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temperature for the present compound is higher than
the corresponding CoC12 6820, whose Neel tempera-
ture is 2.29'K. This difference in transition temperature
for the bromine and chlorine salts has also been ob-
served by others4 "in the case of manganese and nickel,
in each case the bromine salt having the higher Neel
temperature.
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It is argued that spin alignment can and will occur for ion-core spins in superconductors, but that the
alignment is in the form of extremely small domains. Central to the argument is the concept of the nonlocal
susceptibility x (r r), which —leads to a positive short-range Kittel-Ruderrnan-Yosida interaction of ion-core
spins, but a negative long-range interaction of range $0.

Very general arguments suggest that purely ferromagnetic alignment should not be observed in preference
to this domain-like "cryptoferromagnetic" alignment.

S PECIFIC heat data on a 0.7'Po Gd in La sample'
indicate an alignment of Gd spins in the supercon-

ducting state. An almost equally convincing demonstra-
tion of such alignment is the observation in (Ce-Gd) Rue
that the superconducting transition can occur below a
ferromagnetic one, 2 although the ferromagnetic energy
per atom, ~kT, (Xr/E) in(2S+1), must be 100times
the superconducting energy kT. (kT,/e~) (since the
entropy in the ferromagnetic transition is far larger);
some alignment must lower the energy of the super-
conducting state correspondingly.

It is here suggested that this alignment occurs and is
ferromagnetic, but only in extremely small domains,
certainly smaller than the coherence length $p and
probably of the order (r, 'b)—about (50 A)'. The
domains may even be so small that density fluctuations
(or the absence of true long-range order) account for
the transition breadth. The net polarization averaged
over the coherence length must, by very general argu-
ments, be nearly zero.

To see these facts, we start by understanding the
general phenomenon of spin-coupling via polarization
of conduction electrons. We write the exchange inter-
action of rare earth ion spins S; and conduction-
electron spin density s(r)'.

IP=I)toy t rfr j(Ir—R I)$(r) ~ S,
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s(r) =JP g(I r—R;I)S,, (2)

resulting from the action of the effective field" JS;on
the electron gas, which responds according to its sus-
ceptibility. This spin density reacts back on the ion
cores, resulting in the spin polarization energy

U= —-',J' P y( I R;—R;
I )S,"S,' (3)

where
S(tI) = (1/gÃ) p e'& a S;,

g(q) = (1/0) )
t dr x (R)e '&'R.

We have introduced here the wave-number-dependent
susceptibility, x(g), which determines the interaction
with a spin density of wave number q. y(g=0) is the
usual Pauli spin susceptibility. The difference from the
normal state of the integral of (3) or (4) for a para-
magnetic arrangement of S s was the result found in
Suhl and Matthias, ' giving the loss in energy of the
superconducting state.

In the normal metal, g(I r —r'
I ) is like the Ruderman-

J being the exchange integral, the r-dependence of
which will serve only as a short-wave cutoG; Qo is the
cell volume.

The conduction-electron spin polarization resulting
from this interaction is given by a position-dependent
susceptibility x (r):
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Kittel result, ' 6nite and positive on the average at
short range fits average is x(q=O)7 but falling to zero
at large distances. ' In the superconductor, x(q=0) is
zero if the B.C.S. (Bardeen-Cooper-Schrieffer) theory
is right, ' and is experimentally observed to be much
reduced. ' Since the short-range interaction cannot be
much changed, there must be a negative long-range
contribution; we shall see that its range is the coherence
length b. This makes the situation closely similar to
that which forms domains in ferromagnets: the parallel
short-range interaction is satisfied by parallel ordering
locally, while the negative long-range force is made
ineffective by the formation of domains, at little cost
in short-range energy.

To obtain a quantitative estimate of domain size we
calculate the two contributions to y. The short-range
one is the usual Kittel-Ruderman interaction, given as
a function of wave number by Yosida'.
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Fro. 1. (a) x(q) in normal and superconducting states.
(b) ~

5'(q) ~' in paramagnetic, ferromagnetic, and cryptoferromag-
netic states.

the latter for long wavelengths. The long-range part of
the force results from the diGerence of superconducting
and normal susceptibilities, which we calculate6 to be

must be close to the wave number of maximum xs(q).
(See Fig. 1.) Maximizing xs by use of (6) and (9), we
obtain

Ax(.) =x (.)—x,(.)

=IN(0)I' "dk "dq ' '
qd,

——(3rrks'$s ')l,

) g~50 A,
(10)

f(ej+ )—f(es)
X L(es, es+,)—

This may be expressed over most of the relevant range
in terms of the nonlocal kernel function J(R,O) evalu-
ated by B.C.S., which has as its range the coherence
length Ps..

