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An attempt is made to clarify the basis of a formula for binding energies derived in the framework of the
j-j coupling shell model. Studies are made of the effect of three-body correlations, by introducing a density
dependent term. It is seen that the j-j coupling calculation can be suitably corrected for the many body
effects. The hard-core influence is introduced as a pseudopotential. An attempt is made to 6t the binding
energies with a phenomenological central potential, including a density-dependent term. The best exchange
mixture obtained is not far from a Serber type but includes a considerable amount of Bartlett force. When
the hard core is included, the best exchange mixture becomes of the Serber type. With this potential a good
fit is obtained over a large range of configurations.

I. INTRODUCTION We thus interpret E;,(ps) as the effective two-body
force which has to be used in shell model calculations.
In later sections we will study this term, and try to
estimate it from experiment.

It has seemed useful in earlier work to avoid at first
any discussion of the effective two-body force, and to
see to what extent the shell model, and especially the
pure j-j coupling shell model, can give a good approxi-
mation to energy levels regardless of the exact form
of the effective interaction. In these studies it was also
implicitly assumed that a simple two-body force acted
between particles, and hence that density-dependent
terms were absent. We shall see that this assumption,
even in the framework of these earlier calculations, is
not strictly necessary, and further that improved agree-
ment with experiment may be obtained if density-
dependent interaction terms are included.

A procedure was adopted by Talmi and co-workers' '
for the light nuclei which did not involve the detailed
knowledge of the interaction between nucleons or the
wave functions. The following assumptions were made:

I. The wave function describing the nucleus is a pure
j-j coupling shell model wave function, the single-
particle wave functions entering the complete wave
function being independent of the number of nucleons
in the shell.

II. The residual interaction between nucleons is a
two-body charge-independent interaction (this may
include central forces, any mutual spin-orbit' inter-
actions, tensor forces, etc.).

It should be remarked here that seniority was con-
sidered a good quantum number. Later calculations~

for the d~ configuration showed that for the ground
states this was a reasonable assumption (to within a
few percent).

The application of the shell model requires the calcu-
ation of the expectation value of the two-body inter-
ction among nucleons in one shell. This expectation
alue can be expressed as a linear combination of the
nergies in a two-nucleon configuration. This method is

$P E want to study ir this paper some recent results
concerning calculations in the shell model. ' ' In

this model an inert core is assumed which corresponds
to the closed-shell nucleus. If we look at a nucleus in
which there is one single nucleon outside closed shells,
we observe levels obtained by exciting the extra nucleon
to higher orbits. However, if there are more extra
nucleons in definite orbits (a given configuration), there
are many levels obtained by the various modes of
coupling of the angular momenta of the extra nucleons.
The energy in the central field is the same for all these
levels. This degeneracy will be removed if a perturbing
interaction between the particles outside the closed
shell is introduced.

The basis of the shell model has been much solidified

by recent advances in the theory of many-particle
systems. ' Srueckner and co-workers have shown that
instead of using the real corre1ated wave function, P,
and the two-body, free-particle force, one can introduce
model wave functions and an appropriate effective
interaction operator. Then one can write

K;; is related to v;; by a nonlinear integral equation.
The G in the last expression is a particle propagator.
This last term and the higher one in this expansion are
the so-called cluster terms. It was shown' that for
nuclear matter such terms may be neglected. In adopt-
ing Eq. (1) for the finite nucleus one has to look upon
E;; as a function of density, e ty. If we expand X,t(p)
around the mean nuclear density po, we can write to
first order

&' (t ) =&' (t o)+(t —
t s)&' '(Po) (2)

7 R. Thieberger, Ph.D. thesis, Jerusalem, 1958 (unpublished).
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' I. Talmi and R. Thieberger, Phys. Rev. 103, 718 (1956).' R. Thieberger and A. de-Shalit, Phys. Rev. 108, 378 (1957).' S. Goldstein and I. Talmi, Phys. Rev. 105, 995 (1957).
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due to Racah. ' We describe it here again for the sake
of completeness.

