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The function g~+(a) in the last integral of (3.8) is
also given by I&3~, where A3 has been replaced by A3+.
If the integration around the circle 5 follows the external
lines in Fig. 1 the + sign must be taken above and the
—sign below the real axis.

The method described in this section applies equally
to process II and pion-nucleon scattering. But then the
functions go+ (5 and I'~ waves) have a pole at W=O,
and an arbitrary parameter, the S-wave scattering
length, is conveniently introduced by means of a
subtraction at co= m3f, where the I'~ scattering ampli-
tude vanishes. The fortuitous absence of this pole in
E-nucleon scattering is due to conservation of
strangeness.

FINAL REMARKS

The objective of setting up dispersion relations for
partial amplitudes was to establish an integral repre-
sentation of functions of a single variable f~+(co), for
which the unitarity condition takes on, in the physical
region, the simple form:

(3.13)

where the index e refers to all allowed channels, com-
patible with conservation of energy and p„ is a phase
space factor; in the elastic channel p„=k.

In our integral representation there exist, however,
regions of frequencies where the unitarity condition
has no simple form. If we attempt to apply the unitarity
condition for all co in order to obtain an integral

equation, we find that the equations for partial ampli-
tudes of different angular momentum and corresponding
to processes I, II, and III, in different states of isotopic
spin are all coupled. Moreover, in the region or'&~, and
along the circle 5 the unitarity condition can only be
obtained by means of analytical continuation.

In the interval co, &co& —mM the variables s and t
in (3.10) are in the physical region for process II. One
can re-express U2 and V2 in terms of the imaginary
parts of the scattering amplitudes and expand in partial
waves. This expansion is also valid in the unphysical
region —mM&cv& —coo, that is (Mr+p)'&8
& (M +ns)'. Only the virtual states (I'+m) and
(A j2m) contribute to the amplitudes in this region,
and we conjecture that the unitarity condition takes the
form (3.13) except for a factor (—1) '.

Ke remark that if all graphs in perturbation theory
involving closed baryon loops and four-meson primary
interactions are neglected, then from Eq. (3.5) only a
cut along (—~, co,) survives. However, there is no
reason to believe that those graphs are unimportant.
It seems, therefore, that in order to make use of these
relations as dynamical equations one has to introduce
some approximations, replacing the integrals in the
unphysical regions by simplified expressions.
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An analytic manifold is found, the most important properties of which are that it is complete and that it
contains the manifold of the Schwarzschild line element. It is thus the complete analytic extension of the
latter. The manifold is represented as a Riemannian surface in a six-dimensional pseudo-Euclidean space.
The subspace dp=d8 =0 is visualized as a two-dimensional Riemannian surface in a 3-dimensional hyper-
plane in the six-dimensional space. Although the manifold admits groups of motion isomorphic to the real
3-dimensional rotation group and the one-dimensional translation group, it is impossible to introduce a
global time-coordinate in such a way that the latter is realized as translations in time. Hence in any global set
of coordinates the gravitational 6eld is nonstationary, although it can be made stationary for r &1 to any
desired approximation. The question of what happens to small test bodies reaching the Schwarzschild
critical radius is discussed.

STATEMENT OF THE PROBLEM

HK Schwarzschild line element' is

( 11 ( 11
ds'=I 1—— Idt' —

I 1——
I

dr' —r'(d8'+sinVdq') (1)
E ri ( rJ

' For a derivation see, e.g., H. Weyl, Space, T~me, and Matter
(Dover Publications, New York, 1950), p. 252. We have put
2ma= 1, where m is the mass and a is the gravitational constant.

The coefficient of dr' becomes singular at r=1, but it
has long been known that this is due only to the choice
of coordinates. The proof of this statement may be
based on the fact that the Petrov curvature scalars have
no singularity at r = 1,' but it is perhaps more convincing
to refer to the fact that the equations for the geodesics
show a singular behavior only at r=o. For a motion in

' D. Finkelstein, Phys. Rev. 110, 965 (1959).
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the plane 8=7r/2, we have, using a dot to denote
diGerentiation with respect to proper time':

1 h' h'
r'= k' 1—+ +

r r2 r3
(2)

r'q =h. (3)

Here k' is essentially the energy, and h the angular
momentum, of a small test body moving along the
geodesic. It is noted that the smallest value of r at
which r' can vanish when k is real is 1. Hence any
geodesic which is not entirely outside r = 1 must begin
or end (or both) at the origin. Equation (2) shows that
a small test body reaching the origin from a finite
distance does so in a finite proper time. The relation
between the Schwarzschild time t and the proper time
v- is given by'

(1—1/r)t'= (1 1/r) 'r +—r-"j +e (4)

where &=+1 (—1) for a time-like (space-like) geodesic
and e=O for a null geodesic. Equation (4) shows that
t —+ &~ for a motion along a geodesic approaching
r=1. Hence it is impossible to describe such geodesics
in terms of functions r(~) and t(r) This st. ate of affairs
is expressed by the statement that the coordinate
system in which the Schwarzschild line element takes
the form (1) is incomplete. The Schwarzschild manifold
exists for 0&r&~, but the coordinate patch extends
over the interval 1&r& ~ only. '

The aim of our work is to exhibit a completion of the
manifold defined by (1) for r) 1. It will then be possible
to show all possible geodesics in one single picture. This
was also the program of a recent effort by Finkelstein. '
The relation of our manifold to that of Finkelstein will

be shown.
Our method is to avoid the use of coordinates by

embedding space-time in a pseudo-Euclidean space of
6 dimensions. One of the purposes of this note is to
demonstrate the usefulness of this method in general
relativity.

