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A theory of ferromagnetic resonance at high signal powers is developed. The stationary response at high
power levels is investigated for the case in which the unstable spin waves have the same frequency as the
applied signal. It is found that a fine structure should be superimposed on the general decline of the resonance
absorption with increasing power level. This fine structure arises from the discrete nature of the spin-wave
spectrum. It should be observable even if the frequency separation of adjacent spin-wave modes is much
smaller than the inverse of their relaxation times. The fine structure appears as a series of kinks superimposed
on the general decline of the resonance absorption with increasing power level. The separation of subsequent
kinks increases with decreasing sample volume and increasing exchange field. An interpretation of experi-
mental data along the lines suggested in this paper should yield information about the strength of the

exchange coupling.

I. INTRODUCTION

T has been known since the work of Damon' and of
Bloembergen and Wang? that at sufficiently high
power levels nonlinear effects can be observed in ferro-
magnetic resonance experiments. These effects usually
set in at a fairly well-defined threshold. At power levels
below this threshold the response of the material to an
rf magnetic field is linear; i.e., the susceptibility is
independent of the power level. Beyond the threshold
the susceptibility at resonance decreases with increasing
power level. The general features of the observed
phenomena can be understood quite well in terms of a
theory developed by Suhl.? According to this theory
the nonlinear effects are due to the fact that certain
spin waves become excited as soon as the amplitude of
the uniform mode (which is driven by the applied
microwave field) exceeds a certain critical value. Two
possible mechanisms may be distinguished. For one of
them, the unstable spin waves have half the frequency
of the applied signal; for the other, they have the same
frequency as the applied signal. It has been shown by
Suhl that the first process (which involves spin waves
whose frequency equals half the signal frequency) is
not allowed at resonance if the signal frequency exceeds
a certain critical value which for spherical samples is
ZyArM.

Green? has recently observed a fine structure in the
decline of the susceptibility with increasing power level
which is superimposed on the general downward trend.
Similar effects have been. observed by Seiden® and by
Martin.® The experimental conditions in each case were
such that the unstable spin waves must have the same
frequency as the signal. In the present paper a theory
will be developed which accounts quantitatively for the
observed effects and allows an interpretation of the
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experimental data in terms of fundamental physical
properties of the material. The theory is essentially an
extension of Suhl’s work, but a number of refinements
not considered previously are necessary to explain the
observed effect.

The basic physical reason for the fine structure is the
fact that the spin-wave spectrum is discrete rather than
continuous. If periodic boundary conditions are im-
posed, the excitations have the form of plane waves and
the components of the wave number vector are integer
multiples of 2x/L, where L is the length of the
periodicity cube. The spin waves may thus be repre-

- sented by an array of points in % space such as shown

in Fig. 1. It was shown by Suhl that at resonance and at
sufficiently high frequencies (larger than approximately
3000 Mc/sec for spherical samples of YIG), the un-
stable spin waves propagate along the direction of the
magnetic field (z axis of Fig. 1). The unstable spin
waves must also satisfy the condition that their
frequency wi is at least approximately equal to the
signal frequency w.

The curved lines @ and & in Fig. 1 represent surfaces
of constant frequency in % space. Spin waves close to
the surface characterizing the signal frequency w tend
to become unstable before spin waves located away
from this surface. In the situation described in Fig. 1
the spin waves with the lowest threshold are those
located in the layer »=0. Spin waves in subsequent
layers n>1 have a slightly higher threshold.

It is not at all obvious that the discreteness of the
spin-wave spectrum can produce a fine structure of the
observed kind. Under the usual experimental conditions
the frequency separation of adjacent z-directed spin
waves is of the order of 1 Mc/sec. The frequency
separation between a z-directed spin wave and adjacent
spin waves whose wave vectors have the same z com-
ponent is typically of the order of 1 kc/sec. The line
width associated with the z-directed spin waves can be
inferred from measurements of the critical power level
at which the nonlinear behavior sets in. This line width
is typically of the order of several Mc/sec. It may,
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therefore, be argued that the spin-wave spectrum
should behave as if it were continuous even though the
wave number vector assumes only discrete values. It
will be shown below that this argument is not correct.
The time-varying coupling between spin-wave pairs
which arises from the excitation of the uniform mode is
essentially equivalent to a reduction of the damping
constant associated with these modes. In the_region of
interest adjacent layers of spin waves oriented per-
pendicular to the z axis are well separated.

II. GENERAL OUTLINE OF THE THEORY

The theory described below goes beyond Suhl’s®
theory in two respects.

