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parameter away, Thus,

AE2 = 26E

Taking the average RE+DE per jump, we find

BE+DE= ,' (BEt+-BEs+AEi+ DEs) '

RE+DE= d E +DEr+ kTad

(inner)//dx.

Ignoring correlation,

1 dD, * d lny;

(52)

(53)

Now, for interstitialcy diGusion, D*=a'v, where v is the
frequency of tracer jumps in a given direction when
successive lattice-to-interstitial and interstitial-to-lattice
jumps are counted as separate jumps. Hence the 6nal
expression for the shift in center of gravity is the same as
for the vacancy or interstitial mechanisms if the terms
due to correlation and Qow of imperfections are neg-
lected. Also, it can be shown that there will be no net
eR'ect from correlation on the shift in center of gravity,
the situation being similar to that for a vacancy
mechanism where the correlation term in Eq. (13)
exactly cancelled that in Eq. (26).
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Theory of Nuclear Spin Relaxation in Superconductors
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Using analytical methods, a new evaluation has been made of R./R„ the ratio of nuclear spin-lattice
relaxation rate in the superconducting phase to that in the normal phase, from expressions previously
derived by Hebel and Slichter using the Bardeen-Cooper-SchrieRer theory of superconductivity. The
results are given for several values of the effective breadth of the Bardeen-Cooper-Schrieffer energy levels.

S EVERAL measurements of nuclear spin-lattice
relaxation in normal and superconducting alumi-

num' ' have been reported recently. Hebel and Slichter'
discuss the theory of the spin-lattice relaxation rates,

and R, in superconducting and normal phases,
respectively, and they give curves of E,/E„eersls
temperature calculated using the Bardeen-Cooper-
Schrieffer (BCS) theory' of superconductivity. This
article presents an improved calculation of R,/8 ba, sed
on the discussion of Hebel and Slichter. '

In thermal equilibrium the nuclear spin level popu-
lations are determined by a Boltzmann distribution
characterized by the lattice temperature. The nuclear
spin-lattice relaxation rate, 8, is defined as the char-
acteristic rate of approach to such a thermal equi-
librium situation from a nonequilibrium one. In a metal
the nuclear magnetic moments have a strong magnetic
interaction with the moments of the conduction elec-
trons, which are in very good contact with the lattice.
Consequently, in a metal the scattering of nuclear spins
by conduction electron spins determines R, since such
scattering provides the fastest means of the nuclei
achieving thermal equilibrium with the lattice. Hebel
and Slichter calculate how superconductivity affects

L. C. Hebel and C. P. Slichter, Phys. Rev. 107, 901 (1957).
L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959).
A. G. Anderson and A. G. Redfield, Bull. Am. .Phys. Soc. 2,

388 (1957); A. G. Red6eld, Physica 24, 5 150 (1958); A. G.
Redfield, Phys. Rev. Letters 3, 85 (1959).

~ Barcleen, Cooper, and Schrieffer, Phys. Rev. 108, 1175 (1957).

R,/R„= 2 t p s(x,T)$1+g '(T)/x' j
0

Xf(~,T)(i f(~,T)jd~. (1)—

The density of states, p„ is obtained by weighting the
3CS density of states, p&z s, with the function which
characterizes the breadth of the energy levels. If an
energy level breadth function is used which is a rec-
tangle of width 2A and height 1/2A, then

~
x+5

p. (a,T) = (2&) '~ pncs(y, T)dy, (2)

pncs (y, T) =O, (»)
PBcs(y, T) =$y'/(y' —rfo'(T)))',

~ y ~
&no. (3b)

R using the 8CS theory to treat the conduction
electrons.