We erst wish to show that the interaction in a con-
Gguration j"can be expressed as a linear combination
of the energies in the configuration j'. We consider any
two-body operator t;;. In a configuration of m equivalent
nucleons in the state j, coupled to total angular mo-
mentum J, the expectation value will be

energies:

E(J1 " Js)=E (2J +1)E(J ) Z (2J +1), (&)
n=1 n=l

which belong to the same eigenvalues of the known
operators.

At our disposal are three operators: 1, the unit
operator; (fr(2), the isotopic spin; and (ere2) Casimir s
operator, which is de6ned by'

(j"J(P f;;(j"J)=-'22(N —1)(g"J)f12[j"J),
i(j

(3) cr. e2 —4, Q gore (1)c (2)

where the equality holds because of the equivalence of
the nucleons. This expectation value can be further
simpli6ed by noting that t» operates on particles 1
and 2 only and therefore

(j"Jlf»l j"J)=Z a(J»J)(j'J»lf»l j'J») (4)

where the sum extends over the E possible values of J~2.
The positive coeKcients a(J»,J) depend only on the
nature of the state

~
j"J) and not on the operators f,;;,

and are simply related to the fractional parentage
coeKcients. Most methods of calculation devote much
eGort to the calculation of these parentage coefficients.
In Racah's method this is not necessary, and we con-
tinue as follows. Since the number X of states in a
con6guration j' is Rnite, there exist E independent
operators 3;;&'&, ~ ~, t; & & such that for a given j and
every J» one will have

(j'J»I V»l j'J») = 2 &s(j'J»lf»'"'I j'J») (5)

where V~2 is an effective two-body interaction. As the
number of such equations is E (the number of differ-
ent J»), one can solve this system of equations for the
E unknowns nt„which will depend on V, j, and the
special choice of t;;(2). Using (3), (4), and (5), one now
Ands

XZ a(J12 J)(j J12~ V12~ j'J12)

The whole method depends on whether it is possible
to 6nd enough such operators t;;~~), whose expectation
values can be easily evaluated. If this is possible then
Eq. (6) gives us the desired energy levels. Unfortu-
nately, the number of such known simple operators is
not large enough. One has therefore to limit oneself in
the following manner. Instead of looking at all the
levels of the configuration j', we look at the mean

2 G. Racah, Farkas 3Araorial Vo/Nrao (Research Council of
Israel, Jerusalem, 1952).

the g&' being the elements of the inverse of Cartan's
matrix,

T=O J=1 3 W=(200 ~ )

Therefore, we have to arrange our energies in the three
groups E(0), E(2, 4, ), E(1, 3, ). These three
expressions can be included in the one equation

V=a+2b(11 4)+cLg(W) —4(j+1)j; (8)

a, 5, and c are to be chosen so that the three equations
for V equal to E(0), E(2, 4, ), and E(1, 3, ) will
be satisfied.

It can be shown' by group-theoretical methods that,
upon taking these averages V, the same result as
obtained in Eq. (6) can be written for the averages of
the energies belonging to the same eigenvalue of
Casimir's operator.

Fortunately, inasmuch as ground states are charac-
terized by seniority 0 or 1, they are the only members
of their group (as we have seen for J=O in j') and
therefore the energies of ground states can be obtained
directly with Racah's method. Thus for the configura-
tion j" the following formula has been obtained':

E=22A+2'I (n —1)a+ LT(T+1)——,222jb
+fg (W) 222(j—+1)jc+coulomb energy. (9)

Here E is the binding energy of e particles with angular
momentum j outside a doubly magic shell, A is the

' G. Racah, Phys. Rev. 76, 1352 (1949).

where C»" are the structure constants and e &'& are the
infinitesimal operators of the symplectic group in 2j+1
dimensions. Every irreducible representation of this
group is described by j+21numbers W(w», w;+, )
and to each such representation there corresponds an
eigenvalue,

g(W) =w1(w1+2j+1)+w1(w1+2; 1)

+ +w +~(w +~+2)
of Casimir's operator.

We return now to the energy levels. The j' levels
belong just to three diGerent 5"'s:

J=O: W= (000 ),
T=1, J=2, 4 ' W= (110 )
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single nucleon energy (the sum of its kinetic energy
and its energy of interaction with the closed shells),
while the other terms are those which represent the
mutual interaction. T is the isotopic spin, and the
fourth term is essentially the pairing energy in even-
even and odd-even nuclei. Its meaning for odd-odd
nuclei is less simple and has been explained earlier.