1. Line broadening processes are taken into account
in a more detailed fashion. It was pointed out before’
that this is rather important if the line width is pre-
dominantly caused by inhomogeneity broadening such
as discussed by Clogston et al.,® Geschwind and
Clogston,® and the present author.® In the present
context this refinement is probably not very important
because the experiments that showed the fine structure
were performed on highly-perfect single crystals of
yttrium-iron garnet and gadolinium-iron garnet. In
these cases the inhomogeneity contribution to the line
width is believed to be rather small. The refinement is
taken into account for the sake of generality and
because it simplifies the quantitative development of
the theory.

2. The nonlinear interaction between the excited
spin waves is taken into consideration. The mathe-
matical development of the theory is greatly compli-
cated by this refinement, and for the sake of simplicity
only the essential parts of this interaction are retained.

It will be shown that the essential part of the non-
linear interaction can be taken into account by re-
placing the conventional spin-wave frequencies by
effective frequencies which are dependent on the
excitation of the uniform mode and on that of all other
spin waves. The physical basis for this effect is that the
excitation reduces the z component of the magnetic
moment and hence the demagnetizing field. Thus, the
effective spin-wave frequencies increase with increasing
power level.

The fine structure can now be understood quali-
tatively by reference to Fig. 1. Let the surface of
constant frequency a characterize the signal frequency
at a given power level. At a higher power level all
spin-wave frequencies are shifted upwards. Thus the
line representing the (constant) signal frequency in
Fig. 1 is shifted downwards to position & With in-
creasing power level a series of situations is realized in
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F1c. 1. Schematic representation of spin-wave modes in & space.
Each point corresponds to a possible mode of oscillation consistent
with the boundary conditions. The curves ¢ and & represent
surfaces of constant frequency. The index # characterizes layers
of spin waves whose wave vectors have the same z component.

which the signal frequency coincides with the effective
frequency of a z-directed spin wave. It is apparent that
this will give rise to a fine structure in the decline of x’’
with power level. It will now be necessary to develop
the theory in more quantitative terms in order to
compare the predicted effects with the observed
phenomena.

III. QUANTITATIVE DEVELOPMENT
OF THE THEORY

The formulation of the equations of motion in the
present paper deviates slightly from the conventional.
In Suhl’s work the equations of motion are expressed
in terms of the Fourier components of the transverse
components of the magnetization vector. In the present
paper we shall first introduce new variables which are
related to the transverse components of the magneti-
zation vector and in fact reduce to these variables in
the limit of small excitation. The advantage of this
procedure is that the equations of motion appear in
their canonical form. They can be derived very easily
from the Hamiltonian which is proportional to the total
energy of the system. The contributions to the energy
considered explicitly comprise the Zeeman energy, the
exchange energy, and the dipolar interaction energy.
Other contributions such as crystalline anisotropy and
strain-induced anisotropy can also be taken into
account.

Let @ be a unit vector pointing in the direction of the
magnetic moment

M=Me. (1)

Conventionally the equations of motion are expressed
in terms of the Fourier components of a,(r) and a,(r).
It is known that in the limit of small amplitudes a, and
a, behave essentially as conjugate coordinates and
momenta. It is, therefore, convenient to introduce new
variables p and ¢ which behave in this way even for
finite amplitudes. The new variables are related to the
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old variables by
ar= -1+,
ay=q1—3 P>+ T, 2
a=1-3(P"+¢).

We then introduce a complex variable

s=p+ig, 3
and the Fourier components s, of this variable
s()=2_k speter. 4)

s is the classical equivalent of the spin deviation
operator discussed by Holstein and Primakoff.!* We
have assumed periodic boundary conditions and the
components of the wave number vector are integer
multiples of 2w/L, where L is the length of the perio-
dicity cube. In the absence of dipolar interaction the
variables s; would be the normal coordinates of the
problem; ie., for small amplitudes the equations of
motion would be separated if expressed in terms of
these variables. The presence of dipolar interaction
makes necessary an additional linear transformation
to new variables .

U= NiSpFurS_r*. (5)

This transformation was introduced by Holstein and
Primakoff** and has also been used by Suhl? The
coefficients A and u; are given in reference 3. The
equations of motion now have the very simple form

where the asterisk denotes the complex conjugate and
where

so= (27/ML3)fEd3r 1)

is the Hamiltonian. £ is the energy density, v the
gyromagnetic ratio, and M the saturation magnetiza-
tion. The integration in Eq. (7) extends over the
periodicity volume L2, _

The Hamiltonian including Zeeman, exchange, and
dipolar energy can be calculated without major diffi-
culty. It can be expanded in powers of the amplitudes
uy. The significant contributions to the Hamiltonian are

=Y wwrtur+3% > gu(ur*u_r*u+c.c.)
% k=0

+% Z jkk'uk*ukuk'*uk'
kk!

+% Z RN VA TN A
k, B #0

k# £k

+ 2 Puwsti*ur —vy (hug*4-c.c.), (8)

kk’

1 T, Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
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where c.c. denotes the complex conjugate of the
expression preceding it.

