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Theory of the Fine Structure of the Microwave Spectrum of NO2$
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Harvard Un& ersity, Cambridge, Massachusetts

(Received June 16, 1959)

The effects of the magnetic interactions between the electronic spin, nuclear spin, and molecular rotation
on the rotational energy levels of NO& molecule have been investigated and a theory of the fine structure
of the microwave spectrum of this molecule is presented. A new method for calculating the matrix elements
of the magnetic interaction terms has been developed. Possible extension of this theory to include the
general type of polyatomic molecules with S=-,' is discussed.

I. INTRODUCTION

N ITROGEN dioxide is one of the very few stable
polyatomic free radicals. The interactions be-

tween the electronic spin, nuclear spin, nuclear quadru-
pole moment, and the molecular rotation give rise to
very interesting and complicated patterns of fine struc-
ture in the rotational spectrum. A summary of the
experimental work on the microwave spectrum has
been given by Bird. ' In this paper the theory of the
fine structure of the microwave spectra of the NO2
molecule will be presented. This theory has been
applied by Bird and Baird to account for the experi-
mental data and the results of their work will be
published in a forthcoming paper. With proper modifi-
cation our theory is also applicable to other polyatomic
free radicals with 5= s such as C10s (see Sec. V).

II. THE HAMILTONIAN

The Hamiltonian which describes the interaction
between the electronic and nuclear spins and the
molecular rotation can be obtained by the procedure of
Van Vleck. ' The results of this treatment show that the
effective Hamiltonian may be written as

H=Hp+Hs n+Hs i+Hi+Ho, (1)

where the five terms in the right-hand side of the
preceding equation represent, respectively, the eGect
of rigid rotation of the molecule, the interaction between
electronic spin and molecular rotation (called spin-
rotation interaction), the interaction between electronic
and nuclear spin (called the spin-spin interaction), the
Fermi

~
P(0)

~

' coupling, ' and nuclear quadrupole
coupling. Attention should be called upon the fact that
the first order spin-orbit interaction is absent since the
orbital angular momentum of the unpaired electron in

NOs is quenched. Each of the five terms in Eq. (1) will
be discussed in the following paragraphs.

1. Rigid Rotation

The Hamiltonian for the rigid rotation of the molecule
is given by

IIo= AN~'+BNv'+CN', (2)

where A, 8, and C are the rotational constants and the
Ã's are the three components of the rotational angular
momentum. Since the molecule NO2 is a slightly asym-
metric prolate top,"E (the projection of N along the
molecular axis) is nearly a good quantum number and
the calculation of the rotational energy levels may be
performed by expanding the energy in terms of the
"asymmetry parameter. "' r For N(O")s the nuclear
spin statistics' require that the rotational energy levels
be even with respect to rotation about the line bisecting
the &ONO. Thus for a given ~E~ only one energy
state out of the pair of Wang functions (symmetric and
antisymmetric combination of the symmetric rotor
functions) can exist. A discussion on the calculation of
the rotational energy levels has been given by Bird. '
In this paper we will be mainly concerned with various
types of magnetic interactions responsible for the fine
structure in the rotational spectrum.

2. Spin-Rotation Interaction

The spin-rotation interaction may arise from two
causes. The first one is the direct interaction of the
electronic spin with the magnetic field of the molecular
rotation. Mathematically, this effect may be ascribed
to the first term in Eq. (3/) of reference 3 which has
been shown to be equivalent to

P;; a,;NP;, a;;=a;;,
f Based largely on the second chapter of a dissertation submitted

for partial fulfillment of the requirements for Ph.D. degree
(Harvard University, 1955). Part of this paper was presented at
the spring meeting of the American Physical Society at Wash-
ington, 1955 LPhys. Rev. 99, 666(A) (1955)g.*Present address: Department of Physics, University of
Oklahoma, Norman, Oklahoma.

' G. R. Bird, J. Chem. Phys. 25, 1040 (1956).
2 J. C. Baird and G. R. Bird, Bull. Am. Phys. Soc. Ser. II, 4

68 (1959);J. C. Baird and G. R. Bird (to be published).
o J. H. Van Vleck, Revs. Modern Phys. 23, 213 (1951).
4E. Fermi, Z. Physik 60, 320 (1930); G. Breit and F. W

Doermann, Phys. Rev. 36, 1732 (1930).

where the vector N (instead of X as used in reference 3)
denotes the angular momentum due to the molecular
rotation. Here the a;; are. complicated functions of the
moments of inertia, the internuclear distances, and the

5 G. E. Moore, J. Opt. Soc. Am. 43, 1045 (1953).' S. C. Wang, Phys. Rev. 34, 243 (1929).' H. H. Nielsen, Phys. Rev. 38, 1432 (1931).' See, for example, G. Herzberg, Spectra of Diatomic Molecules
(D. Van Nostrand Company, Inc. , Princeton, New Jersey, 1950),
p. 135.
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w'here
IIs tt ——x(N S), (5)

K= s ( gee+ e)w+wL 1(V1+V1)7 j see s (eee+eww)7E
'( "—**) (6)

Here b~~~' is the Kronecker delta, i.e., it is equal to
zero unless jEj =1.The + and —signs correspond to
the symmetric and antisymmetric combination of the
symmetric top wave functions involved in the Wang
transformation.