In the study of the binding energies of light nuclei
all the available energies, E, in a deGnite shell were
fitted to the linear combination (9). The best values of
the coeKcients were determined by a least-squares Gt,
and very good agreement was obtained between the
theoretical formula and the observed energies.

In this paper we shall attempt to clarify the basis of
Eq. (9), particularly to see to what extent the typical
density-dependent interaction effects of Eq. (2) are
already partially included. We also wish to investigate
the modifications of Kq. (9) due to the effects of three-
body interactions to see if improved agreement with
experiment may so be obtained. Our final objective will
be to see if the parameters a, b, c of Eq. (9) can be
suitably corrected for these many-body eGects ob-
tained directly from a reasonable two-body interaction.

II. DENSITY CHANGE AND THREE-BODY
CORRELATIONS

Density-dependent eGects in the eGective interaction
are in first approximation equivalent to three-body
correlation eGects. This is seen easily if we recall the
origin of the density dependence in the exclusion eGect
and in the variation of the self-consistent nuclear Geld.
If a third particle is added to a partially Glled orbit,
then its effect on the motion of particle pairs already
present appears largely through these two effects.

We include such possible correlation efFects Grst in
the simplest way by allowing for possible changes in
Kq. (9) in the interaction parameter e which deter-
mines the effective pair interaction strength. As more
particles are added, the exclusion eGects increase and
we expect a decrease in the eGective particle-particle
force. We shall assume that the change in a gives rise
to a new term proportional to the number of triplets,
so that Eq. (9) now becomes

n~+ rsn(n —1)~+
I Id+ I T(T+1)—4n]b
(n)

3

+I:g(ll') —2n(i+1)hc (1o)

This additional term is equivalent to a linear e-de-
pendence in the eGective two-body parameter a. This is

1 S
seen immediately if we re-write sn(n —1)a+ I I d as

&3)
',n(n 1)(a -',d)—+ ', n(n—-1)(nX-sd)—

' It has already been shown in a previous investigation
(reference 7), that in the case of dg~ such a cubed term improved
the agreement remarkably, the root mean square deviation be-
coming less than half its former value.

TanLz I. Experimental and calculated binding energy (in
Mev), using Eqs. (2), (3), with the modification explained in
the text.

Nucleus Exp Calc

Ca4' 19.83 20.13
Ca4' 27.75 28.07
Ca'4 38.89 39.32
Ca45 46.31 46.67
Ca4' 56.72 57.23
Ca4' 63.87 63.81
Ca" 73.95 73.50
Sc4' 24.79 24.85
Sc45 45.85 45.80
Sc4' 65.23 65.28
Sc4' 83.27 82.95
Ti'5 43.03 42.71
Ti4' 56.32 55.62
Ti" 64.84 64.54

Nucleus

Tj48
Ti49
Ti50
+47
+49
+51
Cr
Cr61
Cr"
Mn"
Fe63
Fe64
Co55
Ni56

Exp

76.50
84.62
95.54
61.41
83.23

103.44
92.87

102.02
114.25
120.42
116.17
129.76
134.63
141.19

Calc

76.59
84.56
95.57
60.89
83.26

103.46
93.10

102.30
114.44
120.61
116.67
129.78
134.05
141.22

Nuclear parameters:
a=0.397, d= —0.044, b= —1.173, 2(j+1)c=—1.788.

Coulomb parameters:
n = —0.212, p =0.348.

We have carried out calculations for the conGguration
fr~s" using Eq. (10). The procedure adopted was a
little different than the one used in reference 1. We did
not assume, for the Coulomb forces, a harmonic oscil-
lator but wrote' "

sB+-,'z(» —1)n+Pzjy.

Here 8, n, and y are free parameters. 8 represents the
Coulomb interaction with the closed shells, n is the
Coulomb interaction between 2 equivalent protons, and
L~~sf=srs or sr(s —1), whichever is integral. The last
term represents the pairing energy resulting from the
fact that two protons have a larger probability of
being found close together if their spins are oppositely
directed.