The first part on the right of Eq. (8) gives rise to the
usual linear equations of motion and the wy are the
spin-wave frequencies

wr=7{[H~+Hex(ak)*+4x M sin®0, [TH+He (ak)? 31 (9)

Here H is the internal (demagnetized) magnetic field
and He a phenomenological constant characterizing
the strength of the exchange coupling. “a” is the lattice
constant and 6, the angle between the propagation
direction and the dc magnetic field.

The second term in Eq. (8) represents the nonlinear
interaction between the uniform mode and the spin
waves. It can be shown that this term gives rise to
unstable growth of certain spin-wave pairs if the ampli-
tude of the uniform mode #, is sufficiently large. It
should be pointed out that in general a term involving
i u_r*uo is also present in the Hamiltonian. This term
gives rise to instability of spin waves with half the
signal frequency. It is neglected in Eq. (8) because
under the conditions of the experiment to be discussed
all spin waves have frequencies appreciably higher than
half the signal frequency so that this process is effec-
tively forbidden. The “coupling constant” g is to a
good approximation given by

gr=>%wu(1—% sin%), (10)
where wy=vy4rM.

The third and fourth terms of Eq. (8) represent the
important parts of the nonlinear interaction between
the excited spin waves. For the present calculation only
the coefficients involving nearly z-directed spin waves
are required, because only these spin waves are excited.
In this case the coefficients are approximately

Jekr=%0u (2N +1),
Jor= jro=3wu(N.—N,+1),
Joo=3wu(N,—Ny),
Lo =%0u(2N,+1),

where it is assumed that the sample is a spheroid
magnetized along its axis and where N, and N, are the
longitudinal and transverse demagnetizing factors (both
equal to § for a sphere).

The fifth term of Eq. (8) represents an interaction
between spin waves (including the uniform mode)
which is due to inhomogeneities. Such inhomogeneities
can arise on a microscopic scale from the availability
of various sites to the magnetic ions in the spinel
lattice.® They are also present in polycrystals because
of the anisotropy of the individual single-crystal
grains.®® Surface roughness will also contribute to this
part of the Hamiltonian. The coefficients Py form a
Hermitian matrix. They are related to the Fourier
components of certain random functions which describe
the inhomogeneities present in the sample. For a more

(11)
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complete discussion of the matrix P for the special
case of polycrystals the reader is referred to reference
10. In the present context this part of the Hamiltonian
plays only a minor role, and it will not be necessary to
specify Py in great detail.

The last part of Eq. (8) represents the contribution
of the rf magnetic field to the Hamiltonian. Here

h="h,+ih,, (12)

and it has been assumed that the rf field is uniform over
the sample volume.

The Hamiltonian of Eq. (8) is approximate. It
contains only those terms that are believed to be
important in the present context. The neglected terms
include:

1. The third order terms previously mentioned.

2. All terms of higher than fourth order in the
amplitudes.

3. Fourth order terms that do not involve the ampli-
tudes and their conjugates two times each.

4. Fourth order terms like ;™ up*ur up except
those explicitly retained in Eq. (8).

The neglect of these terms can be justified with
varying degrees of rigor.

The equations of motion can now easily be derived
from Egs. (6) and (8). Spin-lattice relaxation can be
taken into account by assigning positive imaginary
parts to all spin-wave frequencies. We shall assume that
the driving field is circularly polarized, i.e., h~e®t.
The stationary solution in the presence of this driving
field is such that all spin-wave amplitudes (including
the uniform mode) have the same time dependence
~¢w! The amplitudes are related by a complicated
set of nonlinear algebraic equations. This set of equa-
tions can be written in the form

(Qk—w)uk—}-gkug’u_k*—l—pkuo:O, for k?£0, (13)
(Qo—w)uotuc* 3 gruru_y
k0 ‘
4> Pour=vk, for k=0. (14)
k0
Here O is an effective spin-wave frequency
Qk=wk+2k' jkk'luk'|2+iﬂk; (15)

where 7, is a phenomenological damping constant.
Similarly g is an effective coupling constant.

=g+ X

k'#0,k,—k

(16)

lkkruk:u_kr/u(;?.

The coefficients p; are related to the inhomogeneity
interaction

P=Pret 2 Pratirr/to. 17
520

The formal solution of the equations of motion can
now be achieved by combining Eq. (13) with its adjoint
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(the complex conjugate equation with & replaced by
—k). Since 03=0_, and §r=g_s, one obtains after
elimination of #_;*

we  — pr(Q*— )+ Grp—i*| o |2

) [Qe—w|2— | x| ?| o

-(18)

Insertion of Eq. (18) into Egs. (16) and (17) leads to
two sets of self-consistency conditions for §r and py
which involve only the absolute squares of the spin-
wave amplitudes.