The Hamiltonian in Fq. (4) also produces matrix
elements connecting the pair of symmetric and anti-
symmetric Wang functions for jEj = 1.Matrix elements
of this type have not been considered in the derivation
of (5). For N(O")s such matrix elements have no eGect

' R. S. EEenderson, Phys. Rev. 100, 723 (1955).
10K I Hil1 and J I Van Vleek Phys Rev g2s 250 {1928"E. EE. Condon and G. H. Shortley, The Theory of Atomic

Specrrg, {Cambridge University Press, Cambridge, 1951),p. 61.

average distance of the odd electron to the various
nuclei of the molecule. Since very little is known about
the electronic structure of the NO2 molecule, any
attempt to calculate u;; from first principles would seem
impractical at this time; these coefficients can best be
treated as parameters. It should be mentioned that the
a;; are diIIferent for different isotopic species of the
molecule.

Besides the direct coupling between electronic spin
and molecular rotation which we have discussed in the
preceding paragraph, there is also an indirect coupling
via orbital motion and the intermediary of excited
orbital states treated by Van Vleck' and by Henderson. '
The indirect mechanism still produces a Hamiltonian
of the form (3) and simply changes the values of the
coeKcients a;;. Henderson has given explicit expressions
for the indirect contributions to the a;; under the
special assumption that the entire spin-orbit (electronic)
interaction can be represented in a simple isotropic
form A (L S).

When the frequency spacings between the various
fine structure components are small compared to the
frequencies of the rotational transitions, the matrix
elements of Hg g which are nondiagonal in S have
very little effect. Hence we shall disregard them. With
this approximation, Eq. (3) can be replaced by""

HB tr= j 1V(1V+1)7 (N S)gtt e;;iV/Vi, e;;=e;;, (4)

where e;; is the sum of the two coeKcients u;; and g;;
which are associated, respectively, with the direct and
indirect coupling between the electronic spin and
molecular rotation. We can also similarly disregard the
eGect of matrix elements oG-diagonal in E, except that
matrix elements of the form hE= ~2 must be retained
for the pair of states X=&1. The familiar Wang
transformation is used to lift the degeneracy of the
pair and the approximate expression for the spin-
rotation interaction becomes

on the energy levels since only one of the two energy
states with j E j

=1 is present. In general if both states
corresponding to j E j

= 1 are allowed, Eq. (5) is
applicable to such states only when the spin-rotation
effect is small compared to (8 C)—1V (IV+1), where 8
and C are the rotational constants for the two principal
axes other than the unique axis. In other words, we
have neglected terms of the order of

j:(&—~)1V(1V+1)1 'j:(e*w+ew.) (N S)j' (7)

For NOs we shall simply use (5) as the spin-rotation
operator without making the further transformation
which carries the Wang representation to the proper
asymmetric top representation.

3. Spin-Spin Interaction

The Hamiltonian describing the interaction between
the nuclear and the electronic spin can be expressed as

gsgrttttt—trr s/I S—3r '(I r)(S r)$, (8)

where p~ and p~ are the Bohr and nuclear magneton,
respectively, g~ is the nuclear Lande factor and gq is
the g-factor of the electronic spin. The radius vector r
joins the nitrogen nucleus to the odd electron. Equation
(8) can be expanded in a coordinate system (x,y,z)
Axed in the molecule and expressed in terms of the
components of I and S in this frame. " If we retain
only the matrix elements of the form dE=O and
DE=~2 in this expansion, the spin-spin interaction
term can be replaced approximately by

IIs r =X(I S 3I,S,)+r(I„+iI—,) (S„+iS,)
+r*(I„iI) (S„ iS,)—, (9)

where
3r.2—j

X = —gggypgpg
Av

(r"„ire)'—
7 =

4.gsgrIJ apl
Av

Here r"„r"„,and r", are the three components of the
unit vector r-'r in the molecular frame. If the electronic
wave function in the ground state of NO2 is real, one has

4. Fermi jg(0) j' Coupling and Nuclear
Quadrupole Interaction

If the wave function of the odd electron at the point
where the nitrogen nucleus is situated Ldenoted by
f(0)j, is different from zero, an additional term, e

IIt = (16ir/3)grttttttz jg(0) j'(I S), (12)

"See, for example, S. E. Weissman, J. Chem. Phys. 22, 1378
(1957),
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must be inserted in the Hamiltonian to describe the
interaction'between the electronic and nuclear spin.
The value of lp(0) l' has been determined as 6.3X10s4
cm ' from the paramagnetic resonance spectrum of
NO2 in solution. "

The nuclear quadrupole sects attributable to the
nitrogen nucleus are usually very small, For this reason
Bg will not be considered although the theory presented
in this paper can easily be extended to include this
interaction (see Sec. V and Appendix).

