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Expressions are developed giving the correlation factor for an impurity diffusing in an otherwise pure
lattice. These expressions will apply in general since, in the derivation, there is no requirement that there
must be a large binding energy tending to create vacancy-impurity complexes. When this requirement is
climinated, accurate expressions can be obtained -even for the nonclose-packed lattices. Both vacancy and
interstitialcy mechanisms are treated. A matrix method developed by LeClaire and Lidiard for the face-
centered cubic lattice is applied to various lattices to obtain approximate expressions for the correlation
factor. Then a correction is applied giving the effect of those dissociating vacancies (or interstitialcies) which
return to the impurity. It is found that the effect is the same as if only a fraction of the dissociative jumps
actually occurred. If it is assumed that the effect of an impurity is quite localized, the probability of return
can be calculated in a very straightforward manner. It is shown that the effect of returning vacancies (or
interstitialcies) can be quite important. The resulting expressions are used to estimate the correlation factor

in nondilute alloys.

INTRODUCTION

HE random-walk treatment of diffusion in solids
assumes that diffusion takes place by each atom
making a succession of elementary atom jumps from
site to site throughout the lattice. This process is
characterized by a jump frequency » and a jump dis-
tance @, with the resulting expression for the diffusion

coefficient D being
D=%a%. (1)

When the directions of successive atom jumps are
related to each other, the usual random-walk treatment
must be modified to include the correlation between suc-
cessive jumps.}'=® This can be done by multiplying the
jump frequency » by a correlation factor f, with »f being
the “effective” jump frequency. In some cases, no
correlation between successive jumps will occur; for
instance, ordinarily there will be none when diffusion
occurs by an interstitial mechanism. However, when
diffusion occurs by a vacancy or interstitialcy mecha-
nism, a correlation will occur, thus making it quite a
common phenomenon. Conventional diffusion experi-
ments measure only the “effective” jump frequency »f.

Thus, in cases where 71, a measurement of the diffu- -

sion coefficient will not lead directly to a determination
of the jump frequency ».

This difference between the actual jump frequency »
and the effective jump frequency »f can be quite im-
portant. For example, it has been used to explain why
(1) the experimentally observed isotope effect for diffu-
sion does not always show the M—* dependence predicted
by rate theory,* and (2) the Einstein relation, ¢/D*
=Ne?/kT, relating the ionic conductivity, ¢, in ionic
crystals to the self-diffusion coefficient, D*, quite often

1J. Bardeen and C. Herring, Atom Movements (American Society
for Metals, Cleveland, 1951), p. 87; Imperfections in Nearly
Perfect Crystals (John Wiley & Sons, Inc., New York, 1952), p.
261.

2 A. D. LeClaire and A. B. Lidiard, Phil. Mag. 1, 518 (1956).

3 I§7 Compaan and Y. Haven, Discussions Faraday Soc. 23, 105
(1957).

4 A. H. Schoen, Phys. Rev. Letters 1, 138 (1958).

is not confirmed experimentally.5—8 Then, from experi-
ments such as these, one can determine a value for the
correlation factor. Since the magnitude of the correla-
tion factor depends on the type of diffusion mechanism,
such measurements can help determine the diffusion
mechanism in these crystals.®° In case (2) above, when
diffusion occurs by an interstitialcy mechanism, an
additional correction must be made, since the electric
charge moves twice as far during a jump as does each
individual atom. This is not a correlation effect as
defined above; however, it does allow a further differ-
entiation between the interstitialcy and vacancy
mechanisms.

The temperature dependence of the correlation factor
can appreciably affect the measured activation energy
for diffusion.”! Also, because of correlation, the depend-
ence of the diffusion coefficient on chemical composition
may be quite different from that of the jump frequency.
These last two effects will be especially large for fast
diffusing impurities.

The correlation factor is related to {cosf)a, the aver-
age cosine of the angle between two successive atom

jumps.? For a vacancy mechanism, where each atom

jump is correlated to the immediately preceding jump,
/=(01+06)/(1-C), 2
where C=({(cosf)s. With an interstitialcy mechanism,

5 W. D. Compton, Phys. Rev. 101, 1208 (1956) ; W. D. Compton
and R. J. Maurer, J. Phys. Chem. Solids 1, 191 (1956).

8 R. J. Friauf, Phys. Rev. 105, 843 (1957).

( 7A. S. Miller and R. J. Maurer, J. Phys. Chem. Solids 4, 196
1958). .

8 K. Compaan and Y. Haven, Proceedings of the Third Inter-
national Conference on the Reactivity of Solids, Madrid, April
1956 (unpublished), p. 255; Y. Haven, Report of the Conference on
Defects in Crystalline Solids, Bristol, 1954 (The Physical Society,
London, 1955), p. 261.