In its present general form the problem posed by the
nonlinear equations of motion is obviously not amenable
to a simple solution. We shall, therefore, now introduce
two further approximations which will greatly simplify
the problem. The approximations consist in replacing:
(a) pr by Pxo and (b) gr by gk. Physically the approxi-
mation (a) means that in the inhomogeneity interaction
only that part is retained which involves the uniform
mode. This is probably a good approximation in the
range of small signal powers and it has generally been
adopted in previous calculations.®!° In the present case
the approximation is not as well justified since spin
waves other than the uniform mode are also excited to
a comparatively high level. The neglected interaction
may be expected to contribute to the decay constants
of the spin waves in the same way as the retained
interaction contributes to the decay constant of the
uniform mode. Since the decay constants are treated
as adjustable phenomenological parameters this part
of the interaction is in fact implicitly taken into account
in the theory. .

The physical significance of approximation (b) is the
neglect of the nonlinear interaction between excited
spin waves (with k520) except for a rather trivial part
which leads to a shift of the spin-wave frequencies with
power level. This approximation cannot generally be
justified except as a device to simplify the mathematical
problem. In introducing this approximation one
probably looses a large part of the physically significant
information. It will be shown, however, that the fine
structure is essentially unaffected by this approxi-
mation.

Using these approximations and the fact that

P_yo*=Pro=Py*, (19)
one obtains from Eqs. (14) and (18)
(Qoett—w)tto="h, (20)

where Qes¢ is an effective resonance frequency for the
uniform mode

_ (Q*—w—gi|uo|%)?
Qoots =0+ | 202 2 gi| Pox?
jowr

(19%—w|*—gi|uo| 9)*

S_Zk*—w——gk]uolz

— 2 | Po|?

40 | Qe —gi? | o] ¥

(21)
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and

Qo=wot+2_k Jor| x| >+ine. (21a)

It will be recognized that in the limit as |#o]— 0 the -

last term on the right of Eq. (21) reduces to the in-
homogeneity contribution to the complex resonance
frequency that has been discussed previously.!

Equation (21) shows that one of the important
consequences of the excitation of the uniform mode
may be described as a reduction of the loss parameter
of the spin waves. To make this more apparent it is
convenient to redefine the complex spin-wave fre-
quencies as

Q= art+i, (22)

where
Or=wet+ 2k Jrr | a2 (22a)
= (md—gi*l uo| )2 (22b)

With this convention the denominators in Eq. (21) are
proportional to |&;—w|™* and |(r—w| 2, respectively.

The physical reason for the reduction of the damping
constants 7 with increasing power level, resides in the
time-varying coupling between spin-wave pairs (k and
—k) which arises from the large excitation of the
uniform mode. This coupling transfers energy from the
uniform modes to the spin waves. It has been shown by
Suhl® that it leads to unstable growth of certain spin
waves if the amplitude of the uniform mode exceeds a
threshold value related to ‘the low power damping
constants of the potentially unstable modes. The
threshold is reached as the smallest of the effective
damping constants given by Eq. (22b) approaches zero.
It was pointed out in the introduction that at low power
levels the separation of adjacent spin-wave modes is
much smaller than the inverse of their relaxation times.
The spin-wave spectrum is, therefore, quasi-continuous
and no fine structure would occur. It is very important
in the present context that at high power levels the
damping constants of z directed spin waves are reduced
to a value smaller than their frequency separation.

In order to evaluate the sums in Eq. (21) we note
that the functions |&;—w|~* and |{(;—w|~2 have sharp
peaks at the position @,—w=0. It is easily shown that
these functions approach § functions in the limit of
vanishing damping constant.

(23)
1
- —5(&)15—0.))
lﬂk—w!4 Zﬁk3
Similarly
(Bk——co

— —— (@p—w), (24)

Iﬂk—w l 4 N

where &’ is the derivative of the é function.
In the usual resonance experiments at high signal
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power the dc field is adjusted for resonance at each
power level. The real part of the nonlinear contribution
to Quest is, therefore, irrelevant as far as the magnitude
of the absorption is concerned since it is compensated
by a change in the dc magnetic field. The imaginary
part of Qs is, according to Eqgs. (21) and (21a), (23),
and (24),

2,

L}

k
ImQoete=mn0~+ | 2t0|* X | Pox|> S(@r—w)
k0

7

+7I’l%o]2§0 lPOkPg?n—k(S/(J)k_w)
Nk
4 3 | Pold(@—a). (25)

k%0 7

The sums over % in Eq. (25) will later be evaluated as
sums of integrals, where each integral contains the
contribution of a layer of spin waves whose wave
numbers have the same 2z component.

