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Analytic Properties of Partial Amplitudes in Meson-Nucleon Scattering*
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The analytic properties of partial wave amplitudes in meson-nucleon scattering are investigated on the
basis of the Mandelstam representation and an integral representation is set up for them which explicitly
exhibits those properties.

INTRODUCTION

A METHOD f'or the separation of partial waves
from nonforward relativistic dispersion relations

has been put forward by Capps and Takeda. ' The
scattering amplitudes in the integrals are expanded in
terms of I,egendre polynomials which are analytically
continued into the unphysical region. Each partial
amplitude is then related to two integrals involving
infinite series of partial amplitudes, which are con-
vergent at low energies.

We have considered a diferent approach to this
problem which consists in deducing the analytic
properties of the partial amplitudes and establishing a
representation for them, based on those properties. In
order to investigate the analytic properties of the partial
amplitudes it is necessary to know the analytic structure
of the scattering amplitudes as functions of two vari-
ables, the energy and momentum transfer. A full
representation of these amplitudes has been proposed
by Mandelstam' and is used here. The main result is
that the partial amplitudes are analytic functions of
the energy throughout the complex plane except for
cuts along the real axis and a cut along a circle with its
center on the negative real axis.

Integral representations are obtained by applying
Cauchy's theorem to suitable combinations of pairs of
partial amplitudes with the same total angular mo-
mentum but opposite parities. The integrals along the
real axis depend on the imaginary part of the function
considered and one can apply the unitarity condition
in the physical region. The meaning of the unphysical
region as well as the integral along the circle are
discussed.

1. THE COVARIANT AMPLITUDES. MANDELSTAN'S
REPRESENTATION

The matrix element of the S-matrix for meson-
nucleon scattering may be written in the form':
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:(p.+p.), -Q=-:(q+q.),
E=2(p2 p1) =2—(qr q2)—

WIth these vectors one can form the Invarlants:

E2= 'f 1'2= M2 —K-' —Q'= —2222 E'— —
I' Q= —1, 1 E=Q E=O,

(1.2)

so that there are only two independent invariants.
We introduce an invariant matrix 5K in spin space

related to the Feynman amplitude F„(psqs, prqr) by

(p2q2 p1ql) + (p2)~+ (pl) (I 4)

where u, (P1) and u, (P2) are Dirac spinors.
Assuming parity conservation and making use of the

Dirac equation, one can reduce 5R to the form4:

51t'= —U+ QV,

where U and V are functions of the invariants v and t,
»d Q—=v.Q'

To 6x our ideas consider the processes:

f1+Et ~E2+K2, (I)
Ã1+E2 ~ 1V2+Er, (II)
cV1+E2 —+ E'2+E1. (III)

The Feynman amplitudes for these processes are
obtained from the same Green's function taken in
diferent and nonoverlapping domains of the variables
p and t, which of course have different physical meanings
for each of them. The physical regions for the respective

4 A. Salam, Nuovo cimento 3, 427 (1956).

t' M2
Sfr mfa (22r)'«'(p2+q2 —p1—

q1) (

44qlsq20plsp20 1

&&1'"(psqs,prq1) (& ~)

where P1, q1 are the initial momenta of the nucleon and
the meson, respectively, P2, q2 the final momenta and
r,s the spin states of the incoming and outgoing
nucleon. The isotopic spin coordinates of the nucleons
and the mesons have been omitted.

Due to conservation of total momentum, out of the
four momenta there will be only three independent
vectors which determine the kinematics of the process.
We choose the combinations:
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processes are

where

v) vs, t&0, (I)
v & —vp, t&0, (II)

v'& vj', t) 4M', (III)

vr ——[(M'—t/4) (m' t—/4) ]
Mandelstam assumes that the Green's function is

analytic in both variables except for poles on the real
axis and cuts along certain hyperplanes. ' The poles
arise from the bound states of the system, and the
location of the cuts is determined by the threshold
energies for the allowed virtual transitions. It is then
convenient to introduce the new variables s and 8

which are the square of the energy in the center-of-mass
system for the processes I and II, respectively. They
are related to v and t by

-', (s—M' —m') = v ——,'t,

-', (8—M' —m') = —v ',t—-
(1.6)

O'YgY

Y=A. , Z ~Y2—g

F00 F00

ds
~ (M+ ) 2 ~ (~Y+IJ») ~

00 00

(M+m) ~ (2v)

A )2(s', s')
d8

(s' —s) (u' —s)

A g3(s', t')

(s' s) (t' t)— —

r
" p" A 23(s', t')

+ d8', dt'
0)r +»' "(2»' (s s) (» t)

1 t
" a2(s')

+— ' ds' . (1.9)
7r ~ (MY+p)~ S —g

In this case the conservation laws and in particular
the conservation of strangeness and parity allow for
bound states only in process II, corresponding to the
A and 2 particles. The energy thresholds for the three
processes correspond to transitions into the virtual
intermediate states (E+cV), (V+)r), (~+a.), respec-
tively. The bound-state contributions exactly coincide
with the f»rst Born approximation in the conventional
perturbation theory.