9 C. W. McCombie and A. B. Lidiard, Phys. Rev. 101, 1210
(1956).

1 A, B. Lidiard, Proceedings of the Third International Confer-
ence on the Reactivity of Solids, Madrid, April 1956 (un-
published), p. 481; Handbuch der Physik (Springer-Verlag, Berlin,
1957), Vol. 20, p. 324; Suppl. Nuovo cimento 7, 620 (1958).

11 J_ R. Manning, Phys. Rev. Letters 1, 365 (1958).
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TasLE I. Values of (cosd)a and correlation factor f for self-diffusion
(after Compaan and Haven®).

{cosb)av f
Vacancy mechanism
Face-centered cubic lattice —0.12268 0.78146
Diamond lattice —1 1
Body-centered cubic lattice —0.15793 0.72722
Simple cubic lattice —0.20984 0.65311

Interstitialcy mechanism (with collinear jumps)
Silver chloride lattice —1
Face-centered cubic lattice —

o
ol

a See reference 14.

there are two kinds of atom jumps. In one, the atom
jumps from a normal lattice site (%) to an interstitial
site (7), and, in the other, it jumps from an interstitial
site to a normal site. Each #» — ¢ jump is correlated to
the immediately preceding ¢ — # jump. However, the
direction of the 2 — » jumps are completely independent
of any preceding atom jump. Thus, only half of the
atom jumps are correlated to previous jumps, and

f=1+¢, 3)

where the prime indicates that the average is taken over
pairs of consecutive 7z — % and % — ¢ jumps only. For
both the vacancy and interstitialcy mechanisms, {cosf)a,
is negative, so, in both cases, f will be less than unity.

In a crystal lattice or sublattice containing just one
type of atom, the value of {cosf)s will depend only on
the crystal geometry and the diffusion mechanism.
These values can in principle be calculated mathe-
matically to as great a precision as desired. Compaan
and Haven,® ! using an electrical analog, have de-
termined (cosf)s for both vacancy and interstitialcy
mechanisms in various types of lattices. Some of these
values are listed in Table I. A more extensive list may be
found in reference 14.

CORRELATION FACTOR FOR AN IMPURITY ATOM
DIFFUSING BY A VACANCY MECHANISM

Face-Centered Cubic Lattice
Lidiard-LeClaire Expression

Lidiard and LeClaire,>*5 developed an expression for
C for an impurity atom which is associated with a
neighboring vacancy and is diffusing in an otherwise
pure face-centered cubic lattice. They defined three
different jump frequencies for the associated vacancy:
(1) w; is the frequency of exchange with the impurity,
(2) w, is the frequency of exchange with any one of the
four solvent atoms that are common nearest neighbors

12 K) Compaan and Y. Haven, Trans. Faraday Soc. 52, 786
(1956).

1B K. Compaan and Y. Haven, La Diffusion dans les Metaux
(Bibliotheque Technique Philips, Eindhoven, 1957), p. 19.
( 14 K. Compaan and Y. Haven, Trans. Faraday Soc. 54, 1498
1958).

16 A. B. Lidiard, Phil. Mag. 46, 1218 (1955).
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of both the vacancy and impurity, and (3) & is the fre-
quency of exchange with any one of the seven solvent
atoms that are nearest neighbors of the vacancy but not
of the impurity. It was assumed that all vacancies that
made k; jumps were completely dissociated from the
impurity and, if they returned to the impurity at all,
would return from purely random directions. The re-
sulting expression for C={cosf)s was

= —wy/ (o 2w+ Tky). (4)

The assumption that all atoms that make %; jumps
are lost and do not return causes very little error if % is
very small compared to w; and w,, but the error becomes
larger as k; increases.

Contribution from Returning Vacancies

In the present paper, we will calculate the contribu-
tion to the correlation factor from the vacancies that
return after making &; jumps. This will allow considera-
tion of those cases where the impurity is #ot strongly
associated with any vacancy.

The general method used will be first to calculate an
approximate expression, such as Eq. (4), in which all
dissociating vacancies are assumed lost and then modify
this equation to correct for the effect of returning
vacancies. For the face-centered cubic lattice, the neces-
sary modification is the replacement of 7k;, which is the
frequency with which a vacancy makes a dissociative
jump, by 7Fk; where F is the fraction of dissociating
vacancies that effectively do not return. Thus, 7Fk; is
the “effective” frequency of dissociative jumps. A
similar modification is necessary for other lattices.

