coeKcient will be discussed following
the derivation of the nuclear deformation energy term
that gives rise to increased stability and decreased
atomic mass between closed shells. A detailed plot of
the shell-function term for a particular least-squares
analysis is given in Fig. 3.

In terms of the deformation parameter X defined from

r =RL1+XP,(costI)], (13)
where

P2(cose) = —,
' (3 cos'0 —1))

The shell-model kinetic energy for a, nucleon in the
ith level is given by

T,=C(v l )A ""=C(v,l,)(R/Ro) "

Z*28 N=50 Z=50 N=82

50—

I

Z=82¹I26

where v=1 for a harmonic oscillator potential and
v=2 for a deep square well. The symbols v; and t,
represent the quantum numbers associated with the
ith level. The quantity C(v, l;) is model dependent. It:
will be evaluated in an approximate manner below.

Combining Eq. (7), (8), and (9) yields

5(Z,A) = —s3ATf,„+A "~' Qg C(v, l,). (10)

To evaluate C(v,l;) approximately, it is assumed that
at some fraction through the kth shell at mass number

the Fermi and shell-model separation energies
of the last nucleon are equal. Thus
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TABLE II. Ay, values for the mth nucleon.

m~&2
2(m~&8
8(m~& 20

20(m &» 28
28(m~& 50
50(m ~& 82
82(m ~& 126

126&ng & 184

Al (PrOtOnS)

10
29
53
89

161
269

Al (neutrons)

1
10
27
44
70

116
176
255

where the subscript j denotes the highest level contain-
containing a particle. Substituting the volume coeffi-
cient n for the separation energy 5 in Eq. (6) and
combining Eqs. (6), (10), and (11) gives

5(Z,A) = (V, —~){——,'A+Qg (AI/A) "~'}. (12)

The mass number AI„-, at which the Fermi and shell-
model separation energies of the last nucleon are equal,
is assumed to be given by the stable nucleus exa, ctly

and r is the radius vector to the point (r,e,&) on the
surface of a nucleus, the nuclear deformation' energy
change AE may be written

AE= —CgX+C2X' —C3X'+0 (X4),

where the coefficients C, will be defined and discussed
below. The extremum of AE gives the deformation
energy term D(Z,A) and equilibrium deformation

as
2C,

D(Z, A) = —C2X„,2) 1—
Cg

(C2' 3CiC3)'—
3C3

(16)
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Frc. 3. Deformation and shell-function terms for the stable odd-A
nuclei using a square-well nuclear interaction potential.
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where g is a.n arbitrarily inserted, least-squares deter-
mined coeS.cient, whose value should be near one.
The preceding equations assume both that the de-
formation energy change is determined solely by
quadrupole-type deformations and that this energy
change is adequately described by neglecting higher
than cubic terms in the expansion of Eq. (14). Since
both of these assumptions are probably wrong, ' the
coeKcients C&, C&, and Cs will have to be arbitrarily
adjusted to give equilibrium deformations in agreement
with nuclear quadrupole moments and Coulomb
excitation cross sections.

The coeKcients C2 and C3 are assumed to arise from
Coulomb and surface energy changes of a uniformly
charged spheroid relative to a uniformly charged
sphere. Hence, '

Z' Z +(Z -Z )bCSI u CSI CS2 CSI

ZCSI (ZCS2 ZCSI~~ ZCS2

I'ro. 4. Deformation function parameter f „
between two magic numbers.

Cs ——-,'p'A1(1 —x),

Cs= (2/21)FCs,

(17)

(18)

where f is the deformation parameter for the mth
nucleon in a shell. It is discussed below. Hence

DR„q=T I1 ~ ~, (21)
R )'

where T is the kinetic energy in a spherical potential
and AE is the average radial change in the position
of the mth nucleon due to deformations

Assuming no change in the nucleon potential energy
with deformation, the energy gain due to the single
particle level shift following deformation is, from
Eq. (21),

DR
AEt —Q NT——

AR p A&y "~'
= —&(l'-'- —~) Q ~ I

(22)
R (Aj

where use has been made of Eqs. (6), (9), and (11).
From Eq. (13) it is seen that AR /R is proportional to
P. Thus

(23)AR /R= f„X,
' S. K. Moszkowski (private communication).' K. Kumar and M. A. Preston, Phys. Rev. 107, 1099 ($957).' W. J. Swiatecki, Phys. Rev. 104, 993 (1956).' James Rairnvater, Phys. Rev. 79, 432 (1950).

x= (e'/2y')Z(Z —1)/A, (19)

F= (1+2x)/(1 —x), (20)

where e' and y' would be the coe%cients of the Coulomb
and surface energy terms in the semiempirical mass law,
except that they are adjusted somewhat to compensate
for the poor assumptions discussed previously.

