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Crystal Potential and Energy Bands of Semiconductors.
I. Self-Consistent Calculations for Diamond*
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Approximate self-consistent potentials are constructed for diamond, 6rst with exchange ignored, and then
with exchange included according to the Slater free-electron approximation and according to a re6ned
momentum-dependent free-electron approximation. The Hartree charge densities and energy gap are in fair
agreemdnt with experiment. Inclusion of valence exchange by the Slater approximation shows that Herman's
earlier calculation was nearly self-consistent in this approximation. Agreement with experiment on charge
densities and energy gap is greatly improved in comparison with the Hartree results. Further inclusion of
the momentum dependence of the exchange potential does not greatly improve the charge densities and the
energy gap but does alter the valence band width.

1. INTRODUCTION

ITH the exception of a few especially simple

~

~

~

cases, the object of most energy-band papers
may be said to have been the calculation of wave
functions and energy bands in a crystal grated a certain
crystal potential. Ofter great emphasis is placed on the
exactness with which this mathematical problem is
solved while no estimate is made of the uncertainties
in the assumed crystal potential. It has appeared for
some time that (for any but the simplest crystals) the
physical uncertainties are as large as the mathematical
ones. Our primary interest in this series of papers lies
in the calculation of experimental features of the energy
bands of diamond- and zinc-blende-type semicon-
ductors; for the reasons discussed above we begin with
a consideration of the crystal potential of diamond,
which is the simplest of these crystals.

A secondary object of the calculations presented
below is to test the exactness of the "effective potential"
method proposed recently by us. ' The method is quite
similar to the orthogonalized plane wave (OPW)
method which has already been used on diamond with
much success by Herman. ' Using the same potential
we find results in close agreement with his; changes in
the potential itself lead to larger differences, in agree-
ment with the above remarks.

Herman's diamond potential is obtained from a
superposition of free atom Hartree-Pock charge
densities. These are used to calculate the Coulomb
potential to which is added an exchange potential
taken from the Slater' free-electron approximation.
(According to the Slater approximation, exchange
terms can be represented by an exchange potential
which is the same at a given point as the average
exchange potential in a free-electron gas having the
same local density. )

* Supported in part by the National Science Foundation.
f National Science Foundation Predoctoral Fellow.
f National Science Foundation Postdoctoral Fellow.
I J. C. Phillips and L. Kleinman, Phys. Rev. 116, 28'I (1959).' F. Herman, Phys. Rev. 93, 1214 (1954).' J. C. Slater, Phys. Rev. Sl, 385 (1951).

At 6rst sight there is no reason to expect that free-
atom charge densities would yield more than a quali-
tatively correct charge distribution in the crystal. In
the case of diamond, however, Herman was able to
compare his charge densities with those calculated by
Brill' from x-ray diffraction; good agreement was
obtained, thus justifying the Coulomb potential.

In principle, of course, the crystal charge density
should be calculated self-consistently. Again, in prin-
ciple, this requires the calculation of valence wave
functions throughout the reduced zone and in diamond,
where convergent wave functions are easily obtained
only at points of high symmetry of the Brillouin zone,
this appears to be prohibitively laborious. An advantage
of the "eGective potential" method is that it shows that
all valence charge densities should be similar, which
greatly reduces the amount of calculation required to
obtain a good approximation to the valence electron
charge density. In this way we are able to demonstrate
in Sec. 2 that granted his exchange potential, Herman's
original calculation is nearly self-consistent.

We are therefore left with the exchange potential
which is obtained from Slater's heuristic approximation.
We may omit exchange among the valence electrons
altogether, thus doing a self-consistent Hartree calcu-
lation. This materially worsens the agreement with
experiment for the charge densities and energy gap, as
is shown in Sec. 3. On the other hand, we may say that
even in diamond the wave functions often closely
resemble plane waves so that an improvement might
be made by including the momentum dependence of
the local-density free-electron exchange potential. The
results of this refinement are presented in Sec. 3 also;
it turns out that only the valence band width is ap-
preciably changed.

It might be felt that if the valence electron charge
density is sufficiently simple to make self-consistent
calculations of the Coulomb potential feasible, some-
what more effort should yield an exchange potential.
The importance of this point has led us to include our

' R. Brill, Acta Cryst. 3, 333 (1950).

880



SELF —CONSISTENT CALCULATIONS FOR D IAMON D

reasons for being unable to obtain such a potential in
the Appendix.