Hs rr))Hs r+Hz. (13)

A vector model can be constructed by erst coupling
the rotational angular momentum N with S to form J
which is then compounded with I to give the total
angular momentum F. The vector F is a constant of
motion, and J is nearly a good quantum number
provided that the interaction between the nuclear and
electronic spin is much less than Bq g. The energy is
then approximately equal to the diagonal matrix
elements of B, i.e.,

(ZIVJZlHlZ1VJZ).

III. ENERGY CALCULATION

To simplify the calculation let us assume that the
four coupling terms in Eq. (1) are all very small
compared to IIo, so that the matrix elements non-
diagonal in X can be disregarded. Furthermore, the
molecule will be approximated by a symmetric rotor,
or more precisely, the Wang combinations of the sym-
metric top wave functions will be taken as the approxi-
mate eigenfunctions of Bo.

To illustrate the structure of the secular equation
let us first consider a special case in which

K can be set up in this G-representation and again can
be factorized into four blocks.

As shown in the previous section, the three types of
magnetic coupling, Hz z, Hz &, and Bp, may be
written respectively as

p=lr(N S),
n=) (I S 3I,S,—)+r/(I„+iI,) (S„+tS.)'

+(I„-sI.)(S„-S.)j, (14)
y=a(I S),

where
16m.

grljalrzl4'(0) I
.

3

The matrix elements of these operators can be calcu-
lated by a procedure similar to that of Frosch and
Foley." The computation, though straightforward, is
very tedious. In this paper we shall develop a new
method for obtaining the matrix elements of the
Hamiltonian. The diagonal elements are determined

by using Van Vleck's method of "reversed" angular
momentum along with the method of projection IO, I

With this procedure explicit matrix multiplication is
avoided and labor of computation is thereby greatly
saved. The oG-diagonal elements are obtained by com-
paring the diagonal sum of the various matrices in the
J and 6 representation. Thus the confusion caused by
the different phase conventions for the nondiagonal
elements does not arise in our procedure. The details
of our method will be presented below.

1. Diagonal Elements in the J Reyresentation

We shall write the 2X2 matrices of n, P, and y
(defined in Eqs. (14)) as

(ni net

I n, n,

(Jl N Sl I)=-',LJ(J+1)—1V(1V+1)—S(S+1)$. (16)

However, if the condition imposed by (13) is not
fulfilled, J will no longer be a good quantum number.
In the Z, IV, J', Ii scheme of representation (which we
shall refer to as the J-representation), the secular In the J-representation it is apparent that
equation for a given E and E is a 6)&6 determinant
corresponding to the following values of J and Ii:

J=N+
J=�1V-',,+J�—-'

2)

Ii =IV+-ss; Ii =IV+
F=1V+-', ;

Since Ii is a constant of motion, the determinant can be
factorized immediately into four blocks, according to
the four diGerent values of F. Two of the factors are
2&2 matrices while the others are 1X1.

One may, of course, consider the other extreme case
where Hs r+Hr))Hs ~. Now the two spin vectors
I and $ may be first coupled to form G which then
combines with the rotational angular momentum vector
giving F. The 6X6 secular equation for a given 1V and

"Bird, Baird, and Williams, J. Chem. Phys. 28, 738 (1958).

Thus for J=1V&—,', the diagonal matrix elements of P are

Pi ——rssL —1+(21V+1)j, Ps ——ssL —1—(21V+1)$. (17)

To evaluate o.I, and e2 the reversed spin angular
momenta are introduced so that

F+I'=J, J+S =N,
where

I"= —I, etc.

The diagram of the coupling of the normal and reversed
angular momenta is shown in Fig. 1. In this coupling
scheme I" is precessing about J, so the matrix elements
of I, and I.S diagonal in J can be obtained by the

'4 R. A. Frosch and H. M. Foley, Phys. Rev. 88, 1337 (1952).
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J- SCHEME G-SCHEME

FIG. 1. Diagrams showing the coupling of angular momentum
vectors in the J and G scheme.