EMBEDDING OF V4 IN S6

The possibility of embedding the line element (1)
for r & 1 in a Rat space of six dimensions was first
demonstrated by Kasner, ' who also showed that an
embedding is 5 dimensions is impossible. ' Kasner's
embedding is given by

where

(df/d )'=I +1 ~(
—1) '(1

E4r3 )

4
z,=+~ 4—+z, ~,

r ) ' (13)

Z3=+ dr(r'+r+1)&/r*', (14)

ZP+Zs'+Z6'= ~' (15)

In principle (14) may be solved for r(Z3) and the result
used to eliminate r from (13) and (15), but it is simpler,
and quite harmless, ' to retain r as a parameter. The
surface defined by (13)—(15) is analytic not only in the
original interval 1&r&~, but in the whole interval
0&r&~. Hence it is an analytic continuation of the
SchwarzschiM line element. It is still not complete,
since it will become clear later that there are geodesics
which pass through Z2 ——0. But if we adjoin the other
branch of (13) we get a manifold which is complete and
analytic everywhere except at r=0. Hence the analytic
completion of the Schwarzschild line element is repre-
sented as the surface

Z22 —Zt2=4(1 —1/r)

If one tries to eliminate the coordinates, Eq. (8) must
be solved for r as a function of f=z~. This is possible
only for r&1. Hence this embedding may not be
extended to r(1. Another shortcoming of (6), (7) is
that Z~ and Z2 are periodic functions of t, so that the
embedding identifies distinct points of the original
manifold. This suggests replacing the trigonometric
functions by hyperbolic functions. If we.write

ds'= dZ '—dZ '—dZ '—dZ4' —dZ~' —dZ6'

Zi ——2(1—1/r) l sinh(t/2),
Z2 ——2 (1—1/r) ' cosh (t/2), (10)

Za ——g(r), Z4 rsin8 sinp, ——

we find
(dg/dr)'= (r'+ r+ 1)/r'. (12)

It is now possible to eliminate the coordinates, but it is
simpler to elimina, te t, 8, and p only. Ke get

dS =dzt +dzp —dz3 dZ4 dz5 dZ6— — —(5)

Zt ——(1—1/r)'*cost, Z2= (1—1/r)' sint, Z3 ——f(r), (6)

Z4 rsin8 sing, Zt, = r sin8 c——os', Z6 ——r cos8, (7)

Z, =+ dr(r'+r+1)r l,
J

Z42+ZP+Z6'= r'

(16)

' See, e.g., reference 1, p. 256.
4 Equation (4} is just the normalization of the proper time

interval, ds~/d7~ a=g;;i'i&'
~ A familiar instance of the use of an incomplete coordinate

system is the "paradox" of Achilles and the Tortoise.
6 E. Kasner, Am. J. Math. 43, 130 (1921).' E. Kasner, Am. J. Math, 43, 12& (1921}.

In addition to completeness and analyticity we note
the following properties of the surface (16).It admits a
group of motions which is isomorphic to the real rotation
group (rotations in the Z4, Z~, Z6 hyperplane), a,s well

Because Z3 is a monotonous function of r.
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determined quite simply from

Z2

or

dZi2 —dZP =dZP = (r'+r'+r+1)dr'/r'

Z,.dZ, —Z,dZ, = 2dr/r',

dZ2/dZ, =n—,

r(r' 1—)
1 Q (Zpn —Z )'

(19)

(20)

(21)

FIG. 1. The surface defined by Eqs. (18), showing the subspace
d8=dy=0 of the completed Schwarzschild manifold as a 2-
dimensional surface in a pseudo-Euclidean space. Of the co-
ordinate directions Zi is time-like, Zq and Z3 space-like.

as a one-parameter translation group (imaginary ro-
tations in the Zi, Z2 plane). The existence of the latter
corresponds to the stationary character of (1).It is also
invariant under space reflection (Z4, Z5, Z~ —+ —Z~,—Z5, —Z6), under time reflection (Zi~ —Zi), and
under the reflection Z2-+ —Z2. LOf course it is possible.
to square (14) to obtain an additional refiection
invariance, but this is meaningless since there are no
geodesics connecting dZ8/dr)0 and dZ, /dr(0. ) The
manifold (16) contains two Schwarzschild inside regions
and two outside regions. Time-like geodesics connect
the two inside regions, but not the two outside ones.