The corresponding variable for process III is 3 and there
exists the relation:

s+s+ t = 2 (M2+ m').

The square of the momentum transfer between the
mesons or nucleons in the 6rst two processes is —t; in
process III it is —8 between the nucleon g» and the
meson E2, and —s between X» and K».

On the basis of Mandelstam's assumptions one
obtains for each of the covariant amplitudes a repre-
sentation of the form:

lV
u, (k')mtu„(k) =4)r—u, '(0)fu, (0),

3f
(2.1)

where u„(0) are orthonormal eigenstat =s of
[you. (0) =u„(0)] and

u„(k) = u„(0).
[2M(K+M)]'*

Here (kE,k) and k'(E, k') are the four-momenta of the
incoming and outgoing nucleons in the c.rn. system and
W=gs is the total energy.

The matrix f may be written in the form:

EF 8 EF (2.3)
where a.

' and a are unit vectors in the direction of 4 and
A.", respectively, and

fi= Z(f)+~(+i' —f( ~) i'), f2=+(f) —f)+)~('. (2.4)

The f(+ are amplitudes for transitions in given states
of total angular momentum j=1&~ and orbital angular
momentum /. For E-nucleon scattering below the
threshold for pion production the amplitudes fP have
the form

f)+——

exp�(ib)+)

sin())+/k,

where the phases 6~+ are real functions of k. For X-
nucleon scattering as well as for E-nucleon scattering
above that threshold the phases are complex.

From (1.5), (2.1), and (2.2) one obtains the following
relations between the covariant amplitudes U, V and

1) 2 ~

K+M
4'fg= [U+ (W—M) V],

28'

8—M
4'f2= [—U+ (W+M—) V],2$'

(2.5)

(2.6)

5 Chew, Goldberger, Low, and Na, mbu, Phys. Rev. 106, 1377
(1957).

From the reality of the absorptive parts of the
amplitudes for the physical processes I-III, it follows
that all the weight functions are real in the respective
domains of integration. Although it is irrelevant for
our present purpose, we must point out that the repre-
sentation (1.9) as it stands is incorrect for the amplitude
U. In fact, from perturbation theory one obtains that
for large s' and s' and 6xed t', A»3 and 223 do not
approach zero as required for the convergence of the
integrals. Therefore one has to make subtractions which
give rise to another single integral of the form:

1 ~" a (t')
dt'

~~„„)*
2. THE SCATTERIN MATRIX IN THE

CENTER-OF-MASS SYSTEM

The covariant transition matrix is related in the
c.m. system to the scattering matrix by
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and hence

1 %+M W—M
fi - f2,

42r 8+M E M—

i+ 2 ~

X+M Z —M

(2.7)

(2 g)

For E-nucleon scattering 8 and t are expressed in
terms of &o and s by means of (1.8), (3.1), and (3.2).

Equation (3.3) defines a cut on the positive real axis
in the interval (zzzM, +~).

The solutions of Eq. (3.4) for a fixed value of 8' and
—1~&st+1 are real and lie in the intervals [—m,
—2(M2+mz)) and (—co", —~'), where

One can see that

which is a consequence of invariance under Schwinger's
space-time reQection.

The partial wave amplitudes may be projected out
of fi and f2. One obtains

ca' = —,
' (a' —M' —zzz2)

1 (M' —zzz2)2 —M' —m' .
2 $'

~o = 22 [(Mr+Zz)' —M' —ZZZ2j. (3.6)

As s' varies from (Mr+zz)2 to +~ these intervals cover
a branch line from —~ to

Then from the relation (2.9) it follows that

(2.10) Therefore Eq. (3.4) defines a cut on the negative real
axis in the interval (—~, u2).

Equation (3.5) is equivalent to

(2.11)

co = ,' (s M2 zzz2—). — — (3.1)

They are derived from the representation (1.9) for U
and t/', setting

Z= —2k2(1 —s), (3.2)

and varying s from —1 to +1.
Let us first consider the Born approximation, f2+&".