The diagonal elements of 0, are, therefore,

ar, 2= L41V(1V+1)(1V+,) (1V+1~k)7 r
I + (N+k) —H

X I
F(F+1)—N (N+1)—I(I+1)

w(N+ 2r) -r~f—f(1VEXv), (26)

where the top signs go with ei and the bottom signs n2,
and where

f(Nor) =XLN (IV+1)—3E'7+b~rr ~'rN (N+1). (26a)

method of projectionio, II as

(J I
I.

I J)= —(J I
I,"

f
J)

= —LJ(J+1)7 '(JII" JIJ)(JfI I»
=L2J(J+1)7 rLF(F+1)—I(I+1)

—J(J+1)7(JIJ.
I I),

(JII Sl J)= —LJ(J+1)7-'(JII".JIJ)(JIJ Sl J)
=L2J(J+1)7 'LF(F+1)—I(I+1)

—J(J+1)7(JIJ sf J).

The + and —signs in Eq. (26a) are used respectively
for the symmetric and antisymmetric Wang functions
of the rotating molecule. Equation (26) is valid only
for the diagonal elements of the 2&(2 sub-matrices of
the 6X6 secular equation. The matrix elements for the

(18) two 1X1 submatrices are to be calculated from Eqs.
(22), (25), and (14) by substituting 1V&-,r for J and
/~~3 for F.

2. Diagonal Elements in the 6 Representation
As S," is diagonal in J, it is legitimate to write

S J—3S,J,=S.N —35,N —5'+3S '
=S N —35,1V,. (20)

Let us now consider the other extreme case in which

(JII S—3I S,
l
J)=L2J(J+1)7 rLF(F+1) the spin-spin coupling becomes the dominant part of

J(J+1) I(I+.1)7(NJI S.J 35,J,INJ) (19) the magnetic interaction in the molecule. The electronic
and the nuclear spin will first couple to give a vector
G which adds to N to form F. In the G-representation
let the 2X2 matrices of n, P, and y be represented by

Because S" is precessing about N, it follows that

(»ls N 35,N I»)—
=

I 2N(N+1)7 'LJ(J+1)—1V(1V+1)—S(S+1)7
X(NIN' 3N 'I1V) =L2N(1V+—1)7 'jJ(J+1)

—1V(N+1)—5(5+1)7IN(N+1) —3E'7 (21)

Substitution of Eqs. (20) and (21) into Eq. (19) leads to

(ENJF II S 3I,S,IENJF)=—L4J(J+1)1V(N+1)7 '

X I F(F+1)-J(J+1)-I(I+1)7LJ(J+1)
—1V(N+1)—S(5+1)7IN(1V+1)—3E'7. (22)

In a similar fashion one can show that

(Jl (I„+iI,)(S„+iS,) I
J)= I 4J(J+1)N(N+1)7—'

X I F(F+1)—J(J+1)—I(I+1)7fJ(J+1)
1V(N+1) S(5+—1)7(N I

(N—„+iN )' IN). (23)

err rrrrr )
etc.

&rrrrr rrrr ~
'

Note that Arabic subscripts are used for n, P, and y in

the J representation and Roman subscripts in G
representation. Figure 1 shows the vector relation
between the various angular momenta. By projecting
S" along the vector G' it can easily be verified that

(Gf N SIG) =L4G(G+1)7 rLF(F+1)—N(N+1)
—G(G+ 1)7LG(G+1)+5(S+1)—I(I+1)7. (27)

Remembering the G=I&2 one may express the diago-
nal elements of P as

Pr, rr= &21r(2I+1) rLF(F+1)—N(1V+1)
—I(I+1)—~~(I+2)7 (2g)

If when S=-,' we are concerned only with matrix
The operator (N„+iN ) has matrix elements connect- elements diagonal in 5, the following simplication can
ing E with E+2, in particular, E'= —1 with E=1, i.e.,

(N, E=1
I (Ny+iN, )2I N, E=—1)=1V(N+1). (24)

Equation (23) can now be rewritten as

I S—3I+,=G S—3G+ —(52—35 2)

=G S—3GD„(29)
(S„+iS)(I„+iI,)= (S„+iS,)(G„+iG,),(E=1,NJFI (I„+iI,)(S„+iS) IE= —1, NJF)

=I4J(J+1)7 'LF(F+1)—J(J+1)—I(I+1)7 since the diagonal matrix elements of S —3S,' and

XLJ(J+1)—1V(1V+1)—S(S+1)7. (25) (5„+iS,)' for S=2 are zero. Upon projecting S" along
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G" we have diagonal sum of P, P', ots, and (n+P)3 gives respectively:

(GlG s—3G,s, lG)
=L2G(G+1)1 ILG(G+1)+S(s+1)—I(I+1)]

X (G
l

G' —3G,'
l G), (30)