A vacancy that has made a k; jump can return to any
one of the twelve lattice positions on the first coordina-
tion shell (nearest neighbors of the impurity). These
twelve sites can be divided into five groups, each lying
on a different (110) lattice plane. (See Fig. 1.) These
groups will be (a) the site from which the k; jump
originated, (b) the four sites that are nearest neighbors

. of both site () and the impurity, (¢) the two sites on

the same plane as the impurity, (d) the four nearest
neighbor sites on the next parallel plane, and (e) the last
nearest neighbor, which will be opposite site (a). We can
let the probability that a vacancy which has made a #;
jump from site (@) will return to the first coordination
shell by arriving at a given site (a), (8), (¢), (d), or (e) be
A4, B, C, D, and E, respectively, and let K; be the
probability that the vacancy, when it jumps from site
(@), will make a dissociative jump. For a face-centered
cubic lattice, Ky=7k1/ (wo+4w1+7k;). Then, the proba-
bility that a vacancy on site (@) will make a dissociative
jump and subsequently return to a site (a), (b), (¢), (d),
or (¢) will be K14, K1B, K:C, K1D, and KF, respec-
tively; and the extra vacancy concentration from the
returning vacancies will be given by K,(4,4B,2C4D,E),
where the coefficients 1, 4, 2, 4, and 1 represent the
number of equivalent sites of each type.
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In order to calculate the contribution that the re-
turning vacancies make to (cosf)u, we must multiply the
extra vacancy concentration by g cosf, where g is a
constant, giving the probability that the vacancy on
its next jump will exchange with the impurity (equal to
wo/[wo4-4w1-+7ky ] for the twelve nearest neighbor sites),
and cosf for sites (a) to (e) is given by (—1, —3,0,3,1).
The contribution to {cosf)s from the first jump the va-
cancy makes after returning to the first coordination shell
is obviously the same for the actual K1(4,4B,2C,4D,E)
distribution as it would be for a K;(4+4+2B—2D—E,
0, 0, 0, 0) distribution. The detailed analysis which
follows shows that this is true for all succeeding jumps
also.

We can let an, Br, ¥, 0, and e, be the probabilities
that a vacancy which starts at site (@) will be at a given
site (@), (b), (¢), (d), or (e), respectively, after # jumps,
regardless of whether the vacancy makes a dissociative
jump or not. These quantities, when summed over »
from zero to infinity, give the total probability that the
vacancy will visit these sites (multiple visits being
counted separately). We can let a=2_ an, 8= B4,
Y= Yn, 0= 0, and €=, €,. Then a vacancy which
starts at site (¢) will have probabilities «, 3, v, §, and ¢
of visiting a site (a) to (e), respectively; one which
starts at a (b) site will have probabilities 8, a+8+v+3,
B+38, B+v+d+e and 6 of visiting a site (a) to (e),
respectively; one that starts at a (¢) site will have
probabilities v, 28426, a-+¢, 28+426, and v; one that
starts at a (d) site 8, B+vy-+o6-+e¢, B+6, a+B+v+9§, and
B; and one that starts at site (e) ¢, 8, v, 8, and a. From
these probabilities and the values of cosf, we find
that the contribution to {cosf)y from the actual
K.(4,4B,2CAD,E) distribution is equal to —gK;(a+28
—26—¢)(A+2B—2D—E). This exactly equals the
contribution that would be obtained from the equivalent
K(4+4+2B—2D—E, 0, 0, 0, 0) distribution.

The equivalent distribution above contains a vacancy
concentration only at site (a), with no vacancies being
at sites (b), (¢), (d), or (e). However, the effect that this
equivalent distribution has on {cosf)s is exactly the
same as the effect from the actual distribution for re-
turning vacancies. Thus, one can say that a certain

fraction, F'=A+2B—2D—E, of the vacancies that
make a k; (dissociative) jump from site (@) will “effec-
tively”” return to this site; and, hence, these vacancies
can be treated as if they did not jump at all. A vacancy
can make a k; jump from any of the twelve sites neigh-
boring on the impurity, but, in each case, the above
discussion applies, and the effect on (cosf)s is the same
as if only a fraction F(=1—F") of the &, jumps actually
occurred.

A similar result can also be obtained for other lattices
which satisfy the necessary symmetry conditions. In
lattices where the only possible impurity jumps are
those with cosf equal to 41, 0, or —1, the necessary
symmetry will always be present. Any lack of symmetry
in the jump probabilities merely will make the calcula-
tion of the factor F more difficult. For other lattices, the
symmetry conditions will be satisfied if (1) the vacancy
distribution spreads out symmetrically from the axis
determined by the direction of the original vacancy-
impurity jump (since then the effect of the actual dis-
tribution can be the same as that of a distribution
located entirely on this axis) and (2) the impurity jump
probabilities (g) are symmetric with respect to this axis.
Also, the symmetry conditions could be satisfied if any
lack of symmetry in the vacancy distribution were
cancelled by an opposite lack of symmetry in g. How-
ever, this situation will occur only rarely. Both condi-
tions (1) and (2) above will be satisfied if each impurity
jump vector lies along an axis of two- or threefold sym-
metry. This condition will be satisfied in many crystals;
for example, in those with cubic or simple hexagonal
lattices. However, in other crystals, such as those with
hexagonal-close-packed lattices (especially if c¢/a
#1.633), the symmetry conditions will not be fully
satisfied.