If the amplitude of the uniform mode is very small
the third sum on the right of Eq. (25) is much larger
than the first and second. The third sum in fact reduces
to the well-known inhomogeneity contribution to the
line width in the limit of zero excitation (when |u,|— 0
and 7x — ). If one is interested in the range of fairly
low signal powers it is convenient to expand the right-
hand side of Eq. (25) in powers of |#o]2 The third sum
contributes to the constant term of this expansion and
only the second sum contributes to the linear term. It
can easily be shown from this that in the range of fairly
low signal powers the susceptibility should vary linearly
with the square of the rf magnetic field.”

In the present context, the extreme nonlinear range
is of particular interest. Under these conditions |u,]?
is very close to the minimum possible value of 7;/gx.
Hence #x<Kn for some spin waves and the first sum in
Eq. (25) may be expected to outweigh the second and
third sum. We shall therefore not consider the last two
sums in detail. Their contribution to the line width,
however, as far as it is independent of the power level,
is, of course, taken into account.

The ‘coupling constants g are largest for z-directed
spin waves. The region corresponding to nearly 2z-
directed spin waves therefore contributes most strongly
to the first sum of Eq. (25). It is thus permissible in
the evaluation of this sum to use approximate ex-
pressions valid in this region for the dependence of the
spin-wave frequencies and the coupling constants on
the wave number vector. It was mentioned before that
the frequency separation of adjacent modes, whose
wave number vectors have the same z component, is
much smaller than the frequency separation of adjacent
modes, whose wave number vectors have different z
components. It is, therefore, reasonable to evaluate the
sum in Eq. (25) by integration over layers corresponding
to fixed values of %, and summation of these integrals.
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This calculation is described in the Appendix. For
practical purposes the summation of the integrals
representing the contributions of individual layers can
in part be approximated by an integral. Only the first
few and largest terms in this sum must be added
separately. In this way one obtains for the effective
damping constant (i.e., the imaginary part of the
complex resonance frequency)

ImQoets= o[ 1-+cF (Us) .

Here 7o is the damping constant of the uniform mode
at low power levels. It contains a contribution arising
from spin-lattice relaxation (no) and a contribution
arising from the inhomogeneity interaction. ¢ is a
dimensionless constant which is calculated as

¢= (4m?| Por|2/3waN 1730) (L/N)?,

(26)

(27)

where X\ is the wavelength of the unstable spin waves
and Po, the matrix element of the inhomogeneity
interaction, which connects the uniform mode and the
unstable (z-directed) spin waves. It should be noticed
that ¢ is independent of the volume since |Po:|? is
proportional to L3 (see reference 10).

The function F(U,) describes the dependence of the
effective loss parameter on the amplitude of the uniform
mode. It is convenient to express it in terms of a reduced
amplitude U, which approaches unity (or values slightly
in excess of unity) at high power levels.

Uo= [uoi (wM/an)%‘

Here the damping parameter 7, relates to the unstable
spin waves. The function F(U,) has been calculated
explicitly for the two cases in which the surface of
constant frequency e or b in Fig. 1 either intersects a
layer in the immediate vicinity of the z axis or just
barely misses it. Using approximations described in the
Appendix one obtains

(28)

F(Uo)=Fy(Uy) 16
Y - (—pru e
sin'[(1—8)U*]

, (29)
U

if the first intersection is far away from the z axis.
Similarly

F(Ug)=Fy(Uog)=F(Uy)+

4

P (30)
(1-Ud?
if the first intersection is very close to the z axis. Here
Ny A
=3 —.
Ni+3 L

8 (31)

Since the effective spin-wave frequencies ; increase
with increasing power level the two limiting cases
characterized by Egs. (29) and (30) are realized
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alternately. For instance, the first intersection might
occur far away from the z axis at low power levels.
Under those conditions Eq. (29) is applicable. As the
power level is raised the first intersection moves towards
the z axis until finally Eq. (30) becomes applicable. If
the power level is raised further, the surface of constant
frequency will cease to intersect the layer, which
previously contained the first intersection. Thus the
function F(U,) changes abruptly from F, to Fy. It is
obvious that a series of such transitions will occur as
the power level is raised.

Consider now the circular susceptibility as a function
of the power level. Its negative imaginary part at
resonance (where the real part of Ques—w vanishes) is

X"'=M|uo|/h. (32)

By introducing the susceptibility appropriate for low
power levels

Xy =y M/%, (33)

and the reduced amplitude of the uniform mode [Eq.
(28)7, Eq. (32) may also be expressed as

x" 7o f 200}
Xo" vh\wy
From Eq. (26), on the other hand,
X/I 1
= (35)

X¢' 1+cF(U)

By elimination of U, between the last two equations
one obtains the susceptibility as a function of the rf
field strength.