(Gl (s„+ss.) (G„+3G,) l
G)

=12G(G+1)) ILG(G+1)+S(S+1)—I(I+1)j
X(GI (G,+3G.)'IG). (»)

Pi+Pii =Pl+Ps,
2PIII +PI +PII Pl +Ps

1

&I +2&III +till =&I +2n3 +&2 p

(&I+PI) + (IIII+PII) +2(&III+PIII)
(trr+pl) + (&3+ps) +2Q3 ~

From Eqs. (36) it follows that

(36)

The matrix elements of G' —3G,3 and (G„+iG,)' can be
found in Table II of reference 3 with a change of phase
and notation. They are

(FGNK
l

G2 3G 3
l
FGNK)

=
l N(N+1) —3K'jl 2N(N+1) (2N —1)(2N+3)] '

X (3R(N) l R(N)+1)—4N(N+1)G(G+1) },
PGNK=1l (G„+3G.)sl FGNK= 1)— (32)

=
l 2(2N —1)(2N+3)3 I(3R(N)LR(N)+1]

—4N (N+1)G(G+1)),
where

R(N) =F(F+1) G(G+1)—N(N+1—).

Substitution of Eqs. (32), (31), (30), (29) in Eq. (14)
gives

&r, rr=~l N(N+1)(2N+3)(2N —1)(I+3)j '

X (xsl F(F+1)—N (N+1)—I(I+1)W (I+-,') ——,
' j'

+-,'LF (F+1)—N (N+1)—I(I+1)W (I+-', ) —-', j
—N(N+1) P(I+1)&(I+Is)+xi))f(NKX1.), (33)

where f(Nor) was defined in Eq. (26a). Equation
(33) applies only to the 2X2 submatrices; the elements
in the 1X1 blocks are determined from Eqs. (32), (31),
and (29) rather than from Eq. (33).They are, of course,
identical to the corresponding elements in the J-
representation.

Finally in the G-representation (I S) is diagonal
with eigenvalues

(Gl I S
l
G) =-I'LG(G+1) —I(I+1)—S(s+1)]. (34)

The matrix elements of y are

yl =-,'o I +(2I+1)—1j, yll = 3r, rrg (2I+1)——1). (35)

3. Evaluation of Nondiagonal Matrix Elements

Since the matrices

I lII 1 3

! and
~Prix Pii ~ (P3 Ps)

are merely two diferent representations of the same
quantity p, they can differ from each other only by an
equivalence transformation. The same relation holds
for tr and thus for (tr+P) also. The invariance of the

trr+Pi+vr F-—
ir III+PIII

rrrll+prll
=0

7

&II+PII+|II
(39)

with the solution

&I+&II+PI+PII+vI+ Yli&L(&I till+PI
PII+QI VII) +4(trill+Pirl) ] ~ (40)

Substituting Eqs. (37), (38), (28), (33), and (35) in
Eq. (40) and simplifying, we have

2E=ill+till+ pi+ pll+'Yi+ VII+ ( (nr —nrl) '
+2(err —os)(pl P2)+(Pl P2) +(Vl 711)

+2 ('YI +II) (trl &II+PI PI I)

+l (Pl P2) (PI PII) ) l (&I &2) (Pl P2)
—(m —~rl) (Pr —Pii)]3) ' (41)

Equation (41) gives the energies of the two levels of a
given N corresponding to F=N+sr or the two levels of
F=N ——,'. For the states with F=N+ ', or with F=N-
—~, the energy is simply given by the diagonal matrix
element of B in either the J- or G-representation. It
should be pointed out that Eq. (41) is not applicable
to the case of F=E&-,'.

S. Energy Levels in a Weak Magnetic Field

The interaction of the electronic spin with the
external magnetic field causes an energy level of a
given F to split into various components corresponding
to the different values of MF (the projection of F along
the direction of the external field). Here it is assumed
that the splittings of the energy levels produced by the

"S.Gotrdsmit, Phys. Rev. 35, 1325 (1930).

4PIII (Pl Ps) (PI PII) (37)

4trIIIPIII 2&lpl+2&2P2 2trrpr 2&IIPII
= (trl &2) (pl P2) (&I &II) (PI PII). (3g)

This is essentially an extension of the Goudsmit"
inspection method as generalized by Van Vleck. '

4. Energy Levels

If one knows all the matrix elements of n, P, and y
in the G-representation, one can derive the equation
for the energy for the general case when all the three
types of magnetic interactions are of the same order of
magnitude. The secular equation is
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external magnetic Geld are small compared to those due
to the magnetic interaction terms in Eq. (1). In other
words, the matrix elements nondiagonal in F need not
be considered. The magnetic moments associated with
the molecular rotation and the nuclear spin are neg-
lected here. The Hamiltonian representing the Zeeman
energy is

Hz=gspsS Ã=gspsSzX, (43)

where K, the external magnetic Geld, is taken to be
coincident with the space-Gxed Z axis. The diagonal
elements of the Zeeman term in the J and G repre-
sentation are

(SJF
i
Sz i

SJF)
=i J(J+1)F(F+1)]'(SJiS JiSJ)

&&(JFi J FiJF)M„
(SGFiS iSGF)

=i G(G+1)F(F+1)j '(SGi S GiSG)
&&(GFiG FiGF)M, .