In a face-centered cubic lattice, the actual frequency
of dissociative jumps is given by 7k:. However, since not
all vacancies that make k; jumps are lost, the coefficient
of 21 in Eq. (4) should be multiplied by F(=1—F’), the
fraction of vacancies making such jumps that “effec-
tively” do not return. Thus,
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Fic. 2. Diamond lattice (schematic diagram). Nearest neighbors
of the impurity X are designated by 1¢ and 1b. Sites designated 2,
3, and 4 are second, third, and fourth nearest neighbors of the
impurity. The arrows with ws, w1, w:, and %, denote the vacancy
jump frequencies.

It may be noted that only the coefficient of %1, and not
the coefficients of w; or ws, need be modified in order to
include the correction for returning vacancies.

The determination of the quantity F can be carried
out by a Bardeen-Herring calculation,! following the
diffusion of the vacancy step by step, eliminating all
vacancies that arrive back at nearest neighbor positions,
and calculating the probabilities 4, B, D, and E by
summing over # from one to infinity, where # is the
number of vacancy jumps. In general, the results will
depend on the vacancy jump frequencies at second
nearest neighbor positions and farther from the im-
purity, and the calculation will be very laborious. How-
ever, if the region in the crystal that is disturbed by the
impurity atom is quite localized, the jump frequencies
for a vacancy at a second nearest neighbor position or
farther from the impurity will be very little affected by
the presence of the impurity. Then, so long as the
vacancy is outside of the first coordination shell, it can
be treated as if it were diffusing in a pure lattice. In this
case, the problem becomes quite simple, since we can
make use of the results obtained by Compaan and
Haven for diffusion in a pure lattice.

From Table I, we see that the value of C for self-
diffusion by a vacancy mechanism in a face-centered
cubic lattice is —0.12268. For self-diffusion, wy=1w;=£%;,
so from Eq. (5),

0.12268=1/(3+7F), (6)

and
F=0.7359.

When the assumption above is made, this value of F
also applies to impurity diffusion, so

C= —"ZE)z/ (w2+2w1+5151k1), (7)
and, from Eq. (2), the correlation factor is given by
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Diamond Lattice

The method described above can also be used to de-
termine the correlation factor for diffusion of an im-
purity in a diamond lattice. Since an approximate
expression analogous to Eq. (4), assuming that all
vacancies that make dissociative jumps are lost, is not
available for the diamond lattice, it will first be neces-
sary to develop one. Then we will make a correction for
those vacancies that return.

In the face-centered cubic lattice, the vacancy can
exchange with a solvent atom without dissociating from
the impurity ; and if the vacancy is tightly bound to the
impurity (giving w>>k1), the approximate expression
should be quite accurate. However, in the diamond
lattice, this is not so. Thus, in this lattice (and other
nonclose-packed lattices), it is essential to consider the
effect of returning vacancies if one desires an accurate
expression.

We can begin by assigning vacancy jump frequencies
(see Fig. 2), letting w, be the frequency of exchange of a
vacancy with a neighboring impurity atom, w; be the
frequency with which a vacancy will jump from a
position as nearest neighbor to an impurity to a next
nearest neighbor position, w,’ be the frequency with
which a vacancy will make a jump from a position as a
next nearest neighbor of an impurity to a nearest
neighbor position (the reverse of a w; jump), and %; be
the frequency with which a vacancy will jump from a
given position in the second coordination shell of the
impurity (next nearest neighbor) to one on the third
coordination shell (third or fourth nearest neighbor). As
a first approximation, we will consider vacancy motion
on only the first and second coordination shells; that is,
on those lattice points that can be reached in one or two
jumps away from the impurity. All vacancies that reach
the third coordination shell (by making k; jumps) will
be considered lost.

An approximate expression for C can then be obtained
by applying a method similar to that used by LeClaire
and Lidiard? for the face-centered cubic lattice. Let us
consider an impurity atom that has just exchanged posi-
tions with a vacancy. Then let p.(s) be the probability
that site s, a nearest neighbor of the impurity site, will
be occupied by the vacancy after the nth succeeding
vacancy jump. If 7(s) is the contribution to {cosf)a by
the next jump of the vacancy from site s (equal to g, the
probability of exchange with the impurity, multiplied
by the appropriate cosf),

C=3 5 2()pn(s). ©)

n=0 all &

By ordering the sites in some suitable manner, the vari-
ous p.(s) coefficients can be written as a column matrix
pa and the 7(s) can be written as a row matrix 7. Be-
cause of lattice symmetries, some elements of these
matrices will always be equal to each other, so both p,
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F16. 3. Body-centered cubic lattice. Nearest neighbors of the impurity X are designated by a, b, ¢, and d. Sites designated 1, 2, 3, 4,
and S are first, second, third, fourth, and fifth nearest neighbors of the impurity. The arrows with ws, w1, w,’, k1, and k. denote the

vacancy jump frequencies,

and 7 can be contracted. Then, each element in the

contracted = matrix will contain an additional factor
giving the number of equivalent sites represented by
that element. In the case of the diamond lattice, the
position occupied by the vacancy immediately after the
impurity-vacancy exchange will correspond to cosf= —1.
The other three positions neighboring on the impurity
will be equivalent, each corresponding to cosf=13. Thus,
the = matrix is given by

T=g(_ 1’ 1);

where g=wy/ (wo+3wy).

