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FIG. 2. Phase diagram for ferromagnetism, superconductivity,
and cryptoferromagnetism.

so that
1Vzq-

P ~S(tl)~'=(2Vz/N) S+5'~ 1——
)

. (13)
cvf

That is, the random magnetic scattering is reduced in
proportion to 1Vz/E and replaced by a spin-dependent
periodic potential of wavelength X~. This situation is
shown in the second half of Fig. 1.

One can show that the energy of the superconducting

cryptoferromagnetic state may possibly be lowered
relative to that of the superconducting, normal state
by an additional amount (Xz/E): times the Herring-
Suhl-Matthias' scattering eGect, so that the supercon-
ducting transition in the aligned state may actually be
slightly higher than in the paramagnetic state. Figure 2
shows schematically the type of phase diagram which
might be expected to result from the above con-
siderations.

A 6nal remark is that these considerations do not
depend seriously on the special features of the B.C.S.
theory, but only upon a reduction, for superconductors,
in the long-wavelength paramagnetic susceptibility
(not necessarily to zero). In particular, we can conclude
that a long-range purely ferromagnetic alignment in a
superconductor cannot occur unless (a) the paramag-
netic susceptibility of the superconductor is not reduced,
contradicting the experimental and theoretical results;
or (b) the exchange interaction of conduction electrons
and ionic spins is inexplicably small; otherwise the
ferromagnetic normal state is necessarily far lower in
energy than the superconductor. Unfortunately, present
experiments indicate such alignment in some cases. '
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s B. T. Matthias (private communication) shows that homo-
geneous superconducting samples exhibit a ferromagnetic moment,
but it is not clear to what extent the observed remanence is
affected by trapped Aux.
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Absolute rather than interpolation methods are described for obtaining initial estimates for self-consistent
field calculations with exchange. Tables have been computed so that the procedure is entirely numerical
which makes it more convenient than Hartree's graphic interpolation scheme.

INTRODUCTION

ELF—CONSISTENT Geld calculations with ex-
change require initial estimates of the following

three quantities: (i) the radial wave functions, E(rd; r),
(ii) zts I'(nl;r)/r'+', ——for r~0, and (iii) the energy
parameter e ~, „~.In this paper methods will be described
for estimating these quantities when the atomic number
E is large; they all depend on knowing the limiting
behavior of the estimate as E~ ~.

Previous papers" showed that if we represent the
wave functions by a series in 1/E so that

E &P(stl; r) =Pzz(stl; p)+/Q(nl; p)/1Vj
+ta(nt; p)Pr'g+", p=Xr, (1)

and if we assume that

enl, nt = (1/st )+ (el/IV) + (es/1V )+ ' ' '
&

' C. Froese, Proc. Roy. Soc. (London) A239, 311 (1957).' C. Froese, Proc. Roy. Soc. (London) A244, 390 (1958).
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then the functions Q(ml; p) and Z(wl; p) are the solu-
tions of second order diBerential equations. These have
been solved for a large number of configurations and
the results together with the values of e~ and e2 should,
therefore, assist us in obtaining initial estimates for
self-consistent field "calculations.

In (1) the term of order 1/N' is significant. Hartree'
found that the variation with respect to r of a reduced
wave function,
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2,5 5.0for fixed s, was more nearly constant than the variation
of (1) with respect to 1/1V. Therefore, if we represent
P*(ll; s) by a series in r, only the first two terms will

be required for fairly accurate estimates of the wave
function. Similarly reduced quantities ao* and ~„&,„&*

are defined and the variation with respect to r compared
with the variation with respect to 1/1V of ae/1V'+' and
«/1Vs Tabl.es have been computed so that estimates of
P(ll;r), ae, and e„i „i can be determined from series
expansions. 4

ESTIMATES OF THE RADIAL WAVE FUNCTION

Suppose r has been determined for the (rsl) wave
function of an atom with atomic number E using the
method described by Hartree. ' From the limiting be-
havior of (1) it can be shown that P*(rrl; s) ~Prr*(nl; s)
as' —+ ~, andif

P*(nl; s) =Prr~(nl; s)+rQ*(el; s)+O(r'), (3)

then'

Q*(el; s) = r '( o[ P(nl; p)+—pP' (ml; p)j
+Q(ill; p)}, p=srrr,

where

Values of 00 have been computed for several configu-
rations ' '

The fact that, for available results, P*(ll; s) is very
nearly linear with respect to r over a relatively large
range of r for fixed s, suggests that the term O(r') is
small and a fairly accurate estimate for P*(ml; s) can
be obtained from the first two terms of the series; then

P(el; r) =r-V'*(el; s), r=rs

The functions Qe(re; s) were computed for several
configurations and tabulated together with Prr*(el; s).4

' D. R. Hartree, Proc. Cambridge Phil. Soc. 51, 684 (1955).
4 Copies of these tables may be obtained by writing the author.

The tables have also been deposited as Document No. 6092
with the ADI Auxiliary Publications Project, Photoduplication
Service, Library of Congress, Washington 25, D. C. A copy may
be secured by citing the Document number and remitting $1.25
for photoprints or $1.25 for 35-mm microfilm. Advance payment
is required. Make checks or money orders payable to: Chief,
Photoduplication Service, Library of Congress.

'D. R. Hartree, The Calculation of Atomic Structures (John
Wiley and Sons, New York, 1957), pp. 123, 129, 167.' C. Froese, Proc. Roy. Soc. (London) A251, 534 (1959).

FIG. 1. The reduced wave function P*(3d) for Cu+ as computed
from self-consistent field results and from a series in r.