In addition to the change in handling the Coulomb
energy, we have reduced the number of free parameters
by taking A LEq. (10)j and 8 LEq. (11)]from Ca4r and
Sc". The results of the computation are given in
Table I. The experimental energies are given in rela-
tion to Ca". A11 the binding energies of the Ca isotopes
are known and are included. In the other nuclei, un-
fortunately, the situation is not so complete. No set
of energy values of odd-odd nuclei (belonging to the
same W) are known completely, so that their mean
value LEq. (7)$ cannot be included in the table. If we
compare the results in Table I to those of reference 1,
we see considerably better agreement resulting from
the n' term. Instead of a root mean square deviation of
750 kev, we obtain now 360 kev. Observing the table
more closely and comparing it to reference 1, we see
that the main improvement is at the beginning and
the end of the shell. This could be expected because by
not including the parameter d one obtains some mean
value of a, corresponding to the nuclei in the middle of

' B. C. Carlson and I. Talmi, Phys. Rev. 96, 436 (1954).
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the shell. Comparing the parameters in Table I and
reference 1, one sees that the main diGerence is that
using Eq. (10) instead of (9) enlarges a by a certain
amount —in our case by about 0.250 Mev.

We next consider briefly a further improvement in
our treatment of the many-body correlation eGects.
Thus far we have ignored the possible dependence of the
eGects on the type of nucleons interacting. Not only
is there some spin dependence in the interactions but
also the exclusion eGects depend strongly on the nature
of the interacting triplet of particles. Three protons or
three neutrons would not, because of Pauli's exclusion
principle, exhibit such an eGect in their eGective inter-
actions as long as one assumes short-range forces. To
look for such an eGect, we have repeated our calculation

(22&
by inserting in Kq. (10), instead of the term

~
~d

(22) &cVI (zl
a term

~ 3 )
—

~ 3 I
—

] 3 )
d' where 22=cV+z The.(3j q3 $3

result improves but by a nonsignificant amount. We
conclude therefore, that we cannot distinguish between
these possibilities. This difhculty arises because e is not
large enough, even for f2~2, for such a delicate com-
parison. It may be remarked however that an argument
in favor of the d' expression is given by the nice results
obtained for Ca isotopes without any cubed term. "
For j&2, the protons and neutrons fill different shells
and so it seems that we cannot in this way distinguish
between the two possibilities.

The appearance of the term discussed here cannot be
confined solely to particles outside a closed shell. We
have to expect the same sort of change in the interaction
with the closed shells, which has been represented up
to this point only by the coefficient A. The additional
extra core nucleons will alter the core energies, the
effect appearing as a term quadratic in e. Therefore
Kq. (9) and Eq. (10) would not look different if such a
term were introduced. We would only have to under-
stand that the a appearing in these equations is com-
posed of two terms:

(2= (21+(22~ (12)

Here a~ represents the expression appearing from the
interaction of the particles outside the closed shells,
the expression previously thought of as comprising the
whole of a. a2 represents the change in the single-nucleon
energy due to the eGect of density changes on the core
energies.

In the following analysis we will show the two a's to
be about equal in magnitude and opposite in sign. We
turn now to the calculation of the parameters a~, b,
and c.

III. THE WAVE FUNCTION

The usual way of treating energy levels in atomic
spectroscopy was developed by Slater. The two-body
potential is expanded in a series of Legendre poly-

"I.Talmi, Phys. Rev. 107, 326 (1957).

nomials. The integration over the angular variables of
the nucleons is carried out, and the 6nal result is a sum
of radial integrals. The form of these radial integrals
for the case we are considering here is

fe(rl r2)R (rl)R0 (r2)drldr2 (13)

Ii(v/2) = ' Rl'(r) V(r)dr,
0

where Ri ——R01, and Ii(v/2) means that one has to
substitute in Ri, v/2 instead of v."In our calculations
we have equivalent nucleons, i.e., a=b. For this case
we can always use the harmonic oscillator wave func-
tions, where the correction to the self-consistent shell
model wave functions will enter into the eGective
interaction. We can write R, (rl) =c(rl)R„1(r,) and we
obtain f2("' )=f2("@c2(rl)c2(r2), which defines a new
interaction:

V(new) (r r ) P f„(new)P„(cos~ )
k=o

To determine the wave function we have to choose v,

the spring constant. Although A: may vary quite con-
siderably over the range of configurations with which

"I.Talmi, Helv. Phys. Acta 25, 185 (1952).
'4 R. Thieberger, Nuclear Phys. 2, 533 (1956/7).
"See reference 14, p. 539, the definition ef 'A.

where R;(r) are the radial parts of the wave functions,
r~ and r2 are the coordinates of the erst and second
particle, f2(rl, r2) are the coefficients in the expansion
of the two-body potential in Legendre polynomials:

2k+ 1
fk(rl r2) = V(r2 rl)I 2(COSM12)d COS0)12

-1

where co~2 is the angle between r~ and r2.
F~ can be evaluated simply if we use a special form

of the single-nucleon wave function, the harmonic
oscillator wave functions. ""These wave functions are
determined from the single-particle potential,

U(r) = -'2220)2r2= )21(evr2

and are
4(rA0)=LR(r)/rjV1 (&,0),

where the radial part is

R„,(r) =1K„(r'+' exp( —vr')L~(+, '+*(2vr').

Ã„1 is a normalization factor and L„+1+., '+*'(21r') is an
associated Laguerre polynomial.

For the case of the harmonic oscillator wave function
one can perform a separation of the variables: r= r2 —r~,
R=2(rl+r2). One can then integrate over the angle
between r and R, and over R, and one is left with
integrals (Talmi's integrals) of the form:
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we will be dealing, gv changes much less. It has been
shown" that the mean square radius is given by (r')A„
= Lpl(A)/4vj, where p!(A) is the average of (4n+2l+3)
over the particles. As later particles have higher
quantum numbers, pl(A) is a monotonically increasing
function of A. As ((r')A„)& is proportional to A&, we get
that gv does not decrease as quickly as A&. We will
assume v to be constant for each configuration and its
value chosen from Coulomb energies. ' "

v 2 2t,

I~=c r'5 (r r,)dr= c —(vr ')'
(2l+1)!!" (21+1)!!

where (21+1)!!—= 1X3&(5&& &( (2l+1). This could be
approximated with an appropriate Gaussian potential. "
Assuming for the hard core r, =0.5X10 " cm, we ob-
tain with the value of v from the last section vr, '=0.034.
Therefore the I~ with l/0 can be neglected in com-
parison to Io.

A 8-force at the origin is characterized by having
IOWO and I~=0 for //0. Therefore a good approxi-
mation for the hard core is represented by a 8 force.
This result was obtained previously. "There it is shown
that to a first approximation the strength of the 8 force
is 47r(A'r, /m). More generally, the effect of the core is
enhanced both by many-body exclusion effects and by
the presence of the strongly attractive potential. We
write our force in the form L8(r)/rsv'*)cr V„ the a being
chosen so that the value of Io should coincide with the
one obtained for the radial part of the central poten-
tial chosen. For the case taken in the next section
n=2XLlw, '/(1+X')j, where X=rpv&. We will leave the
strength V, as a free parameter adjustable to give the
best results.

We should remark at this point, and it will be seeg.
from the results, that the hard-core term has many
characteristics of enlarging the range of the two-body
force. A larger range will have as a result large I~, l/0,
compared to Io. This same result is brought about by
the hard core because it diminishes Ip (as the hard core

' K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
{1958).

' R. D. Amado, Phys. Rev. 111,548 {1958}."M. Bauer and M. Moshinsky, Nuclear Phys. 4, 615 (1957).

IV. THE HARD CORE

When a hard core is present in the potential, Eq. (13)
presents a difficulty since the integral runs over the
core region also, and in the core region V(r) = ~. The
integral can be finite only if the wave function van-
ishes in the core region. According to Brueckner and
Gammel, "and in the notation we use in the previous
section, we make the replacement:

c'(r) V„„(r)=c5(r—r,)/Rp'(r).

The argument which will follow is independent of
whether we choose Ro or any other E.&. We obtain
therefore

is repulsive compared to the otherwise attractive force)
but does not influence the higher I~, and so I~, l/0, will
become relatively larger.