If we denote the matrix (2&&2) of Hz by 8, the non-
diagonal elements of this operator can be determined
by making use of the invariance property of the trace
of matrices 8, hs, and (P+5)2. The solution of the 2&(2
secular equation leads to the following approximate
solution:

2&'=2&+~i+~ii~((&z —zriz)'+2(&z —zr2) (Pl P2)

+(yz 'yzz) +(pl p2)'+2(yi —yzz) (zrz —zrzz+pz pII)

+L(Pl P2) (PI PII) j i .(zrl zr2) (Pl P2)

(Zl'I QII) (PI PII)$ } f (Pl P2) (~1 ~2)

+( — )(~-~ )+h -m)(&-& )

+L(P1 P2) (PI PII) j L(PI P2) (~1 ~2)
—(Pi —Pzz) (&I—&zi) jL(~I—~2) (Pl —P2)

—(~z —~zz) (pi —pir) j), (45)
where

8I+8zz= 21LF(F+1)j 'gsr2sM2X,

~ —~ =-'I F(F+1)(I+l)?'LF(F+1)+I(I+1)
N(N+1) + sr)g sos—MsX,

~ -~.=-:iF(F+1)(N+-,)? iF(F+1)+N(N+1)
I(I+1)+', ggspsMI X—. -

Here E' and E denote, respectively, the energies in the
presence and in the absence of the external Geld.
Again Eq. (45) pertains only to the energy levels with
F=E~—,. The Zeeman splittings for the levels with
F=Ness may be calculated from Eqs. (44) and (43).

6. Energy Levels in a Strong Magnetic Field

In a strong magnetic Geld the angular momenta N,
S, and I are decoupled and become spatially quantized
separately. If the magnitude of gspsS. R is large com-
pared to the magnetic fine structure interaction terms,
the energy is given approximately by the diagonal
matrix elements of the Hamiltonian in the represen-

tation which diagonalizes Mz, Ms, and Mrz (the
components of I, S, and N in the direction of the
external field). Here again we shall neglect the inter-
actions of the external Geld with the nuclear moment
and with the molecular rotational magnetic moment,
since these terms have no eGect on the magnetic
resonance transitions of AMg=~1 and AM~=AMz
=0. Let x, y, s and X, I', Z be two sets of axes Gxed
in the molecule and the space, respectively. With the
aid of the relations

I,=Ix)x,+IrXr +Iz&z„
S,=Sx).x,+Sr) r,+Sz) z„

I.S=IxSx+IrSr+IzSz,
(46)

E=&rzs+gspsMsX+sMzrMs+riMIMs
—2f(NIQlr)LN(N+1)(2N —1)(2N+3)) 1

X $N (N+1) 3M+2jMIMs —(50)

Here E„, represents the energy associated with the
rigid rotation of the molecule, i.e., the eigenvalue of the
operator Hp in Eq (2). .

IV. THE ROTATIONAL SPECTRUM

In the limiting case where Hg g is much larger than
the coupling between the electronic and nuclear spin,
intensity considerations show that for a given AS the
six lines characterized by lUV =hJ=AF are by far the
strongest ones, as compared to the other thirteen
possible transitions with AF/lUV or hJ/AX. For the
intermediate case J ceases to be a good quantum
number, and the wave functions for the six energy

"Cross, Hainer, and King, J. Chem. Phys. 12, 210 i1944).

(where the )1's are the direction cosines), the matrix
elements of the spin-spin term may be expressed as

(MIMsMzdVK
i
I S 3IS.

i
M—IMsMszNK)

= (M~NK j
1—3)lz j M~NK)MIMs. (47)

When the matrix elements of the direction cosines given
by Cross, Hainer, and King" are used, the above
equation becomes

(MIM sM~NK i
I.S—3I,Sg i

MIM sM+NK)
2LN(N+1) (2N —1)(2N+3 j ILN (N+1)

3M~ ji N(N+—1) 3K )MIMs. —(4S)

Similarly it can be shown that

(MIMsM~N, E
= 1

i (I„+iI,) (S„+2S) j MIMsM+N, E= —1)
=—2i (2N —1)(2N+3)3 ILN(N+1)