Ax(R)/hx(0) =J(R,O)kp 'R '. (g)

In momentum space Ax(q) is related to the E(q)
integral'; we have not evaluated it exactly but in the
relevant range

~x(q) =~x(0) ( /2~. q) (9)

g as a function of q is shown schematically in Fig. 1 for
normal and superconducting cases.

The domain pattern will be characterized by a wave
number gq, giving the inverse size of its structure, which

4 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
5 K. Yosida, Phys. Rev. 106, 893 (1957).
6 Bardeen, Cooper, and SchrieGer, Phys. Rev. 108, 1175 (1957).

But see R. Ferrell, Phys. Rev. Letters 5, 262 (1959);P. W. Ander-
son, Phys. Rev. Letters 5, 525 (1959) for a mechanism whereby
p(0) may be considerably increased. As emphasized later, such an
increase does not modify these results seriously.

F. Reif, Phys. Rev. 106, 208 (1957);G. M. Androes and W. D.
Knight, Phys. Rev. Letters 2, 386 (1959).

2 s, =2 Is(q)l =N,s(s+1). (12)

When ferromagnetic or cryptoferromagnetic alignment
is present, one particular S(q) takes on a very large
value,

S(q.)=SNz/+N,

AX=X(q=O)X-', (3~/kzgo)l 2X10 shX(q=0). (11)

In order of magnitude the ferromagnetic energy is
(Nz/N) (e&/es) 100 times the superconducting energy,
so that the energy of the superconducting state with
this "cryptoferromagnetic" alignment is slightly lower
than the true ferromagnetic state and alignment is
expected to occur. Note that large anisotropy may
change these conclusions quantitatively.

So far we have assumed that the wave function of the
superconducting state is unchanged by the alignment,
so we have calculated an upper limit on the energy of
the cryptoferromagnetic state. Actually, the super-
conducting state may adjust itself so as to improve
matters considerably. To see this, return to the ex-
pression (4). In the paramagnetic state, there is no
correlation among the S s, so that (I S(q) I') is a con-
stant, S(S+1)(Nz/N).

Now there is a sum rule for the S(q)'s,
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FIG. 2. Phase diagram for ferromagnetism, superconductivity,
and cryptoferromagnetism.

so that
1Vzq-

P ~S(tl)~'=(2Vz/N) S+5'~ 1——
)

. (13)
cvf

That is, the random magnetic scattering is reduced in
proportion to 1Vz/E and replaced by a spin-dependent
periodic potential of wavelength X~. This situation is
shown in the second half of Fig. 1.

One can show that the energy of the superconducting

cryptoferromagnetic state may possibly be lowered
relative to that of the superconducting, normal state
by an additional amount (Xz/E): times the Herring-
Suhl-Matthias' scattering eGect, so that the supercon-
ducting transition in the aligned state may actually be
slightly higher than in the paramagnetic state. Figure 2
shows schematically the type of phase diagram which
might be expected to result from the above con-
siderations.

A 6nal remark is that these considerations do not
depend seriously on the special features of the B.C.S.
theory, but only upon a reduction, for superconductors,
in the long-wavelength paramagnetic susceptibility
(not necessarily to zero). In particular, we can conclude
that a long-range purely ferromagnetic alignment in a
superconductor cannot occur unless (a) the paramag-
netic susceptibility of the superconductor is not reduced,
contradicting the experimental and theoretical results;
or (b) the exchange interaction of conduction electrons
and ionic spins is inexplicably small; otherwise the
ferromagnetic normal state is necessarily far lower in
energy than the superconductor. Unfortunately, present
experiments indicate such alignment in some cases. '
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s B. T. Matthias (private communication) shows that homo-
geneous superconducting samples exhibit a ferromagnetic moment,
but it is not clear to what extent the observed remanence is
affected by trapped Aux.
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Absolute rather than interpolation methods are described for obtaining initial estimates for self-consistent
field calculations with exchange. Tables have been computed so that the procedure is entirely numerical
which makes it more convenient than Hartree's graphic interpolation scheme.

INTRODUCTION

ELF—CONSISTENT Geld calculations with ex-
change require initial estimates of the following

three quantities: (i) the radial wave functions, E(rd; r),
(ii) zts I'(nl;r)/r'+', ——for r~0, and (iii) the energy
parameter e ~, „~.In this paper methods will be described
for estimating these quantities when the atomic number
E is large; they all depend on knowing the limiting
behavior of the estimate as E~ ~.

Previous papers" showed that if we represent the
wave functions by a series in 1/E so that

E &P(stl; r) =Pzz(stl; p)+/Q(nl; p)/1Vj
+ta(nt; p)Pr'g+", p=Xr, (1)

and if we assume that

enl, nt = (1/st )+ (el/IV) + (es/1V )+ ' ' '
&

' C. Froese, Proc. Roy. Soc. (London) A239, 311 (1957).' C. Froese, Proc. Roy. Soc. (London) A244, 390 (1958).