$1sg= Pt,*(r)d'r ft, (r),

where Pt, is the normalized Hartree-Fock 1s wave
function for neutral atomic carbon calculated by Jucys. s

(This is the wave function used by Herman. ) It was

TABLE I. Fourier transforms of various terms in the effective
crystal potential. Here Ir'= (a/2~)'kr and the form factor cos(k s)
with s =-8o(111)has been omitted. The numbers in parenthesis in
the fourth row represent corrections to Herman's potential which
were not included in the calculations of Secs. 2 and 3.

$2 p' recou1 p' alcoul P'exch P'total

0
3 1.030
8 0.398

11 0.294
16 0.209

2.87 0.0320—0.286 0.166 0.905 0.0270—0.013 0.034 0.419 0.0205
0.001 —0.010(0.025) 0.284(0.319) 0.0175
0.0 0.018 0.227 0.0140

shown in reference 1 that s states see an effective
potential

V.rr= V,+V„ (2)

V,= (E—Et,)List. (3)

Here we have taken Jucys' value, E&,= —22.7 ry.
The effective potential in Eq. (2) is l-dependent; in

particular, in diamond, states having no s atomic
character see no repulsive potential. Prescriptions for
determining the atomic character of a given wave
function were described in reference 1. When applied
to diamond these lead to particularly simple results
because of the small size of the 1s core. The atomic
characters of the diamond wave functions of interest
to us are listed in Table II. The notation for irreducible
representations is that of Herring. '

We now compare the results obtained by our method
with those obtained by Herman. For p states these are
necessarily the same. For an s state like I'&, small
differences result from the approximate nature of the
repulsive potential as compared with the orthogonali-
zation terms it replaces. We have therefore calculated
the energy associated with the lowest F& state by the

2. SELF-CONSISTENCY OF HERMAN'S MODEL

The Fourier coefficients of Herman's crystal potential
V, are listed in Table I, where the contributions of the
core and valence Coulomb and exchange terms are
listed separately. The numbers in parenthesis represent
a small correction to Herman's potential whose eGect
would be to reduce the energy gap by 0.4 ev. This is
omitted here to facilitate comparison with Herman's
results. Also listed are the Fourier coeKcients of

TABLE II. Atomic characters of wave functions
calculated for diamond.

Term

j."I, 1 2

I'2S, ~IS
X1
X4
LI, L2
L3, L3

1.0
0.0
1.0
0.0
1.0
0.0

0.0
1.0
0.0
1.0
0.0
1.0

TABLE III. Energies of F&&0 and I'».&') in ry at various stages
of convergence. E„is obtained from an eth order secular equation.
We have used Vppp= —2.8700 in each case.

QPW
P, (1)

EG. potential

+1
jV,
jv6
As
+34

—2.2200—2.4027
—2.2200—2.4027—2.4142

0.170—0.431—0.731—0.797—0.803

OPW method including 9 plane waves, and the results
are compared with ours in Table III. The I'& energy
has converged quite well at this point, as can be seen
from Table III for our case or from Herman's graph of
the OPW results. 7 The agreement here turns out to be
especially good; however even less favorable cases
should agree to within a few hundredths of a Rydberg.

A criticism of the OPW method which also applies
here is that p states such as I'&s converge slowly and,
from Herman's results for 162 plane waves (16th order
secular equation), it is not clear that his result is
convergent. (Actually Herman checked that his energy
was convergent to within 0.1 ry. ) To settle this point
we calculated the 1'» energy to 469 plane waves; the
results are also listed in Table III. Herman's value
was convergent to within 0.01 ry. With this result in
hand, we felt justified in limiting our calculation to 90
plane waves; s -levels are convergent at this point and
the similar convergence of p levels enables us to use the
I'ss results to extrapolate other p levels to convergent
values with an uncertainty of less than 0.05 ry. The
results of our calculation of the energy levels at F, X
and L using Herman's potential are listed in Table IV:
these represent extrapolated values.

We now turn to a self-consistent calculation of the
valence electron charge density. A systematic procedure
for doing this is the following. Reciprocal space is
divided into similar volumes resembling the first
Brillouin zone. The first division uses the Brillouin zone
about each reciprocal lattice point. The second division
reftnes the first by introducing new points ("sub-
reciprocal-lattice points") midway between the lattice
points of the first division; new "subzones" are now
drawn about each of the points of the new lattice (which

s A. Jucys, Proc. Roy. Soc. (London) A173, 59 (1939).' C. Herring, J. Franklin Inst. 233, 525 (1942).
7 F. Herman, Ph.D. thesis, Columbia University, 1953

(unpublished) .
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TABLE IV. Energies in ry of various terms in diamond using
self-consistent potentials. ln column 2 the Slater free-electron
exchange potential is used; in column 3 exchange is omitted
altogether, and in column 4 the momentum dependence of the
free-electron exchange potential is included approximately. The
last row lists the indirect energy gap to within 0.02 ry.