3MN'$MIM—s. (49)

Since the diagonal matrix elements of the spin-rotation
and the Fermi coupling terms are, respectively, propor-
tional to M&Mz and M&M'8, the energy of the N02
molecule in a strong external magnetic field may be
written as
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levels with a given 3~ can be expressed in terms of the
wave functions in the J representation (denoted by ip)
as follows:

9'i=iP(J=N+ '„F=-N+ ', ), -
%s=fiP(J=N+ ,', F=-N+ ,')-

+biP(J=N
+s bled(J——=N+ ,', F=-N+ ',)-

f—k(J=N's—
%4 cia(J——=N +'„F'= N-——,')

+diP(J =N ——,',

F=N+ ,'), -

F=N+ ,'), -
(51)

F=N ')—-

V. HIGHER ORDER CORRECTIONS AND
EXTENSION OF THE THEORY

At this point it is well to examine the "higher order"
effects which have been disregarded in the derivation
of Eq. (41). The more prominent ones are:

l. Asymmetry of the molecule Equation .—(41) was
derived on the "symmetric top77 approximation. To
correct for the asymmetry of the molecule, the proper
asymmetric rotor wave functions (rather than the
Wang functions) are to be used to calculate the matrix
elements of He is and He r, thus Eq. (41) should be
modified accordingly. For the NO2 molecule the asym-
metric rotor functions may be obtained from the Wang
functions by 6rst order perturbation method.

Z. Noudiagouality of N.—The nondiagonal matrix
elements (N (N') of the magnetic coupling terms which
have been hitherto neglected, may give a substantial

4's diP(J —=—N+ '„F=N-——,')
—clt(J=N ——',, F=N ,'), —-

%s——lt (J=N ——,', F=N ,'). ——

We can construct six similar wave functions 0'1', C2',
~ ~, %s' for the (N+1)th rotational state by merely
replacing N by N+1 and f, b, c, d by f', b', c', d' in
Eqs. (51). These "mixing coeKcients" are different for
the difFerent rotational states. For the N —+ N+1
transitions one may expect ten strong lines correspond-
ing to

+1~+17 +2~+2 7 +8~% 7 +2~+8 7 +8~+2
4'4~%4

7
%5~'tI'5

7 %4~%5 7
e'5~%4

7
e'6 ~e'6 .

As N becomes large the coefficients f, b, c, d for the Nth
and (N+1)th state do not di&er very much; in such
cases the intensities of the transitions

08 —+02', %4~%5'7 C~ —+44'

become greatly reduced and only six strong lines are
observed.

This theory has been applied by Bird and Baird to
interpret the microwave spectrum. The identification
of the spectral lines and the evaluation of the various
coupling constants from the experimental data will be
discussed in a forthcoming paper by these authors. '

contribution to the energy levels when the magnitudes
of these coupling sects become sufficiently large. Under
such circumstances, a Van Vleck transformation may
be applied to remove the nondiagonality in E, so that
in the transformed energy matrix the elements oG-
diagonal in E become one order of magnitude smaller
and can then be safely dropped.

3. Nuclear quadrupole couplieg. —The nuclear quad-
rupole interaction can be treated in the same manner
as the magnetic coupling terms. The diagonal elements
of II@are first determined in both the J- and G-scheme.
The calculation is given in the Appendix. The non-
diagonal terms are obtained by comparing the trace of
the various matrices in the two representations.

4. Pseudoquadrupole correctsom This .—type of inter-
action has been discussed in some detail by Henderson. '
Since the ground state of NO2 has S=-,', a simple
group-theoretical argument shows that the diagonal
matrix elements of the pseudoquadrupole term are zero.

Some of these effects have been considered by J. C.
Baird and the author. The results have been used in
the interpretation of the microwave spectrum.

Aside from the approximations made for the specific
case of NO2, this theory should be applicable to other
polyatomic molecules with S=—,'. For a particular
molecule some of these "higher order" sects may be
quite important and should be included in the solution
of the energy levels at the outset. One interesting
example is C102 which has considerably larger asym-
metry than NO2, so that the asymmetry correction
discussed above must be made.

YI. THE MAGNETIC RESONANCE SPECTRUM

The magnetic resonance spectrum has been observed
by Castle and Beringer'~ at room temperature and a
field strength around 3300 gauss. Under a pressure of
5 to 15 mm Hg the spectrum consists of three over-
lapping lines. A partial resolution of the triplet into a
number of lines has been made at lower pressure. The
expression for the energy of NO2 in a strong magnetic
field was given by thse authors as

W =JrlegepaX+&~eJrlr+ J3JrJeJrlsr (52)

Castle and Beringer have pointed out that A and 8
(not to be confused with the rotational constants)
may depend on S and K, but they have not exhibited
this dependence. The three overlapping lines were
identified as the transitions ~=

BMOC

=AM~ =0,
5Mq ——1 with Mr=1, 0, —1, but no explanation was
overed for the resolved lines.