In the E-nucleon scattering the poles of V and V give
rise to branch lines of fi+o&(~) in the intervals of the
real axis along which

cur+co —l'22 (1—s) =0,

that is [—~, —-', (M2+zzz2)] and (—(ay.', —cur), where

(or ———', (Mrz —M2 —zzz2)

—(or'= -'{[(M'—zzz')'/Mr'$ —M' —zzz'}

On the other hand, in E-nucleon scattering the Born
approximation vanishes for all amplitudes except the
g and I'; states in which there remain poles at co=co~.

Let us now consider the singularities of fi+&@=f/—fi+"&. They lie on the lines of the complex cv-plane

defined by

3. THE ANALYTIC PROPERTIES OF THE
PARTIAL AMPLITUDES

AVe investigate now the analytic properties of the
partial amplitudes as defined by (2.10) as functions of
the variable

where the right-hand side varies from —~ to —p, '. As
k' varies from — to —3P, co describes two branch
lines on the real axis along (—~, —M') and

[—-'(M'+2N'), —M'j; as k' varies from —M' to —m2

a& goes from M2 to —212 a—long two branches (above
and below the real axis) of a circle in the complex plane,
with center at ~,= '(M2+ —zz-z2) and radius —,

' (M' —2222)

as k varies from —m' to —p', co describes two branch
lines on the real axis along (—zzz2, —~2), (—zzz2, &o2)

where —~i and cu2 are the roots k'+zz'=0 (see Fig. 1).
One can use these analytic properties to obtain a

representation for the partial amplitudes in the form of
dispersion relations. It is convenient to introduce the
combinations:

1
pi+= (fi++ fi+i )—

N/

p+1

(f1+f2) (~i+~zpi)«, (3.7)
28' ~

which are symmetric functions of 8'. Recalling that
behaves 1ike uzi (aP —m2M2)' as k2-+0, and

applying Cauchy's theorem to pi+(cv')/(co' —ar)

s —s=OI

8'—$=0
t' —1=0,

(3.3)

(3.4)

(3 5)

(dg
C

+ rnM

where s', 8', and t' are parameters assuming values
within the intervals of integration in (1.9).

FIG. 1. Complex co plane, showing the singularities of the
partial amplitudes in the X-nucleon scattering.
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&&(co"—m'M')' for the contour shown in Fig. 1, one
obtains

goo (co'—m'M' ) ' dco'

!+— Imp c+(co')
~

(co'2 —m2M2& co' —co

p&2 (co2—m'M') ' dco'

+— Imcoc+c" (co')
)

m' 4 &co"—m'M'&

X' 48

(co2—m'M' ) ' dco'

(co'2—m2M2) co' —co

where rpcct'(co) is the Born approximation corresponding
to the first term in (1.9) and pcc2'= yc —9ic"&.

From the representation (1.9) one obtains, for co in
the interval (—oo, coa)

Im A(co,s)Pc(s)ds=Re[Ic, (co)+Ic3(co)j, (3.9)
—1

where:

1

Ic2(co) = — t A2(s, t)Pc(s) ds,
SQ

( oo (co(—cop)

P (1+2(8jk2)
Ic, (~) =a A a(t,s)Pc(s)ds,

~ ~(V+GOcp
(3.11)

My (CO (COo.

The lower limit of integration in (3.10) is so ———1 when

1 ((M' —m')'

2 ( (Mr+tc)' )

Fn. 2. Diagram. of the (v,E2) plane. The hyperbola represents
the curve &2= v p or equivalently k2= E'. The physical regions for
processes I, II, III are shaded. We have marked values of ~ on
the v axis recalling that co= v for E =0.

graphs with IC-mesons in the intermediate states,
already start outside that interval.

When co is in the interval (—0o, co2), Impc+"'(co) is
given by the right-hand side of (3.9), provided the
following modifications are introduced in (3.10) and.
(3.11):

(i) Replace P& by —,'(Pc+Pc~&);
(ii) replace A, by

A,+= (1/W')H( MU, +coU;), —
A, = (1/W)HP EU,+M (W E)—U,3. (3.—12)

At this point we assume charge independence and
introduce the column matrices in isospin space:

and so= 1—(coo+co)/k', for co outside that interval. The
+ sign in (3.11) is taken in the region outside the circle
where dk'/dco)0 and the —sign is taken inside it,
where dk'/dco&0. All these limits and intervals can be
better visualized by an inspection of Fig. 2.

The functions A2(8, t) and A3(t, s) are the absorptive
amplitudes for processes II and III as dehned in refer-
ence 2. The following discussion is based on the proper-
ties of these functions as described by Mandelstam. '

The functions A2(t, t) and A3(t,s) are real in the
respective intervals co, &~(—coo, and —~I &ro(co2,
where they coincide with the imaginary part of the
amplitudes for processes II and III. For co&co,. the
branch lines arising from (3.4) and (3.5) overlap and
these functions may become complex. The overlapping
along the interval (—coo, —cot) is actually ficticious
since it would occur from processes like those shown in
Fig. 3, which are forbidden on account of conservation
of strangeness and isotopic spin. The branch lines of

is a matrix in isospin space. '

K' K K.

l I I
77

t 17K 771 l77
I I

FIG. 3. The graphs shown here are forbidden because of
conservation of strangeness.