A vacancy that begins a random walk at one of the
four positions neighboring on the impurity can return
to this or another such position only after an even num-
ber of jumps. Therefore, we need to calculate $, only
when 7 is even. The probability coefficients p,i2(s) are
related to the p.(s) by a set of linear equations, so, in
matrix notation,

(10)

Dnya=Ppn, (11)
where P is the square matrix,
3 0
P=h[ ] (12)
3

with

0
wl' w1
(o) )
wy'+3k; wat3wy

Vacancy paths that involve an exchange with the
impurity atom have been neglected in calculating P
above, since we are interested only in finding the cosine
of the angle between two successive impurity jumps.

From Egs. (10) and (12),

TP=23hr, (13)
and
7P*= (3k)"*r. (14)
From Egs. (9) and (11),
=T Z Prpo, (15)
n={

where pq is the column matrix {1,0}. Thus,
C=—g(1=3m)7, (16)
C= “72)2/{‘102+[9wlk1/ (W1’+3k1)]} (17)

However, this is only an approximate value since the
effect of the return of dissociating vacancies has been
neglected.

A certain fraction of the vacancies that make k;
jumps will eventually return. As in the face-centered
cubic lattice, the effect of vacancies which have escaped
by making a k; jump from site a (which in the case
considered here will be on the second coordination shell)
returning to one of the twelve lattice sites on this shell
will be the same as if a fraction (1—F) returned to site a.
A returning vacancy cannot reach the first coordination
shell in the diamond lattice without passing through the
second coordination shell. Thus, so long as a vacancy in
the third coordination shell or farther from the impurity
diffuses as if it were in a pure lattice, the probabilities of
return will be the same as for self-diffusion. From
Table I, we find C= —3% for self-diffusion in a diamond
lattice. For self-diffusion, ws=w;=wi'=*k;, so, from
Eq. (17),

3=1/{1+[9F/(1+3F) 1}, (18)
and F=2%,

Thus, for an impurity diffusing by a vacancy mechan-
ism in an otherwise pure diamond lattice, the correlation
factor is given by

f= 3w1k1/[w2 (w1'+ 2k1)+3'101k1] (19)

If ky=wy/, i.e., if the direction of jump of a vacancy
in the second coordination shell is random, we obtain
the very simple expression,

f=w/ (wetwy). (20)

Body-Centered Cubic Lattice

The preceding arguments can be extended to the
body-centered cubic lattice. (See Fig. 3.) As in the
diamond lattice, a vacancy cannot move directly from
one position neighboring on an impurity to another;
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however, unlike the diamond lattice, not all sites on the
second coordination shell are equivalent, since second,
third, and fifth nearest neighbors all lie on this shell.
Hence, the simple treatment used for the diamond
lattice will not be adequate.

We can assign vacancy jump frequencies, letting w,
be the frequency of exchange of a vacancy with a
neighboring impurity atom, w; be the frequency of jump
from one of the nearest neighbor sites to one of the
second nearest neighbor sites, wi’ be the frequency of
jump from a second to a first nearest neighbor site (the
reverse of a w; jump), &, be the frequency of jump from
a nearest neighbor position to one of the third or fifth
nearest neighbor positions, %, be the frequency of jump
from a second to one of the fourth nearest neighbor
positions, and all other jump frequencies be w,, the
vacancy jump frequency in pure solvent.

The first nearest neighbor sites can be divided into
four groups, (a) one site at (111), (b) three sites at
(111), (c) three sites at (111), and (d) one site at (111)

with the corresponding cosines —1, —%, %, 1. Thus,

ng(_l) _1’ 1; 1), (21)

where g=ws/ (wy+3w1+4k,).

As a first approximation, we will consider the motion
of vacancies on the first and second coordination shells
only. Then,

Pn+2=PPn:

Here, P; refers to cases where the first vacancy jump
is a w; jump, while P, refers the cases where it is a %1
jump. Then,

where P=P;+Ps. (22)

36 30
.12 5 4 1
Pi=h 145 2 (23)
0 3 6 3
and
4 3 0 0
1 4 2 0
P2=h2 0 2 4 1)’ (24>
0 0 3 4
with
‘ZU1’ w1
h1= X )
4‘2)2)1,+4k2 W2+3W1+4k1
and
1 k1
hyp=— —,
8 wz—|—3w1+4k1
From Egs. (21) through (24),
T7P= (4h1+5h2)7‘, (25)
and using Eq. (15) with po={1,0,0,0}, we find
— a0,
c (26)

ot 2un+3.375k+ [wiks) (wit- k)]
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The fraction of vacancies that effectively do not re-
turn after making a %, jump will be different from the
fraction that effectively do not return after making one
of the dissociative jumps which can follow a %1 jump.
Also, these fractions will depend on the jump frequencies
w1’ and ks, so they cannot be calculated easily ; however,
they both should be ~0.6.