Comparison of Eq. (52) with Eq. (50) shows that

J3 K7

A = o —2f (NEXr) fN (N+1) (2N —1)(2N+3) j ' (53)

X LN (N+1)—3M+'j.
rr J. G. Castle and R. Beringer, Phys. Rev. 80, 114 (1950).
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Since the value of A varies with different rotational
states, according to Eq. (52) and the selection rules
given above the magnetic resonance spectrum may be
expected to contain a large number of lines. Further-
more, in a magnetic field of 3300 gauss the vectors I,
S, and N are not completely decoupled, so that the
second order terms of II& z and Hz & may become
quite appreciable. Application of this theory to the
spectrum has been investigated by Bird.
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APPENDIX. MATRIX ELEMENTS OF THE
NUCLEAR QUADRUPOLE TERM

The Hamiltonian for the nuclear quadrupole eGect
in a polyatomic molecule has been given by Van Vleck. '
In the case of NOs the relevant terms of this operator
are the ones which contain matrix elements of the form
DE=0 and ~2, viz. ,

82V
IIo= [4I(2I—1)) 'eQ (2Ig' I,' I ')——

Bs

Q2 P'

+2 (Its+I„I,) . (A1)
BSHE/

Here Q is the nuclear quadrupole moment as defined in
Appendix- II of reference 3. If the electronic wave
function of N02 is real, the last term on the right-hand
side of Eq. (A1) may be omitted. The diagonal matrix
elements of the operator 2I,'—I~'—I„' and I,'—I„'
may be obtained by the projection method and the
procedure for the calculation is given in this Appendix.

In the J representation let us first consider the
coupling F+I"=J. It may be shown by a group-
theoretical argument that the diagonal matrix elements
(in J) of 2I,' I,' I„' are propor—tiona—l to those of
2J,'—J '—J„'.The constant of proportionality can be
established with the aid of the diagonal matrix ele-
ments of 2I,'—I '—I„' given in Table II of reference 3.
Notice that this is essentially a generalized form of the
projection method for the components of the irreducible
tensors. Thus we have

(J~2I,' I,' Iy'~ J)=[2J(J+1)(—2J——1)(2J+3)$ '

X[3C(C+1)—4J(J+1)I(I+1)j
X(Ji2J.s—J'—Jv'i J), (A2)

where
C=F(F+1) J—(J+1) I—(I+1).

The vector J can be expanded as N —S", and in this
coupling scheme S' may be projected along N. When
this is done, it is easily seen that as far as the matrix
elements diagonal in J are concerned, we may replace
2J,'—J'—J'by

{1+2[)V(IV+1)$ '(N. S)}(2/V '—lV '—Ã ') (A3)

Here we have made use of the fact that the diagonal
elements of 25, —5 —5„2 are zero for the 5= ~ states.
In a similar way we can obtain the matrix elements of
I„'—I,' connecting the states E=1 to E=—i. The
diagonal elements of IIo in the J-scheme (with the
Wang functions as basis) are

eQ[16I(2I—1)J(J+1)(2J—1)(2J+3)j '

X[3C(C+1)—4J (1+1)I(I+1)j
X{1+2[E(N+1)j—'(JÃ~N S~ JA)}p(E&), (A4)

In the G-representation the operator 2I,'—I '—I '
can be decomposed into

{1—2[G(G+1)) '(G S)}(2G '—G '—G ') (A6)

by means of the relation I=6—S and the projection
method. The matrix elements of 2G,'—G '—G„' in the
G-scheme may be found from Eq. (32) and a similar
treatment can be applied to G„'—G,'. The diagonal
elements of II@ in the G-representation then emerge as

eQ[16I(2I—1)1V (%+1)(2X—1)(2&V+3)j—'

X [3C' (C'+1)—4$ (%+1)G(G+1)1
X{1—2[G(G+1)j—'(G(G. S(G)}q(1'), (A7)

where
C'= F(F+1) G(G+1) N(IV+1—). —

The matrix elements in (A4) and (A7) may also be
obtained by Racah's method. ' With the diagonal
elements of II@ in the two representations, the oG-
diagonal terms are determined by the method given in
Sec. III-3. The nuclear quadrupole interaction can then
be easily incorporated into the secular equation.

IVofe added i' proof Dr John G.—. Bak. er has kindly
informed us that he has independently developed a
somewhat similar theory for the fine structure of the
rotational spectra of this type of molecules, and an
account of his work will be published in the near future.

's G. Racah, Phys. Rev. 62, 438 (1942).