The coefficient C~ results from a determination of
AT, the change in average kinetic energy of the mth
nucleon in the ith level due to deformation. ' From
Eq. (9)

tR+21R q-"
T„+aT„=C(r,l,) i

R, )

Cr ——n(V „„—n) Qd f (As/A)"". (24)

The coefficient f is the sum of the contributions f v
and f „, which arise from the deformed orbits of
protons and neutrons, respectively. From the experi-
mental fact that magic nuclei are spherical

Zclosed shellfmv = +closed shell fms= 0 ~ (25)

The plot of f „or f „versus the number of protons
or neutrons in a shell should be independent of the shell
under consideration. This requirement is inconsistent
with Eq. (16) and the facts that nuclear deformations
between closed shells are generally small for Z&50
and large for Z)50. To circumvent this dilemma, it
is assumed that f „=f „=0 for 1V(82. For X)82,
the assumed form of the sum of f ~ over the protons
in the sth shell is given in Fig. 4, in which Zg8~ and
Zg82 are the atomic numbers at the beginning and end
of the sth proton shell. For consistency between
computed ) values and observed quadrupole moments,
the coefficients a and 6 of Fig. 4, should be about 0.3
and 0.7, respectively. The quality of least-squares
analyses was relatively insensitive to &20%%u~ changes
in a and b. The maximum ordinate of the curve of
Fig. 4 was determined from the requirement that

(s&Ho"') =0.26. The above remarks apply equally to
the deformation due to neutrons and to the quantity
f „Adetailed . plot of the deformation energy term
for a particular least-squares analysis is given in Fig. 3.

IV. RESULTS OF ANALYSES OF THE
GENERALIZED MASS LAW

The results of two typical least-squares analyses of
the generalized mass law on the masses of 300 odd-A
nuclei are given in Table III. In these analyses, it was
assumed that @=0.3, b=0.7, e'=0.775 rnMU, and
y'= 25 mMU. A comparison of calculated and
empirical" deformation parameters is made in Fig. S.

' Alder, Bohr, Huus, Mottelson, and Winther, Revs. Modern
Phys. 18, 432 (1956); see Table V3 on p. 531.
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TABLE III. Analyses of the generalized mass law.
(1 fermi=—10 "cm).

Square
(e =2)

Harmonic
oscillator
(n =1)

16,412 24.438 16.922 0.74120 9.1483 1.252 1.2226
15.282 22.755 15.757 0.69016 8.5183

19.310 24.592 17.144 0.74545 18.752 1.245 1.2930
17.980 22.899 15.963 0.69412 17.461

CX P v Vmax —&
(mMV) (mMU) (mMU) (mMU) (mMU) Ro

Well ty pe (Mev) (Mev) (Mev) (Mev) (Mev) (fermis)

analyses of the least-squares coefficients to better than
about 10%.

An attempt was also made to calculate the deforma-
tion energy term on an electronic computer using
Nilsson's model. ' This attempt was discontinued
because the calculated deformations failed to agree
with experiment (i.e., magic nuclei were badly de-
formed) unless large changes were made in Nilsson's
parameters.

Figures 1 and 2 illustrate the improved agreement
between the general semiempirical mass law and
experimental masses, as compared to the standard
mass law analysis illustrated in the same figures.
While this agreement is better for the generalized
mass law, it is not sufficient for the quantitative
determination of nuclear masses or mass law parameters.
Because of the local smoothness of the curve of Fig. 2,
as well as the small uncertainty in experimental masses
relative to least-squares computed masses of Fig. 1,
it may still be concluded that the largest source of
uncertainty in the general mass law calculations arises
from fundamental errors in the assumed form of the
mass law. It is probable that no simple fundamental
law will be applicable to a wide range of Z and 2 for
quantitatively predicting nuclear masses.

Nevertheless, it is still interesting to inquire into the
qualitative validity of the generalized mass law in
terms of the least-squares determined coefFicients and
the calculated deformations. From Fig. 5, it is seen that
the computed deformations agree with measured values
to within experimental errors. From Tables I and III,
it is seen that the magnitudes of the least-squares
coefficients are relatively unchanged by addition of the
closed-shell and deformation terms. The fact that
(=1.25, indicates that deformation energy changes are
in general agreement with the deformations that
produce them. The well depth is 23.8 Mev for a square
well, and 35.4 Mev for a harmonic oscillator, as deter-
mined by the least-squares coefficient of the shell-
function term. This result is in general agreement with
other determinations and with the fact that one might
expect the maximum harmonic oscillator well depth to
be greater than that for a square well, since something
like the average, not the maximum, well depths must
be equal in the two models.