' D. Amati and B. Vitale, Nuovo cimento 7, 190 (1958).

whose elements correspond to transitions in states of
isotopic spin T=O and 7= 1, respectively. Isotopic spin
has been taken into account in (3.12), where

1(—1 3q
H=

2&1 1)
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The function g~+(a) in the last integral of (3.8) is
also given by I&3~, where A3 has been replaced by A3+.
If the integration around the circle 5 follows the external
lines in Fig. 1 the + sign must be taken above and the
—sign below the real axis.

The method described in this section applies equally
to process II and pion-nucleon scattering. But then the
functions go+ (5 and I'~ waves) have a pole at W=O,
and an arbitrary parameter, the S-wave scattering
length, is conveniently introduced by means of a
subtraction at co= m3f, where the I'~ scattering ampli-
tude vanishes. The fortuitous absence of this pole in
E-nucleon scattering is due to conservation of
strangeness.

FINAL REMARKS

The objective of setting up dispersion relations for
partial amplitudes was to establish an integral repre-
sentation of functions of a single variable f~+(co), for
which the unitarity condition takes on, in the physical
region, the simple form:

(3.13)

where the index e refers to all allowed channels, com-
patible with conservation of energy and p„ is a phase
space factor; in the elastic channel p„=k.

In our integral representation there exist, however,
regions of frequencies where the unitarity condition
has no simple form. If we attempt to apply the unitarity
condition for all co in order to obtain an integral

equation, we find that the equations for partial ampli-
tudes of different angular momentum and corresponding
to processes I, II, and III, in different states of isotopic
spin are all coupled. Moreover, in the region or'&~, and
along the circle 5 the unitarity condition can only be
obtained by means of analytical continuation.

In the interval co, &co& —mM the variables s and t
in (3.10) are in the physical region for process II. One
can re-express U2 and V2 in terms of the imaginary
parts of the scattering amplitudes and expand in partial
waves. This expansion is also valid in the unphysical
region —mM&cv& —coo, that is (Mr+p)'&8
& (M +ns)'. Only the virtual states (I'+m) and
(A j2m) contribute to the amplitudes in this region,
and we conjecture that the unitarity condition takes the
form (3.13) except for a factor (—1) '.

Ke remark that if all graphs in perturbation theory
involving closed baryon loops and four-meson primary
interactions are neglected, then from Eq. (3.5) only a
cut along (—~, co,) survives. However, there is no
reason to believe that those graphs are unimportant.
It seems, therefore, that in order to make use of these
relations as dynamical equations one has to introduce
some approximations, replacing the integrals in the
unphysical regions by simplified expressions.
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An analytic manifold is found, the most important properties of which are that it is complete and that it
contains the manifold of the Schwarzschild line element. It is thus the complete analytic extension of the
latter. The manifold is represented as a Riemannian surface in a six-dimensional pseudo-Euclidean space.
The subspace dp=d8 =0 is visualized as a two-dimensional Riemannian surface in a 3-dimensional hyper-
plane in the six-dimensional space. Although the manifold admits groups of motion isomorphic to the real
3-dimensional rotation group and the one-dimensional translation group, it is impossible to introduce a
global time-coordinate in such a way that the latter is realized as translations in time. Hence in any global set
of coordinates the gravitational 6eld is nonstationary, although it can be made stationary for r &1 to any
desired approximation. The question of what happens to small test bodies reaching the Schwarzschild
critical radius is discussed.

STATEMENT OF THE PROBLEM

HK Schwarzschild line element' is

( 11 ( 11
ds'=I 1—— Idt' —

I 1——
I

dr' —r'(d8'+sinVdq') (1)
E ri ( rJ

' For a derivation see, e.g., H. Weyl, Space, T~me, and Matter
(Dover Publications, New York, 1950), p. 252. We have put
2ma= 1, where m is the mass and a is the gravitational constant.

The coefficient of dr' becomes singular at r=1, but it
has long been known that this is due only to the choice
of coordinates. The proof of this statement may be
based on the fact that the Petrov curvature scalars have
no singularity at r = 1,' but it is perhaps more convincing
to refer to the fact that the equations for the geodesics
show a singular behavior only at r=o. For a motion in

' D. Finkelstein, Phys. Rev. 110, 965 (1959).