Following Suhl® we shall discuss the solution of Egs.
(34) and (35) by a graphical method. If X”/X," is
plotted as a function of Uy, the first equation is repre-
sented by a set of straight lines through the origin,
whose slopes are inversely proportional to the rf field
strength. The second equation, on the other hand, is
represented by a curve with a horizontal tangent at
U1, which intersects the abscissa in the vicinity of
Uo=1. Figure 2 shows this construction. The two
dashed, curved lines correspond to the two limiting
cases in which the surface of constant frequency (a or
b in Fig. 1) either intersects a layer in the immediate
vicinity of the k., axis or just barely misses it. The
actual curve representing [14-cF(Uyp) T must lie
between these limits. It is represented by the full
zigzag line in Fig. 2. This curve has not been calculated
in detail. The separation of subsequent kinks, however,
will be discussed below. From Fig. 2 it is obvious that
the susceptibility should be approximately constant at
low power levels. It will then decrease and finally drop
off as 1/k at very high powers, where U, is approxi-
mately constant. Superimposed on this general decrease
there will be a fine structure which arises from the
discrete nature of the spin-wave spectrum.
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F16. 2. Graphical solution of Egs. (34) and (35). The dashed
curved lines represent the two limiting cases in which the surface
of constant frequency either intersects a layer of spin-wave modes
in the immediate vicinity of the %, axis or just barely misses it.
These curves are calculated from Egs. (35), (29), and (30) using
¢=1, =0.1. Under the usual experimental conditions both
constants are appreciably smaller. The fine structure is then less
conspicuous.

We shall now calculate the separation of subsequent
kinks. In this connection it is important to remember
that the resonance frequencies of @l spin waves in-
cluding the uniform mode are changed with increasing
excitation. In the conventional experiments the change
in the resonance frequency of the uniform mode is
compensated by a change of the dc magnetic field. One
thus has to calculate the shift in the spin-wave fre-
quencies subject to the side condition that the effective
frequency of the uniform mode is constant.

In this calculation we shall neglect the frequency
shift produced by the real parts of the two sums in Eq.
(21). This appears to be a good approximation if the
inhomogeneity interaction is not too large. Thus, the
effective resonance frequencies of the uniform mode and
of nearly z-directed spin waves are according to Eq.
(22a)

@o=wo+ foo| |2+ jor 2o |22,

k70

Or=wi+ Tro| o |2 Jrrr 2 |22 (36)
k<0

Here we have used the fact that the important spin
waves are confined to a fairly small region of % space
and that the coefficients jor and jir are approximately
constant over this region. If the sample is a spheroid
with the dc field applied along the axis of rotation, we
and wo are both linearly dependent on the dc magnetic
field with the same factor of proportionality. Thus, the
dependence of the effective spin-wave frequency @ on
| 0|2 and 3 | w1 |2 subject to the side condition @e—w=0
is given by

&k | @0 —w=0=const+ (Fro— Foo) | %o |2
— (Jor—gww) 2 || (37)
k0
The frequency separation of adjacent z-directed spin

waves is calculated in the Appendix. For spheroids
magnetized parallel to the axis of rotation this sepa-
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ration is in the range of interest equal to waNN/L,
where L is the length of the sample in the direction of
the dc magnetic field. Between subsequent kinks the
quantity on the right of Eq. (37) has increased by an
amount equivalent to the frequency separation of
adjacent z-directed spin waves. Thus

Jor— Jri
(I%O!Z—i'—“;*“z |%k12)
Jk0— Joo k70 n
w N]_
= const-+—————n. (38)
Jr0— Joo L
Here the quantity on the left should be taken at the
nth kink. Using the coefficients given in Eq. (11), Eq.
(38) may also be written as

A
(|o|2—= (3—Ny) X |ur]? n=const+2N—n. (39)
. k0 L

A comparison with experimental data has indicated
that the second term in the parenthesis is usually much
smaller than the first term as long as the power level
is not too high.

In order to test Eq. (39) quantitatively one has to
infer |uo|% and > <o|ux|? from the experimentally
accessible quantities such as x”, &, and M. |uo| is
easily obtained from Eq. (32), but the determination
of Y u=o|ur|? is not as straightforward. For a rough
test of the theory it is sufficient to plot the values of
|]% at the various kinks versus the order #. These
points should fall on a straight line. For each material
the slope of this line should be inversely proportional
to the diameter of the sample. It should be noticed
that it is immaterial which kink is assigned the index
n=0.

For a more sophisticated comparison between theory
and experiment which extends to fairly high power
levels the second term in the parenthesis of Eq. (39)
must be taken into account. Thus one has to infer
2ow=o|ur|? from the experimentally accessible quan-
tities. This can be achieved if one uses the fact that
under stationary conditions the dissipated power
equals the power absorbed. One can show from the
general equations of motion that under stationary
conditions

Zk nkluk]2='y Im(huo*)

The validity of this relation is not limited to the case
in which the Hamiltonian has the particular form given
under Eq. (8). It is valid as long as the nonlinearities
do not generate frequencies different from the signal
frequency.