Term

~1
+2~
~25'
~15
x,(»
X4
x,(»
L (1)

L2

L~(~)

Le

Herman

—2.41
0.35—0.80—0.35—1.64—1.29—0.28—1.55—1.97—1.14—0.14—0.14

~0.40

Hartree

—2.19
0.40—0.60—0.25—1.52—1.07—0.32—1.54—1.89—0.87—0.05—0.09

~0.25

k-dependent

—2.97
0.94—0.23
0.19—2.21—0.75
0.20—2.08—2.54—0.56
0.34
0.39

~0.37

(4)

includes all the points of the previous lattice). The
subzones will clearly be similar to the original zones,
but have 2 ' the volume. This process can be used to
obtain an arbitrarily fine covering of reciprocal space.

The valence electron charge density is now repre-
sented in the first approximation as the average of the
charge densities associated with the lattice points in
each occupied zone. (For the diamond lattice the
problem of partially occupied zones is easily solved by
considering the subzones projected back into the re-
duced zone. ) Thus in the case of diamond the first
approximation to the valence electron charge density
is (I'i)+3{1'2~}.Here the brackets denote P*P for a
nondegenerate level and the average of P~P for de-
generate levels; P denotes the symmetrized OPW
eigenfunction.

This process can now be continued to higher approxi-
mations. In the second approximation it is necessary
to know wave functions at I', X and J. The third
approximation requires wave functions of symmetry
I, X, I., A, 6 and the twofold point 27ra '(43, i~, ~i). Thus
in the third approximation, the reduced secular equa-
tion at the last point will be about half as large as the
number of plane waves included in the over-all ex-
pansion; in our case this would be 45X45. Calculation
of the charge density associated with such a case is
tedious but feasible.

Such calculations do not appear to be necessary,
however, since the charge density appears to have
converged fairly well in the second approximation. It
is perhaps well to emphasize at this point that our chief
concern in obtaining self-consistency is the accurate
calculation of the 6rst few nonzero Fourier coefricients
of the crystal potential. (We take Vooo from Herman's
calculations; it can be shown that small changes in this
quantity do not aGect the relative positions of the
bands. ) The nonzero Fourier coeflicients of the potential
can be obtained directly from those of the charge density
by Poisson's equation:

Vp =+ (64vr/k'u') pg.

TABLE V. The contribution of charge densities representing
diferent subzones in the valence band to the Fourier coeKcients
of the crystal potential using the Slater free-electron approri-
mation for exchange. The last line lists the total =(j.}+(X}
+(L}.Each of the latter represents the contribution of each term
multiplied by the degeneracy and weighting factors listed in
columns 2 and 3.

Term

I'25~

(~}
Xl
X4

L1
L2~
L3

(L}
8(r}(alone)
Total

Degeneracy Weight V111

0.0074
0.0149
0.0520
0.0103
0.0099
0.1210
0.0036
0.0106
0.0108
0.1432
0.416
0.316

V220

0.0002—0.0012—0.0034
0.0000—0.0005—0.0030
0.0005
0.0004—0.0006—0.0003—0.027—0.007

Thus the (111) Fourier coefficient of the Coulomb
potential of the valence electrons is 0.416 ry in the Grst
approximation and 0.316 ry in the second.

From Table V which lists our results from various
parts of the zone, several important conclusions can be
deduced. All terms contribute approximately the same
amount to U»i and all have the same sign. (The only
exceptions are Ll and I.2 which because of their strong
mixing should be grouped together. ) This is a result of
the eGect mentioned in the introduction; all charge
densities respond to similar effective potentials. Fur-
thermore, it is clear why the second approximation
diGers appreciably from the first: 1"», being at the top
of the valence band, has the largest V~~l and compared
to the rest of the zone it is weighted too heavily com-
pared to I'i (3 to 1; at X and I. the ratio is 2 to 2 for
higher to lower levels). Both these errors are corrected
in the second approximation which weights F» only
in proportion to the subzone it represents. It is difficult
to estimate the accuracy of the second approximation
but considering the small variation of the charge
densities throughout the zone and the fact that the
second sampling is 8 times finer than the first, we
estimate the results from the second approximation
should be accurate to within 10'%%uq, or 0.03 ry on V»i.
%e have also calculated V220, the results are listed in
Table V and, to within our accuracy, it is zero. Pre-
sumably all other higher Fourier coefficients are zero.