THE SUBSPACE d4 =dp=o

For the further investigation of the complete mani-
fold (16) it is convenient to be able to draw a picture of
the manifold. We therefore specialize to the subspace
d8=d@=0. This is entirely sufficient for discussing the
penetration of geodesics into the interior. The line
element is then

1+Zi/Z2

1—Zi/Z2
(22)

We see that t tends to —(+) infinity near the left
(right) line r=1. The only redefinition of the time
which does not introduce time explicitly into the com-
ponents of the metric tensor is that obtained by adding
a function of r to t. Hence we would have the time

1+Zi/Z2e'= — f(r).
1—Zi/Z,

(23)

But now it is clear that no choice of f(r) can make T
finite both at Z~= Z2 and at Z~= —Z2, since r and hence

We may now discuss the introduction of coordinates
in this subspace. The obvious choice is to take Zi as
time coordinate and Z2 a.s space coordinate. This is a
perfectly well-behaved set of coordinates from a
mathematica, l point of view. However, one should like
to retain r as space coordinate, because the term
r'(d8'+sin'Ader') in the line element identifies r as the
physical radius. In choosing a time coordinate one is
interested in the following features. (a) The coordinate
system shouM be pseudo-Galilean at infinity (i.e., as
r -+ ~ ). (b) The metric tensor should be independent
of time. The erst requirement causes no difhculty in
principle, but we shall show that no global time co-
ordinate satisfying (b) exists.

Schwarzschild's time is defined in the top quadrant
of Fig. 2 by

where

ds'= (1—1/r)dP (1—1/r) 'dr'—
=dZ —dZ —dZ

Z22 —Zi2 =4 (1—1/r),

1/2 $ 2 3 ~:r Z2 2 3 1/2

Z3= I dr(r'+r'+r+1)'*r

This surface is shown in Fig. 1. The lines of constant r
are also lines of constant Z3, and are approximately
equidistant in the Z3 (vertical) direction. The two
separate parts of the surface for which r(1 (r) 1) are
two Schwarzschild interiors (exteriors).

Figure 2 shows the projection of the surface in the
Z&, Z2 plane. Some light cones are shown. They may be

FIG. 2. The projection of the surface in Fig. 1 in the Z1,
Z~ plane. This projection is one-valued,
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1+Zt/Zs 1
gT

1—Zt/Zs r—1
(24)

or
T= t—ln(r —1). (25)

This time is that introduced by Finkelstein, ' it is a time
coordinate for the left and the top quadrants in Fig. 2.
It is clear why Finkelstein s coordinate system is in-
complete. Geodesics can enter the interior in a finite T
only if dT/dr is negative.

One may ask whether a definition of global time may
be found such that the field is approximately stationary.
This may be accomplished for example by taking

1+Zi/Z, r"—Z,/Z,
gT

1—Zi/Zs r"+Zt/Zs
(26)

f(r) has the same value at Zi= +Zs. This means that
the largest portion of the complete manifold for which
a global time can be dined, of which the metric tensor
is independent, is one of the halves bounded by either
Zi ——Zs or Zi ———Zs. With the choice f(r) = (r 1—) ' we
have

r=1 and no inside ones. ' There are also embeddings of
space-time which end at r=1, notably the Kasner
embedding. ' Other embeddings which end at r= 1 have
been found by Fierz." These surfaces are perfectly
continuous and geodesics reaching r=1 apparently
pass into the other world. It is only by demanding that
i be continuous at r = 1 that our interpretation becomes
the only one possible. However, since no correlation
exists between geodesics going in through r=1 and
those coming out, the question is meaningless from a
physical standpoint. The reason why there can be no
correlation between outgoing and ingoing geodesics is
that all geodesics going in (out) end (begin) at r=0.
Hence, contrary to the situation of classical mechanics
in which the last term in (2) is absent, the geodesics
that reach r=0 are not proper limits of geodesics that
do not. Finally, it may be pointed out that the singular
character of the surface r = 1 is a feature intimately
connected with the nondefiniteness of the space-time
metric. Because of the need to choose a six-space
signature with at least one plus sign, the concept of
nearness is not immediately connected with the line
element. The lines r= 1 are, in fact, always lines of zero
length.

By taking e large enough this T may be made to diGer
arbitrarily little from L when r) 1. The definition (26)
suGers from other shortcomings which may, however,
easily be overcome. However, the pursuance of this
point is not interesting.

DO GEODESCIS PENETRATE r =17

We know by Eq. (2) that if r'(r) is continuous then
r(r) passes with no difliculty through the value r=1,
and in Fig. 2 we may draw such geodesics and see that
the impossibility of drawing them in the r, t plane is
due only to an unfortunate choice of time coordinate.
It is possible to draw a static picture of the Schwarz-
schild world consisting of two outside regions joined at
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Note added to proof Profes.—sors D. Finkelstein and
J. A. Wheeler have kindly informed me that Professor
M. Kruskal at Princeton University has obtained the
complete manifold some time ago (unpublished).
Kruskal's time and radial coordinates are similar to our
Zy and Z2.

s This is the Flamm paraboloid (L. Flamm, Physik. Z. 17, 448
(1916)j."M. Fierz (private communication).