The left-hand side of Eq. (40) can now be split up
into two contributions. One arises from the uniform
mode and from spin waves excited through their
inhomogeneity interaction with the uniform mode.
The other part arises from spin waves excited through
the nonlinearity. At resonance (where x is purely

(40)
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imaginary), one then obtains

e 2kl ue|? Xo'!
=—.

(41)
Mo |uol? X

Here the % summation extends only over those spin
waves which are excited through the nonlinear terms
in the equations of motion, and it has been assumed
that the damping constant 7, is essentially the same
for all these modes.

Using Eq. (41) one can obviously infer Y- |u|? from
experimentally accessible quantities if the damping
constant 7; is known. The damping constant in turn
can be obtained from Suhl’s theory and measurements
of the onset of saturation effects. At the present time,
the correct interpretation of such experiments is not
completely settled because the inhomogeneity inter-
action, which was neglected in previous calculations,
apparently plays a rather important role.? For the
purposes of applying the correction in Eq. (39) it is
probably justified to assume that 5; equals %,.

IV. DISCUSSION

In this section the validity of various approximations
introduced in the course of the paper will be reviewed.
Finally, the physical information obtainable from an
interpretation of experimental data in terms of the
present theory will be discussed.

The unqualified use of periodic boundary conditions
can be very misleading in the present context. Since
the discrete nature of the spin-wave spectrum plays a
major role, it is obviously very desirable to consider the
exact normal modes. Mathematical difficulties have so
far rendered this approach impractical. In the present
paper the periodic boundary conditions are not used
indiscriminately. In determining the frequency sepa-
ration of adjacent z-directed spin waves it was assumed
that these modes are standing waves containing an
integer number of half-wavelengths over the thickness
of the sample. This appears to be very reasonable
although slight modifications may be expected if the
exact physical boundary conditions are taken into
account.

In Eq. (25) the last two sums were not considered
in detail. It is clear that these sums will modify the
function F(Uo) of Eq. (26) which describes the de-
pendence of the effective damping constant on the
excitation of the uniform mode. It is equally clear,
however, that the location of the kinks if expressed in
terms of Eq. (39) is not affected by the inclusion of the
two neglected sums. This approximation is, therefore,
well justified in the present context.

Similar arguments apply to the approximations
involved in replacing px by Pro and §i by gi. These
approximations also modify the decline of the absorp-

12 H. Suhl, J. Appl. Phys. (to be published).
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tion with increasing power level, but do not affect the
fine structure.

In Sec. III the Hamiltonian (8) was simplified by
restricting the term representlng scattering to the
lowest order (bilinear) in the spin-wave amplitudes.
This approximation probably breaks down at very
high power. levels. The interpretation of the fine
structure, however, is not affected by this approxi-
mation.

An interpretation of experimental results in terms
of the present theory should yield information about
the strength of the exchange coupling. With the help
of Eq. (39) one can obtain the ratio of the wavelength
of the unstable spin waves to the diameter of the
sample. The exchange field occurring in Eq. (9) can
then be inferred from the relation

Hex(2ma/N)?=4rM N, (42)

143 ’7

where is the lattice constant.

The exchange field obtained in this way is propor-
tional to the curvature of the spin-wave band in the
region of small wave numbers. The same curvature
determines also the magnetic contribution to the
specific heat at low temperatures and the temperature
dependence of the saturation magnetization at low
temperatures. The exchange field of Eq. (42) is also
related to the Curie temperature and various other
magnetic properties, but those relations are not quite
as direct. A comparison between the values of the
exchange field obtained by the different methods
should be very interesting. Experimental evidence in
support of the present theory is described by Schlémann
and Green.!
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APPENDIX. CALCULATION OF THE EFFECTIVE
DAMPING CONSTANT

Let k; be the transverse component of the wave
number vector. (k, is perpendicular to the z axis.) The
spin-wave frequencies depend only on %, and k.= | k|.
One easily obtains from Eq. (9) for k2<k.?

wr=7{H~+Hex(ak.)?*+[ Hex(ak.)?*+ 27w M] (k,/kz)z} . (A1)

If we characterize the important layers by an index #
(=0,1,2---) in the way indicated in Fig. 1 the de-
pendence of the spin-wave frequencies on k. in each
layer is given by

wp ™ =y[H+Hex(ak: )" J+ou(Ni+3) (k/k.P). (A2)

1B E. Schlomann and J. J. Green, Phys. Rev. Letters 3, 129
(1959).
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In the second term on the right we have used the fact
that yHex(ak.)?*=wy N, for the important spin waves,
and %, has been replaced by k.. Similarly the
coupling constant g for nearly z-directed spin waves is
according to Eq. (10),

gr= (wn/2)[1—5 (ke/k:©)*].