Herman's results for the Coulomb potential of the
valence electrons are listed in Table I. The valence
electrons are seen to make an appreciable contribution
only to V»& whether free atom or crystal charge
densities are used. It is interesting to see how this
comes about for the crystal charge density. The (111)
coefficient of the effective crystal potential is much

larger than the other coefficients, especially for s states
where the repulsive potential makes the remaining
coeS.cients quite small. Thus the charge density
arranges itself to favor constructively the $1111
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directions, and contributions to other directions add
only destructively.

From Table I we see that Herman's (111) Fourier
coeKcient of the Coulomb potential of the valence
electrons is 0.286 ry as compared. to our value of 0.316
ry; thus his valence electron charge density is very
nearly self-consistent. The self-consistent charge density
is also in good agreement with Brill s x-ray data, which
gives the value 0.349 ry when the core terms have been
subtracted.

Pote added iro proof. The —(111) x-ray intensity has
recently been carefully remeasured by Brill and Zandy
LNature 183, 1387 (1959)j. Their result leads to
~111 a cou 0.299+0.025 ry, in good agreement with
our calculated value.

As Herman' has shown, the minimum in the con-
duction band should lie along D. This leads to an energy
gap of about 5.4 ev, in good agreement with the experi-
mental value of 5.6 ev.~

While Slater' has given plausible physical arguments
for the correctness of the local-density free-electron
expression for exchange, the approximation remains a
heuristic one. We therefore now consider the results
obtained from other exchange potentials.

3. HARTREE AND NONLOCAL POTENTIALS

The simplest approximation is a Hartree one in
which exchange is neglected altogether. From Table I
we see that the largest change occurs in V~~~ which
affects both the energy gap and. the valence electron
charge density. To facilitate comparison with the results
of the last section we have retained the value V000
= —2.87 ry but otherwise omitted exchange terms.
The resulting term values are shown in Table IV; the
energy gap is now about 3.4 ev. The (111) Fourier
coefficient of the self-consistent Coulomb potential of
the valence electrons is now 0.270 ry. It follows that the
omission of exchange leads to poorer results for both
the energy gap and the charge d.ensity.

The Slater approximation assumes that each electron
sees an average exchange potential appropriate to a
free-electron gas having the same local density. In a
free-electron gas the exchange potential is momentum-
dependent with the strength of the potential at the
Fermi surface half its value at k=0. In a free-electron
gas of the density of diamond Vppp' '"——+1.4 ry. Also
the valence-electron contribution to V~~~'"" can be seen
from Table I to be about 0.12 ry. (We neglect the
momentum-dependence of exchange with is electrons.
This should be very small. ) The momentum-dependent
effects will be increased slightly if we arbitrarily assume
that L~&o, L2, X~") and I'~o) all experience an exchange
potential appropriate to k=0 (V«o' '"——1.9 ry, V»t'"'"
=0.206 ry) while the remaining states listed in Table

F. Seitz, Modern Theory of SolQ's (McGraw-Hill Book Com-
pany, Inc., New York, 1940), p. 340.

IV experience the potential appropriate to ko (Vppo'"'"
=0.9 ry, V»t'*'" =0.126 ry).

The term levels resulting from this potential are also
listed in Table IV. The energy gap is 5.0 ev, which is
practically the same as is obtained from the momentum-
independent potential. The self-consistent valence-
electron charge density is unaltered. The chief effect is
to increase the valence band width from 21 ev to 36 ev.
Soft x-ray values range from 16 to 30 ev.~

Most of the eGects of a momentum-dependent
potential are therefore small. In addition, the effect of
correlation is to reduce the momentum dependence by
about a factor of 2 for the value r,=1.3 appropriate to
diamond. ' This will lead to even'smaller changes in
term levels, so that it appears that except for the
valence band width, one is usually justified in neglecting
the momentum dependence of the valence contribution
to the potential.

APPENDIX

Analysis of po fo*g& at v——arious points in the valence
band. shows that for each k the charge density po
contains a large (111) component in addition to higher
Fourier components. The (111) terms for different k
all add in phase while the higher components have
random phases. This has a simple physical inter-
pretation: the (111) terms are a response to the large
attractive value of the (111) coeScient of the effective
potential. Higher terms result from the symmetrization
of a given set of plane waves; this varies from one
irreducible representation to another and so adds
randomly. As was mentioned in Sec. 2, this leads to a
simple valence-electron charge density and hence
Coulomb potential.