If we assume w;'=ky=1ws, and consider a vacancy as
being dissociated after making either a %; jump or a w;
jump, we obtain the alternate expression,

C= - WQ/(WQ+3F1W1+4F2k1), (27)

where F, and F are the fraction of vacancies making ;
and % jumps that are effectively lost.

We still cannot solve for Fy and F, in Eq. (27) by the
simple method used for the face-centered cubic and
diamond lattices. However, the vacancy will diffuse as
in a pure lattice until it returns to a nearest neighbor
position, so a calculation by the Bardeen-Herring
method! (or the Compaan-Haven electrical analog
method!?) presents no great difficulties. The step in-
volving elimination of all vacancies that return to a
nearest neighbor position can be neglected if, at the end
of the calculation, a simple correction is made for those
vacancies that return more than once. The fractions F
and F, were calculated by the Bardeen-Herring method.
The contributions from #=<9 were summed exactly,
while those from #>9 were integrated, using the

expression,
[ 6r? (n—l) 3] (29)
« % exp| — —_ )\,
dna*\ n 4n

expanded in inverse powers of #. In this expression, #
is the number of vacancy jumps, ¢ is the jump distance,
and 7 is distance from the origin. The resulting values
were F1=0.783 and F,=0.746, with the error being
limited to the third significant figure.

Even for fairly large values of %, there is a considerable
effect from the inclusion of the quantities (»—1)/# and
(3/4n) in Eq. (28). However, the other higher order
terms that one obtains in the random walk derivation of
Eq. (28) can be neglected.

concentration
of vacancies

©
O

W,
‘4‘17 R—2—

® o)

Fi16. 4. Simple cubic lattice. Nearest neighbors of the impurity X
are designated by a, b, and c. The arrows with ws, w1, and %, denote
the vacancy jump frequencies.
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Fic. 5. Silver chloride lattice. Interstitialcy mechanism with col-
linear jumps. The small black dots denote the possible interstitial
positions. The large black dots denote the Cl ion lattice sites and
the open circles the Ag ion lattice sites. The impurity is marked
with an X. The arrows with w; and w. denote the interstitialcy
jump frequencies.

Quite accurate results can be obtained from the
procedure described above, i.e., summing the contribu-
tions from the smaller values of # and then using Eq.
(28) to integrate over the larger values of #. For com-
parison, the values of {cosf)s for various pure lattices
were calculated by this method, assuming diffusion by
both vacancy and interstitialcy mechanisms. For diffu-
sion by vacancies, the results agreed to four significant
figures with the most recent Compaan-Haven values.
Similar calculations for diffusion by interstitialcies gave
agreement to two or three significant figures. The
probability distribution for a vacancy that has caused a
tracer jump (giving the possible positions of this
vacancy at some later time) will spread out symmetri-
cally from the original tracer position ; while that for an
interstitialcy will not. This makes the calculations for a
vacancy mechanism both easier and more precise than
those for an interstitialcy mechanism.

Simple Cubic Lattice

The treatment for a simple cubic lattice (see Fig. 4)

is quite similar to that for the body-centered cubic. If
w, is the frequency with which a vacancy exchanges
with a neighboring impurity, w; is the frequency with
which a vacancy will jump from a nearest neighbor
position to one of the next nearest neighbor positions, &1
is the frequency from a nearest neighbor position to the
fourth nearest neighbor position, and all other jump
frequencies are the same as in a pure lattice,

C= "“ZUz/ (W2+4F1W1+F2k1). (29)

A Bardeen-Herring calculation shows that F;=0.760
and F»;=0.726, with the error again being limited to the
third significant figure.

CORRELATION FACTOR FOR AN IMPURITY ATOM
DIFFUSING BY AN INTERSTITIALCY
MECHANISM

AgCl Lattice

In AgCl®® and AgBr,%7 it is believed that silver
diffusion occurs at least in part by means of an inter-
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stitialcy mechanism. For the collinear case, where the
interstitial atom and the normal lattice atom that it
displaces both move in the same direction during the
interstitialcy jump, the interstitial positions will lie on a
diamond-like lattice. (See Figs. 5 and 2.) The analysis
for interstitialcy diffusion in an AgCl lattice is very
similar to that for vacancy diffusion in a diamond lattice,
and the same value of {cosf)y is obtained. Finally, if
ki=w/, the correlation factor is given by

f= 272)1/ (‘ZU2+ 2w1) .