We put all the hard-core effects into the b-force and
take for the rest of the potential the integrals from
zero and not r,. According to the same argument as
given here, this is allowed and will result in a modifi-
cation of the 8-force strength.

V. THE CALCULATION OF THE PARAMETERS

Our task is to calculate the parameters a, b, and c.
For this purpose we calculate the energy levels of the
j' configuration concerned, in terms of the Slater
integrals. To calculate the Wigner force a formula is
available. " For the Majorana force we perform the
calculation in L-5 coupling and then transform" the
result to j-j coupling. This can then be used to obtain
the Bartlett force expression.

We have not considered noncentral forces. There
seems to be no conclusive evidence, in shell model
calculations, that it is necessary to include in the
effective force a tensor force term. For simplification,
therefore, we have ignored such a term. The spin-orbit
forces are mostly included by our assumption of j-j
coupling.

As we are assuming harmonic oscillator wave func-
tions, we have to calculate Talmi's integrals Eq. (15).
For this purpose we need a specific assumption of the
radial dependence of the two-body force. The question
arises of limitations imposed by taking a specifically
chosen radial dependence. As the Talmi integrals of
higher / have a higher power of r in the integrand, one
obtains that essentially I&+&/I& rpv'*=X, as long as X is
considerably smaller than one. (This argument was
also used in connection with the hard core in Sec. IV.)
As our X will be around 0.5 we see that the contribution
of integrals higher than I2 is very small. We have a few
parameters determining our potential, the strength,
the strength of the hard-core term, and to a smaller
extent X. The hard core determines Io', the strength
determines, we can say, I&, I2 will remain in certai. n
limits because X was chosen to correspond to similar
shell-model calculations. Every potential chosen would
have its own set of strength, hard-core strength, and X.
So the main integrals, Io, I», and I2 would be deter-
mined in the same way for different radial dependence.
We obtain the result that the choice of the radial
dependence does not play an important part in deter-
mining the over-all picture. According to this argument
a simple radial dependence was chosen:

exp( —r'/rp')
V(r) = V

r/r p

We assumed the same range, ro, for the different ex-

"G. Racah, Phys. Rev. 62, 438 {1942).
'0 G. Racah, Physica 16, 651 {1950).
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change forces. This is a somewhat arbitrary constant,
but as explained previously is not very decisive. By this
procedure we obtain the energy levels as functions of
the potential strength V, or more precisely, as a function
of four sorts of potential strengths, the one correspond-
ing to a Wigner force, Majorana force, Bartlett force,
and the 8-force strengths. We call them V„, V, V~,

and V„respectively.
It was mentioned in the introduction that we can

express E(0), E(even), and E(odd) in terms of the
parameters (2(, b, and c, according to formula (g). One
can then solve these three inhomogeneous equations for
the three unknowns al, b, and c in terms of the energy
combinations E(0), E(even), E(odd). 3 As mentioned in
the last paragraph, these levels can be expressed in
terms of V, V, V~, and V.. Thus we obtain al, b, and c
as functions of V, V, V~, and V,.

We have considered the configurations OP(/2 Od3/2,

1si/2 Od»2, and Of7/2 We ha.ve omitted the configuration

OP3/2 as it seems to us that the regularities seen in later
configurations do not necessarily appear in this case.

We have now described all the procedure necessary
to calculate the two-body interaction parameters of
Eq. (10). The equations relating the configuration-
dependent energy parameters and the parameters of
the Wigner, Majorana, Bartlett, and core terms in the
potential are, for the ith configuration:

The configuration label "i"runs over the configurations

fp/2 d»2 (f3/2 Pi/2 and si/2. (32 was defined in Eq. (12).
The parameters a~&" a~&" a~"' a &" etc. , are inde-
pendent of the potential strengths and Axed by the
particle angular momentum, by the type and range of
the two-body force, and by the assumed form of the
radial wave functions.

In Table II we give the relations between the param-
eters and the Slater integrals.

In calculating the parameters a~&'&, bg &'& c,"'
we assumed that v changes according to the values
derived from the experimental Coulomb energy in
reference 1. We left u2"' as a free parameter for each
configuration i.