The summation in Eq. (25) will now be carried out
by means of an integration over k; and subsequent
summation over the layer index #. The summation
sign in Eq. (25) can be replaced by

z-25(,) [z (5) [ a0

The factor 2 arises from the fact that two directions of
propagation must be considered.

It is reasonable to expect that the damping constant
7% and the square of the matrix element | Poz|? do not
vary appreciably over the range of % values which
contributes most strongly to the sum under con-
sideration. The factor in front of the § function in this
sum is therefore proportional to

e (D
{1=[= 3/ BOY U

(A3)

f(&)

Here we have used Egs. (22b), (A3), and (28) and Uo
is the reduced amplitude of the uniform mode. The
contributions of individual layers to the first sum of
Eq. (25) are now according to Eq. (A2) proportional to

(i)2 f Ak adly f (k)8 (1™ —w)

=Z;<I\Z—+%)(§)2 F(k™).  (A6)

Here %, is the solution of wx—w=0 in the nth layer,
and A\=2m/k, @ is the wavelength of the unstable spin
waves. The effective damping constant of the uniform
mode thus becomes

ImQoess=70+CU¢* > f(kt(”)),

22| Pox|? /L \?
o Il 1y

Wy (N 1“"%) A
The significance of 7o was described before in connection

with Eq. (26).

Before the remaining summation over # can be
carried out it is necessary to determine the value of
k™ for each layer. We note that for adjacent layers

the z components of the propagation vectors differ by
constant amounts inversely proportional to the di-

(A7)
where

(A8)
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ameter of the sample. In this connection the boundary
conditions are quite important. Unfortunately it is very
difficult to determine the correct normal modes, which
satisfy the physical boundary conditions. Mercereau
and Feynman“ and Walker!® have discussed this
problem for the limiting case, in which the wavelength
is very large, so that exchange effects can be neglected.
Because of this approximation their analysis cannot be
applied in the present case without major modification.
One, therefore, has to rely on the use of fictitious
boundary conditions introduced for the sake of their
mathematical convenience. If periodic boundary con-
ditions are imposed, the components of the permissible
wave number vectors are integer multiples of 2x/L.
Another type of boundary condition which can be
discussed without difficulty, consists in requiring the
components of the rf magnetization to vanish along the
surface of a cube (or more generally along the surface
of a rectangular volume). In the latter case the com-
ponents of the permissible wave number vectors are
integer multiples of /L. In the present paper we have
used periodic boundary conditions. The calculation
can be readily adapted, however, to the case of the
second kind of (equally arbitrary) boundary condition.
The only changes required consist of extending the k
summations over the new set of permissible wave
number vectors and imposing certain side conditions
(like #_p=—us) on the dynamic variables. The final
results are essentially unchanged except for a change in
the frequency separation of adjacent z-directed spin
waves. Since the correct normal modes have the
character of standing waves their frequency separation
should be very close to that obtained with the second
kind of boundary condition discussed above. In this
case the values of k. associated with adjacent layers
differ by «/L

kW —k, " D=g/L (A9)
Hence

(B, M)2— (kD)2 (b, ™)\ /L. (A10)

Finally from Eqs. (A2) and (A10) for values of # which
are not too large

3Lk /B0 Pmart-Bn, (A1)

where

ﬂ=%[N1/(N1+%)])\/L, (A12)

and
0<a<B.

So far we have neglected the fact that the effective
spin-wave frequencies increase with increasing ex-
citation. Since the frequency shift is approximately the
same for all the important spin waves it can formally
be taken into account by assuming a to be dependent

( 1 Tj E. Mercereau and R. P. Feynman, Phys. Rev. 104, 63
1956).
15 L. R. Walker, Phys. Rev. 105, 390 (1957).
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on the power level. With increasing power level a
decreases continuously to zero, jumps abruptly to g,
decreases again continuously to zero and so on. The
effective damping constant considered as a function of
the amplitude of the uniform mode U, thus varies
between two limiting curves which correspond to the
cases in which either a=0 or a=4.

Consider now the sum of the integrals f(k,) as a
function of «

S(e)=22n f (k™).

According to Eq. (AS5) and (Al1l) the sums corre-
sponding to a=0 and a=p are almost identical, with
S(0) having one additional term.

S)=S@B)+1/(1-U"*

In the evaluation of S(8) we shall, for simplicity,
approximate the summation by an integration, even
though this is a rather poor approximation for small

(A13)

(A14)
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values of #. Thus

w1
~ dn .
5® f [1— (1—Bn) U]

The upper integration limit 7, is not very important
since for Up=1 the major contribution to the integral
comes from small values of #. For simplicity we will
take #9=1/8. One then obtains by standard integration
techniques

(A15)

1 1-8
BUA[1—(1-8)2U "]t
sin7![(1—-B)U¢*]
PR (Ate)
Ug?

Equation (26) is now obtained from Eqs. (A7), (AS8),
(A13), (A14), and (A16).

S@)=