The equation which they obtain for E,/E is given
in terms of the following quantities: the 6rst is the
normalized density of electron states in the super-
conductor, p, (L', T), which from BCS theory has a,

temperature-dependent gap of half-width eo(T) centered
about the Fermi energy, Ep, the second is 6, the
effective energy breadth of the BCS states; the third
quantity is the Fermi distribution function, f(E,T).
In terms of x= (E Ep)/1sT, fi= d—/kT, and ilo(T)
= eo(T)/kT, Hebel and Slichter' show that
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TABLE I. R./R versus vo for various values of 1'= op(0)/~ (the For large g, another type of expansion may be used.
ratio of gap width to level breadth) using BCS theory to obtain
T/T, and T,/T verses vp. writing

'77P r =15
Re/R& for

r =60 r =200 r =600 r =2000
From BCS

T/Tc Tc/T

Ip ——
J g(x)h(x)dx, (10)

0.50
0.70
1.00
1.25
1.50
1.75
2.00
2,50
3.00
3.50
4.50
6.00
9.00

1.56
1.78
1.97
2.02
1.97
1.87
1.73
1.38
1.03
0.741
0.350
0.102
0.00746

2.03
2.35
2.59
2.64
2.58
2.45
2.26
1.79
1.33
0.948
0.442
0.126
0.00878

2.31
2 ~ 73
3.07
3.16
3.12
2.98
2.76
2.22
1.66
1.19
0.559
0.162
0.0115

2.57
3.07
3.50
3.64
3.61
3.47
3.22
2.60
1.96
1.41
0.667
0.194
0.0139

2.85
3.44
3.97
4.16
4.15
4.00
3.73
3.02
2.28
1.65
0.785
0.230
0.0166

0.973
0.950
0.9075
0.858
0.810
0.760
0.7125
0.625
0.547
0,482
0.382
0.290
0.1945

1.027
1.053
1.102
1.166
1.235
1.31 7
1.403
1.600
1.828
2.075
2,615
3.45
5.14

if h(x), xh(x), and x'h(x) are integrable, and if g(x) is

slowly varying, then one may expand g(x) in a Taylor
series and keep the lowest terms; in addition, suitable
choice of expansion point eliminates the first order
error term. By choosing

~b
x= xh(x)dx,

then
Thus,

p, =0, fx f
&go—8,

p, = (28) If (x+8)'—lip')l, rio —6&
f
x

f
&rip+ g,

~b de
(4a) I,= g( x)JI h(x)dx+p )I (x x)'h(x)dx+. . . (12)

(4b)

p.= (2~) 'f
f (x+&)'—rio'j' —L(*—~)'—rio'3')

f
x

f
)rip+6. (4c)

The level breadth is expected to be much less than
the gap width. Consequently, one may break up R,/R
into two integrals, I1and I2, by introducing a parameter
P sllch that 1)&P)&h/Iio. In II, where

f
x

f
&PY/p, f(x)L1—f(x)$ may be taken outside the integral; in Io, where

f
x

f
&prip, p, may be set equal to pBcs Using

4j(x) f 1—f(x)j=s«h'(kx), (5)

one obtains for I1,

I = 'rlo h'(curio) -{1+(Pro/~)' —(Prlo/~)L(Pro/&)' —11'*

+l ((Pri /&)+f (Pri /~)' —1j**)) (6)

For most eases of interest

To have g(x) slowly varying, we choose

2 (x'+gp')
g(x)= and h(x)=

(x+qo) (1+e-*)'

Then, '
b ~00

J.h(x)dx=e oo x 'e *dx=e opEi(pgo), (14)

x=
'

xh(x)dx=gp 1+
go Ei(Pgo)

For large enough po, the slowly varying character of

2Plip 2P pp(0) pp(2')
))&;

po(0)

thus, an expansion of Eq. (6) may be used.

II=,'rip SeCh'(-,'lip) L-;+-,'(8/2Prio)'

+ln(2P«/S S/2Prio) j —(7).
Equation (7) was used to obtain the contribution of II
to the results for R,/R„ tabulated in Table I and Fig. 1

The results are given in terms of po(0)/6, the ratio of
absolute zero gap width to energy level breadth. In
Eq. (7), P=0.05 was used for po(0)/6=60, 200, 600
2000; P =0.2 was used for pp(0)/6= 15.