This last expression differs from that for vacancy
diffusion in a diamond lattice because the relation be-
tween f and (cosb)s is different. [See Eq. (2) and (3).]

(30)

Face-Centered Cubic Lattice

In a face-centered cubic lattice in which interstitialcy
diffusion occurs by means of collinear jumps, the inter-
stitial positions will lie on a simple cubic lattice. (See
Fig. 6). If w, is the frequency with which an interstitial
atom will jump to a lattice site by pushing a neighboring
impurity from that site, and w; is the corresponding
frequency for a neighboring solvent atom, we obtain

C= —'ZU2/ (‘ZU2+5F‘ZJZ)1), (31)

where F is the fraction of interstitialcies that are
effectively lost after a w; jump. From Table I, C= —0.200
for self-diffusion. Thus, F=0.8; and the correlation
factor fis given by

f= 4’1,01/ (ZUQ+4:W1) .

If we distinguish between the four w; jumps which are
at right angles to the direction of the original impurity
jump, calling these %; jumps, and the one w; jump that
is in the same direction as the original impurity jump,
calling this a k; jump, we obtain

C= —'wz/ (W2+4F1k1+F2k2).

(32)

(33)

From a Bardeen-Herring calculation, it is found that
F1=0.815 and F»=0.740, with the last figure being
estimated.

F16. 6. Face-centered cubic lattice. Interstitialcy mechanism
with collinear jumps. The small black dots denote the possible
interstitial positions. The open circles denote the normal lattice
sites. The impurity is marked with an X. The arrows with ws, %;,
and k2 denote the interstitialcy jump frequencies.
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CORRELATION FACTOR FOR DIFFUSION
IN ALLOYS

If a few simplifying assumptions are made, the pre-
ceding analyses can be extended to the case of nondilute
alloys. For example, let us consider diffusion by a
vacancy mechanism in a face-centered cubic substitu-
tional alloy.

In the nondilute range, there will be a large number
of impurity atoms, so a vacancy should not be bound
strongly to any one of them and also w; should be ap-
proximately equal to k;. Effects from fluctuations in the
local concentration of impurity atoms should average
out, so, on the average, wi=k1=W, where W is the
average jump frequency for a vacancy. In a binary alloy
having N4 atom fraction of A atoms and Np atom
fraction of B atoms,

W=NAwA+NBwB;

where wy and wp are the frequencies with which a
vacancy exchanges with a neighboring 4 or B atom.
Then, from Eq. (8), the correlation factor fs for 4
atoms is given by

Fa=T151W/ 2wa+7.151W),

(34)

(35)

and a similar expression holds for B atoms.

The correlation factor will be a function of chemical
composition, since, in general, both W and w, will de-
pend on N4 and NV g. When only a small amount of the
faster diffusing species is present, the variation with
composition can be quite large,'® since, in this case, a
small change in composition can cause a relatively large
change in . In both dilute! and nondilute!® alloys the
correlation factor can be expected to depend on temper-
ature. This dependence will tend to be greatest when the
faster diffusing species is present in dilute concentration.
In general, because of the w4 dependence, all correlation
effects will be larger for the faster diffusing species.

DISCUSSION

A theory has been developed to predict correlation
effects for impurity diffusion and diffusion in nondilute
alloys'in various crystal lattices. The method is quite
general and can be extended to many lattices not
treated here. For diffusion of an impurity atom in an
otherwise pure lattice, it was assumed that motion of
the vacancy or interstitialcy when it is outside the first
or second coordination shell is the same as in a pure
crystal. This assumption should not introduce any large
error and allows a considerable simplification. In non-
dilute alloys, the assumption that the effect of a tracer
atom is quite localized seems very reasonable. Then, if
it is assumed that fluctuations in local composition will
not greatly affect the average correlation factor, an ex-
pression for the correlation factor can be derived directly
from that for impurity diffusion.

16 J. R. Manning, Phys. Rev. 116, 69 (1959).
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TasLE II. Correlation factors for diffusion by a vacancy mech-
anism in a face-centered cubic alloy. In Column 4, the effect of
returning vacancies is included ; while in Column B, it is not. [See
Egs. (2), (4), and (35).]