For a free electron gas' the exchange potential is
straightforward because

~Pa= —&oA, (A.1)

where A is the exchange operator and

( ko' —k' k+kp )~.="kpl 2+
kok k —ko &

(A.2)

where ko is the Fermi wave number. Now if

yo ——V—le'" "u, (r)

and we assume

uo(r) =uo. (r) (A.3)

for k a,nd k' labeling states in the occupied band, a

' J. G. Fletcher and D. C. Larson, Phys. Rev. 111,455 (1958).
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similar result can be obtained. I.et K be a reciprocal
lattice vector and

upp(r) = up'(r) =px Axe'x'

A simple calculation following Seitz' gives

~|4(r)= —(Zx &xC&—«'*')It'~ (r)

(A.4)

(A.5)

p~ p p ) 1—r1jt/rP (A.6)

Now if p~ has the form

38
pi= —(1+X„exp(iv..ri)),

4 r,3
(A.7)

and ro is normalized so that the hole contains unit
charge,

1 6& exp(imp ri)
1+—'X„

rp r, 1+~'rp'
(A.S)

which is similar to (A.1) except that the exchange
potential now has nonzero Fourier coefficients XKCi, K.
In deriving this result, however, it was necessary to
assume (A.3) whereas actually only (A.4) is a good
approximation. In fact (A.3) does not appear to be even
approximately correct for the diamond lattice. This is
reasonable since only charge densities, not wave
function amplitudes, respond to the large (111)effective
potential.

The situation is not materially improved if we ex-
amine the arguments for the Slater p" approximation
more closely. The approximation here is a Thomas-
Fermi one and assumes that the charge density varies
slowly over the radius of the exchange hole. More
precisely the radius of the exchange hole should be
small compared with the wavelength of the Fourier
coefficient of the potential being calculated. The largest
term in the exchange potential which affects the relative
position of the bands is V~~~, which has a wavelength
somewhat smaller than the radius of the exchange hole.
Thus a Thomas-Fermi approximation is not justified.
The chief conclusion which can be drawn from the
calculations presented in Secs. 2 and 3 is that a posteriori

the approximation seems to yield about the right answer

for valence charge densities corresponding to r, =1.3
(diamond).

Since the above was written, we have seen unpub-

lished work of Brooks which treats the nonlocal ex-

change and correlation hole. Brooks assumes that
charge densities of both spins are affected equally and
that the hole has an exponential form

then the nonzero Fourier coeKcient of the potential is

0.908e 1 2
X„

r, 1+~'pp' 3 (1+x'pp')'
(A.9)

For diamond pp 0.72 and for x=2vra '(111) [the term
of greatest interest] Kpp 1.05. Substituting this into
(A.9) we find a result almost identical to (A.10), which
has been used for the calculations of this paper. Further
(A.9) is insenstive to z for ppp&1, so that the nonlocal
character of the exchange hole can be neglected under
these conditions.

The coincidence of these two results still does not
justify the quite diferent approximations which have
been made in deriving either:

1. The derivation leading to (A.9) necessarily omits
momentum-dependent sects. These can be treated
only by assuming (A.3).

2. Correlation eGects are weaker than exchange
effects and should be distinguished. Indeed it is not
clear that the plasma energy can be represented as a
one-electron potential.

Finally there is a qualitative objection which we feel
is as serious as either of these. The expressions (A.9)
and (A.10) for Vp" are taken from rough approximations
to the total exchange energy, which consists pre-
dominantly of Vp"' (which is 10 times larger than
Vz'"). Thus the value of Vi,"' derived from a density-
(but not momentum-) dependent exchange hole replaces
the factor C& „ in (A.5) by approximately (Ck) where
the brackets denote an average over the Fermi sea.
For ~~kp [which is the case for x=2sa '(111)$ these
quantities may differ by a factor of 2. Differences
between NI, and N~ make the momentum average even
more suspect. Thus "physical intuition" about V~"
cannot be relied upon for x/0.

Hence we conclude, as before, that a simple treatment
of the nonzero Fourier coefficients of the exchange
potential can be given only when (A.3) holds. For
monovalent metals N~~N~~NO, providing k is su%-
ciently small. Even for polyvalent metals the approxi-
mation Nq =NI, = 1 is still available. For semiconductors,
however, the most dificult terms in the crystal potential
arise from exchange and correlation among the valence
electrons,

(where pp
——rp ——0.55r,), the second term in the brackets

resulting from the spacial variation of ro. By comparison
the Slater approximation for the exchange hole yields,
by formal expansion of the cube root [compare (A.9)
with rp=-0],

(A.10)
rs