I2 cannot be evaluated exactly. It may be written

Rs
RN 0.8

0 6

0.4

0.2

r= 2OOO

6oo
200

f'=60

x'+ri '

J oo(1+e) x 7/0

o.t
'

1.0 l.5 2.0 2.5 3.0 3.5

For small go, I2 can be evaluated to lowest order in qo,
with the result,

Io=1+ curio(»f (2/P)+1j —(1+P)}, 9o«1 {&).
Flc. l. R,/R„persgs T,/T for various values of r =pp(0)/n

' E. Jahnke and F. Emde, TuMes of Functions (Dover Publi-
cations, New York, 1943).
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g(x) causes the second order term in Eq. (12) to be
small, so that for po suSciently large,

I2—
2(x'+vtp')e "' Ei(Psip)

(x+stp) [1+exp(—x)j'
(16)

(]+C)alto —o) oo

I2=
1+( e—l&oo

connects the points and slopes to within 1% using the
following parameters: for P=0.05, C= 2.380, b=5.560,
and a=4.305; for /=0. 2, C= 1.735, 6=4.72, and
a=2.93. Investigation of the second order error term
in Eq. (12) for I& shows that Is is represented by its
asymptotic form, Eq. (16), to better than 2% for
sip& 1.50 for both values of p.

The values of Ip versus otp are needed for /=0. 05 and
P=0.2. A connecting function is needed for each value
of P to connect the expression for Ip in Eq. (9), valid
for small stp, with that in Eq. (16), valid for suKciently
large go. The function

The relation between rtp= ep(T)/kT and temperature,
which was used in compiling Table I, was taken from
HCS theory using their temperature dependence of
ep(T) and ep(0) =3.5kT,. A change in either factor
would change only the temperature scale of Table I
and Fig. 1, since all calculations scale as rtp itself (i.e.,—only the values of po themselves appear in the
equation). Thus, the results in Table I may easily be
extended to the case of an experimental gap width by
using the new relation between qo and temperature.
One should note that the value of ep(0)/6 assigned to
the table might also be changed. The energy level
breadth, 6, was assumed to be independent of temper-
ature. [Such an assumption allows 6 to be interpreted
also as an anisotropy in ep(0) in k space. ] The effect
of a temperature dependent 3 can be obtained by
moving from one value of ep(0)/6 to another in changing
temperature.
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The characteristic electron energy loss spectrum of magnesium has been measured by analyzing the
energy distribution of 750-, 1000-, 1505-, and 2020-ev electrons scattered by a,n evaporated specimen
through 90'. The spectra were similar in form to those previously obtained with aluminum targets, in that
the observed loss peaks were composed entirely of combinations of two elementary energy losses, These
two losses, of magnitude 7.1 and 10.6 ev, were identified, respectively, with the lowered plasma loss proposed
by Ritchie and the plasma loss proposed by Bohm and Pines.

INTRODUCTION

' "
N a previous paper, ' the origin of the characteristic

~ ~ electron energy losses in aluminum was discussed
in some detail. It was shown there that the character-
istic loss spectrum of aluminum is made up of combina-

tions of elementary 10.3- and 15.3-ev losses, the former,
the low-lying loss, being identified with the lowered

plasma loss proposed by Ritchie, ' and the latter with

the plasma loss proposed by Bohm and Pines. '
The chara, cteristic loss spectrum of magnesium has

* Work supported by the Research Grants Committee of the
University of Western Australia.
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been studied by a number of workers, ' " and the
observed loss values a,re shown in Table I. The shape
of the magnesium spectrum has been found to be similar
to that of aluminum, in that a sharp energy loss is
observed, together with one or more lines due to
multiples of this elementary loss. This sharp line,
occurring at 10 ev in magnesium, has generally been
regarded as arising from collective electron excitation'

' L. Marton and L. B.Leder, Phys. Rev. 94, 203 (1954).
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