Column 4 Column B
F=7151W/ Qw2 +7151W) f=9W/(2ws+9W)

wa/W
0.2 0.947 0.957
1.0 0.781 0.818
5.0 0.417 0.474
25.0 0.125 0.153

In the derivation of these expressions, the probability
of a dissociated vacancy (or interstitialcy) returning to
the impurity was considered. The effect of the returning
vacancy (or interstitialcy) quite often will not be
negligible. Table II shows the effect in the case of
vacancy diffusion in a face-centered cubic nondilute
alloy. :

The face-centered cubic lattice will show the smallest
effect from returning vacancies, since in this lattice it is
possible for the vacancy to exchange with a solvent
atom without dissociating from the impurity. If the
vacancy is tightly bound to the impurity, the approxi-
mate expression [ Eq. (4)] should be quite accurate. In
the other lattices considered, this is not so. In these
cases, if we neglected the possibility that a vacancy
which has dissociated from the impurity by jumping to
anon-nearest neighbor position may return, only the first
term in the Bardeen-Herring series! [see Eq. (9)] would
remain. Then C would equal g, the probability that
after an atom has jumped it will immediately re-
exchange places with the vacancy. This would be a poor
approximation, as may be seen from Table III, which
shows values of the correlation factor, both corrected
and uncorrected for returning vacancies, for an impurity
diffusing in a diamond lattice.

Extending the region in which the vacancy and im-

_purity are considered associated to include next nearest

neighbors [as in Eq. (17)] will appreciably reduce both
the effect from dissociating vacancies and the error from
the assumption that the effect of the impurity is very
localized. However, this will usually make the treatment
much more complicated. For example, compare Egs.
(26) and (27) in the body-centered cubic case.

Even in the face-centered cubic lattice, the effect of
returning vacancies can be quite large. Let us consider
an impurity atom B diffusing by a vacancy mechanism
in a face-centered cubic lattice of 4 atoms. The diffusion
coefficient Dp of the impurity will be related to the
diffusion coefficient D4 for 4 atoms diffusing in pure 4
by the equation,

(36)

where f4 and fp are the correlation factors, w, the
frequency of exchange of a vacancy with a neighboring
impurity atom, wo the frequency of exchange of a
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TasLE IIL. Correlation factors for impurity diffusion by a
vacancy mechanism in a diamond lattice. In Column A the effect
of returning vacancies is included; while in Column B, it is not.
[See Egs. (2), (10), and (20).]

Column A Column B
we/wi f=w1/(w2+w1) f=3w1/Qwz+3w1)
0.2 0.833 0.882
1.0 0.500 0.600
4.0 0.200 0.273
16.0 0.059 0.089
© w1/ wa 1.5w1/w,

vacancy in a pure lattice with a given neighboring 4
atom, Ep the binding energy between a vacancy and an
impurity, & Boltzmann’s constant, and 7' the absolute
temperature.

To take an extreme example, let us assume that there
is no binding energy and that the jump frequencies w;
and k; in Egs. (5) and (8) are equal to wy. If the correc-
tion for returning vacancies is included [Eq. (8)],

From Table I, f4=0.7815, so in the limiting case where
wy/wo—> 0, we find Dg/D4— 4.58. If the correction
for returning vacancies is not included in calculating f,
we find Dg/D4 — 5.76. A typical experimental value of
Dg/D, is 4.0. With this value of Dp/D4, Eq. (36) in the
corrected case gives wy/wo=24.7; while in the uncor-
rected case it gives wy/wo=10.2. This is a considerable
difference.

Usually the effect will be smaller than in the case
considered above. For example, calculations assuming
an appreciable binding energy and letting w; equal w,
give considerably smaller values of ws/w, and show only
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a small effect from consideration of returning vacancies.
However, the correction'is easy to apply, and it would
seem desirable, in all cases, to use the corrected ex-
pressions. This is especially true in the non-close-packed
lattices.

Accurate measurements of the correlation factor could
contribute greatly to the understanding of diffusion
phenomena. Atomistic theories of diffusion, such as
those of Zener,"” Lazarus,'® Swalin,® Overhauser,?’ and
Rice, attempt to determine the atom jump frequencies.
Accurate measurements of the correlation factor would
be very useful in comparing these theories with experi-
ment, since (1) the correlation factor f must be included
in Eq. (1), relating the diffusion coefficient to the jump
frequency, and (2) the expression for the correlation
factor itself will involve the jump frequencies. Accurate
isotope effect experiments should allow an estimation of
the correlation factor. (It may be noted that comparison
of the ionic conductivity with the tracer diffusion
coefficient in ionic crystals will %ot allow the calculation
of the correlation factor for an impurity.) Experimental
values for the correlation factor can then be compared
with expressions such as those derived in the present
paper to estimate the values of the jump frequencies
near an impurity. For diffusion by a vacancy mechanism,
the diamond lattice presents the simplest geometry,
with the face-centered cubic lattice being next in
simplicity.

17 C. Zener, Imperfeciions in Nearly Perfect Crystals (John Wiley
and Sons, Inc New York, 1952), p

18D, Lazarus Phys. Rev. 93 973 (1954) Impurities and
Imperfectmns (Amencan Society ’for Metals, Cleveland 1955),

19R A. Swalin, Acta Met. 5, 443 (1957).
VA W. Overhauser Phys. Rev. 90, 393 (1953).
2 S, A. Rice, Phys. Rev. 112, 804 (1958).