In summary, the generalization of the standard
semiempirical mass law by the inclusion of terms that
account for shell closings and nuclear deformation,
results in an improved agreement between experimental
and least-squares determined masses. The least-squares
coefficients are qualitatively reasonable and yield a
nuclear radius constant in the neighborhood of 1.25
Fermis, a well depth between 20 and 40 Mev, and
qualitatively accurate nuclear deformations. However,
neither the standard nor the generalized mass law is
sufficiently accurate to allow for quantitative estimation
Of nuclear masses to within a few Mev, or quantitative
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Fxo. 5. Comparison of calculated deformations (A) with experi-
mental measurements. Calculated for. a square-well nuclear
interaction potential. X from Coulomb excitation measurements, '
+ from hyperfine structure measurements. '

"B.R. Mottelson and S. G. Nilsson, Phys. Rev. 99, 1615 (1955).
'2 J. M. Blatt and V. F. Weisskopf, Theoretica/ Nuclear Physics

(john Wiley 8z Sons, Inc. , New York, 1952), pp. 223 ll,

IV. INCLUSION OF ADDITIONAL SURFACE AND
EXCHANGE EFFECTS IN THE

STANDARD MASS LAW

The results of the previous sections indicate that the
probability of a simply generalized mass law yielding
quantitative estimates of nuclear masses is small.
However, it is still interesting to determine the qualita-
tive effects on the least-squares coefFicients of the
addition of further surface and exchange terms in the
mass law. An isotopic exchange term" proportional to
~I~/A as well as isotopic surface correction terms
proportional to ~I~/A* and Is/A' have been studied.
The least-squares coe%cients of the terms involving
the absolute value of the isotopic spin fluctuated
widely in sign and magnitude with variations of input
data and its weighting. Hence, further discussion of
these terms will be omitted. The effect of an isotopic
surface correction term, rlIs/Ai, in —the standard mass
law of Eq. (1) will be discussed below.

The surface and exchange eGects on the Coulomb

energy modify the Coulomb term of Eq. (1) into the
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TABLE IV. Leas't-squares analyses of 300 odd-A nuclei with Z) 28, including extra surface
and exchange effects in the standard mass law.

Least-squares
analyses on

f= (M —A)/A

f= (AIBA A)/A—

f= (M —A)/A

f= (M —A)/A

0.777
0.724

0.7357
0.6851

0.777
0.724

0.7357
0.6851

Predetermined values

(mMU)
(Mev)

(mMU)
(Mev)

Least squares

65.457
60.951

Least squares

Least squares

49.781
46.354

Least squares

(mMU)
(Mev)

17.798
16.572

16.735
15.583

16.422
15.292

16.234
15.116

16.839
15.679

16.650
15.504

16.428
15.297

16.164
15.051

P
(mMU)
(Mev)

27.266
25.388

35.622
33.170

33.849
31.519

36.553
34.037

24.667
22.968

33.344
31.049

31.346
29.188

34.433
32.063

22.253
20.721

19.416
18.079

19.757
18.397

19.144
17.826

19.259
17.933

19.095
17.781

19.698
18.342

18.814
17.519

0.82146
0.76489

0.73570
0.68506

0.74578
0,69444

0.72529
0.67536

0.75730
0.70515

0.72745
0.67737

0.74760
0.69614

0.71691
0.66756

Least-squares coef6cients
v

(m MU) (m MU)
(Mev) (Mev)

(mMU)
(Mev)

65.457
60.951

83.587
77.833

49.781
46.354

68.419
63.709

Rp
(fermis)

1.130

1.261

1.244

1.279

1.225

1.276

1.241

1.294

following form:

Z' Zi 7 ~[q'g'
Eo= e ——0.764———

/

—
f

—+ t (26)
24 LEO) A

Z2 Z' Z2
= c——0.764er——3.05er3—+

A& A: A

where the surface thickness t is chosen as 3&10 "
centimeters and Eo in the surface correction term is
written in terms of e& using Eq. (2). The quantity e&

is an estimate of the Coulomb coefficient e obtained by
an iterative procedure. The results of several analyses
of the standard mass law generalized by the additional
Coulomb terms and the isotopic surface correction term
are listed in Table IV.

The deviations between experimental and least-
squares masses were essentially independent of any
of the additions to the standard mass law listed in
Table XV. This fact, as well as the near constancy of
the conventional coeKcients and larger variation of
the isotopic surface term coeKcient q, indicates that
masses are not particularly sensitive to the magnitude
of ri. The ratio ri/p can be determined" from the atomic

"W. A. Fowler (private communication). J. A. Wheeler (pri-
vate communication to W. A. Fowler).

weight of that isotope of a heavy element which has
the maximum spontaneous fission lifetime. One finds

ri/y = (1—4Z'/A') ', where Z and A apply to the isotope
with the maximum lifetime. Examples among the heavy
elements are goTh 3 g2U. 3 g4Pu"' and g6Cm"' From
these cases, tl/&=2. 6. It is particularly satisfying that
this is just the value obtained when g is determined by
least-squares analysis on the packing fraction f for
the case with e~ ——0 in which uncertainties arising from
the additional parameter in the Coulomb term are
avoided. In the other cases tested, ri/y reaches a value as
high as 4.4, indicating, in general, that this ratio can
be determined only to order of magnitude by analysis of
observed masses.

An arbitrary "best" choice of the solutions in Table
IV is cr ——0.724, rr = 15.297, P = 29.188, y= 18.342,
q=46.354, &=0.69614, all in Mev. Note that R0=1.24
fermis for this case. Again, it must be emphasized that
these parameters in the Weiszacker mass law give atomic
masses only to an accuracy of several Mev/c'.
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