The accuracy of the method was tested by comparing
the reduced wave function as calculated from the first
two terms of (3) with the known results for Cu+. r

Figure 1 shows the diGerence between the two functions
for the (3d) wave function. Part of the discrepancy is
due to the fact that the reduced wave function is now
no longer normalized since

P*(s)'ds= [PH*(s)+rQ*(s)3'ds
"0

=1+r' " [Q*(s)]'ds.

The normalized series approximates more closely to the
known result in the region where P*(s) is large.

The method described here will not be as accurate
as the interpolation procedure suggested by Hartree
but it has several advantages. First of all, it is entirely
numerical; no plots of P*(isl; s) as a function of r are
required for each s, and no graphic interpolation is
necessary. As a result, estimates can be obtained readily
on an automatic computer. Secondly, the method is
independent of available self-consistent field results,
except for the determination of r. This is an advantage
because an interpolation procedure requires at least one
set of results besides the limiting value as X—+ ~,
whereas the series approximation merely requires the
functions PIr*(s) and Q*(s) which are independent of lV .
When self-consistent field results with exchange are
available' (usually for the larger values of r), estimates
of the next term in the series, E*(s), can be obtained

by assuming that

P*(s)=Prr*(s)+rQ*(s)+r'R*(s) (4)

for these results and solving for E*(s) as a function of s.
The accuracy of both Hartree's interpolation pro-

cedure and the series method is limited by the accuracy
to which r can be determined. Therefore, r should be
computed as accurately as possible using graphs of the
screening number a, as described by Hartree. '

7 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A157, 490 (1936).
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TABLE I. Comparison of the values of ao computed from the
series in I/N, and from the series in r, with the self-consistent
Geld results for Cu+ (in atomic units).

(nl)

(is)
(2s)
(2p)
(3s)
(3p)
(3d)

1//N

307.4
94.0

710.6
32.73

247.9
300.8

~ ~ ~

93.5
710.0
32.2

287.0
225.7

SCF

307.0
94.5

708.0
35.25

260.5
244.5

ESTIMATES OF ap ——[P(nl; r)/r'+'g, ~
For hydrogen-like ions, ap/E'+i=as, rr, where ap, rr is

the value for the hydrogen wave function, so in general,
for atoms with large atomic number we may assume
that it can be expanded in series in 1/N', namely

ESTIMATES FOR Znl, „i

For large atomic numbers, e &, ~&/Ns is given by Eq.
(2) as a series in 1/E. We may also define a reduced
eileigy &nl, nl as

&nl, nl r &nl, nl.

From the limiting behavior of r and e„l, l as Ã —+ ~,
it can be shown that

e„i,~&*——ra'{1/I'+ (r/rrr) [(2ap/I')+ pij

+ (r/rrr)'tt2rrr (do/dr) p+ (o p'/rs')

+zoel+e2]+ ' ' ) ~ (7)

In Table II values of e„l, l for Cu+ as computed from

TABLE II. Comparison of the values of c„&,„& computed from
the series in 1/N, and from the series in r with the self-consistent
Geld results for Cu+ (in atomic units).

The functions Q(nl; p) and E(el; p) of Eq. (1) will

determine ai and a2.

By analogy to Hartree's method, we may also define
a reduced ao* as

a = r +'ao.

(n&)

(1s)
(2s)
(2P)
(3s)
(3p)
(3d)

654.3
74.99
65.81
6.92
4.01—2.39

~ ~ ~

72.00
63.17
9.99
6.65
1.45

SCF

658.4
82.30
71.83
10.65
7.279
1.613

From the limiting behavior of ao and r as E—+ ~, it
can be shown that

ao*= rrr'+*as, rr L1+ (r/re) ( (l+ s)op+at)

+(rlr~)'((l+s)( +l)s«'+(2l+1)«ai+2as
+ (2l+3)rrr (do/dr) p) + j (6)

where (do/dr) p is the slope of o as a function of r at
r=0; values of the slope have been tabulated for
several configurations, "

Values of ao were computed for Cu+ using the series

(5) and (6); the results are compared in Table I. It
will be seen that the series in 1/1V gives the better
estimates in all cases except the (3d). The explanation
for this is as follows: ao is related to the way in which
a wave function attains its first maximum. If it occurs
at relatively small values of r, then the eGective nuclear
charge in this region is more nearly that of the atomic
number N than the eGective nuclear charge at r, and
so a series in 1//t'/ will converge more rapidly than one
in r. If however, the screening effect is signi6cant in
the region of the first maximum, as it is in the case of
the outer ('3d) wave function, then the series in r will

provide the better estimate.
Values of ai and a2 for several configurations have

been tabulated. 4

Eqs. (2) and (7) are compared with self-consistent field
results. The series in 1/cV provides the better estimates
if the relative screening is small; for the outer wave
functions where the screening eGect is large, the series
in r provides the better estimates. The error is approxi-
mately 10%; more accurate estimates can be obtained
if self-consistent field results are available by using
them to estimate the coeKcient of the r' term.

Values of ei and e~ have been tabulated for several
configurations. 4

ESTIMATES FOR THE (Is) WAVE FUNCTION

The (1s) wave function approximates so closely to a
scaled hydrogen wave function that Hartree introduced
a special interpolation scheme for this case'. estimates
of wave functions are obtained by assuming a small

( 0.3) screening factor. Actually the series expansions
in 1/1V converge so rapidly that no modification is
necessary. For the wave function, the first two terms
of Eq. (1) are sufhcient, but for ap and e i, „i, the first
three terms of Eqs. (5) and (2), respectively, are
required. The functions Err(1s; s), Q(1s; s), s= p/rrr,
are included in the tables instead of the functions
I'rr*(1s; s) and Q*(1s;s).

The functions Err*(nl; s) and Q*(rsl; s) were com-
puted on ALWAC, the automatic computer at the
University of British Columbia.