We insert the parameters from Eq. (16) into Eq. (10).
For simplicity we omitted the parameter A and the
Coulomb energy, so that instead of considering E, we
are considering B=E—eA —Coulomb energy. For the

P„, and si/2 configurations we took the A so that E(S")
=2K(P3() E(O)3)=28(N)3) in the rest of the cases we
took A from the nucleus with one nucleon outside a
closed shell. The Coulomb energy was adjusted by use
of the parameters obtained previously.

TABLE III. The two-body interaction potential.

v~ va VB Rms

()= ()+. ()V + ()V + V + .V

b(f") =bs ")Vs+bM(') V +bB(')VB+b ")V (16)

c cw VTv+cM VM+cB VB+c~ V

With the core
Without the core

—49.0—34.0
—50,4—37.6

—7.7 21.1 0.40—10.5 ~ ~ 0.41

Configu-
ration

f7/2

Force

Wigner

Param-
eter

Majorana

Bartlett

dg2 Wigner

Majorana

Bartlett

d3g2 Wigner

Majorana

Bartlett

Px/2 Wigner

$1/2

Majorana

Bartlett

Wigner

Bartlett

Fo

1
0
0-0.21428—0.57142-0.03571
0.5
0
0.03571
1
0
0-0.2—0.6—0.05
0.5
0
0.05
1
0
0—0.22-0.56—0.03
0,5
0
0.03
1
0-0,11111—0,44444
0.38889—0.11111
1
0—0,5—1

—0.04409—0.07054—0.01763
0.03897
0.00141-0.00149—0.02204-0.03527
0.00149—0.06531-0.09706—0.02449
0.05715
0-0.00408-0.03266—0.04898.
0.00408—0.12-0.16—0.04
0.08285
0.03428
0.00714-0.06
0.08-0.00714

0.22222
0.08889-0.17778—0.17778

—0.02164-0.03463-0.00865
0.02236—0.00577—0.00396—0.01082—0,01731
0.00396—0.02721-0.04082—0,01020
0.03809—0.02857-0.01599—0.01360—0.02041
0.01599

0.02285—0.04571—0.02285
0
0
0,02285

TABI,z II. The relation between the parameters
and Slater integrals.

Fe

—0.01079—0.01727—0.00432
0.02020—0.02097-0.01102—0.00540—0.00863
0.01102

VI. RESULTS AND CONCLUSIONS

Performing the least-squares fit to the sixty energy
equations resulting from our available experimental
data parameters, which are

(22 ) d(d»2)) d(f7/2)) Vwy VM) VBp Va,

we obtain the values of V~, V~, V~, and V, which give
the best fit to the binding energies. The best values of
the parameters, for a chosen range ro ——1.40)&10 "cm,
are given in Table III. We also give the root mean
square (rms) deviation. The rms deviation is defined in
the usual way as

where the 6; are differences between the experimental
and calculated energies, X is the number of data and E
is the number of parameters.

As is seen in Table III we obtain approximately a
Serber exchange mixture, i.e., V~=V~, and a small
Bartlett contribution. This is consistent with the two-
body scattering potential. "

2' P. S. Signell and R. E. Marshak, Phys. Rev. 106, 832 (1957);
J. L. Gammel and R. M. Thaler, Phys. Rev. 107, 291 and 1337
(1957).



PHENOM ENOLOGI CAL NUCLEAR INTERACTION 719

TABLE IV. The density-dependent parameters, a2.

Configu-
ration

f7/2
~S/2

~8)/2

P 1/2

$1/2

a (obtained
from the least-

sguares fit)

0.424
0.723
0.176
2.939
1.908

a1 (calculated)

0.801
1.819
1.003
4.788
4.698

a2 (resulting)

0.377
1.096
0.827
1.849
2.790

The d's obtained were d(dye) = —0.0869, d (fjlt) = —0.0507.

be seen in the table. The configuration fr/2 /f3/g and to
some extent d5/2 are isolated and this is rejected in
having smaller density terms for them. In the other
cases there is considerable overlap: pi/2 lies near p3/2
and s1/2 lies near d5/2.

We also calculate the energies without a repulsive-
core term. The over-all agreement worsens only a little
but the exchange mixture obtained is different. It is
still true that V~—V~, although the Majorana part is
relatively somewhat larger, but the Bartlett force be-
comes larger. Table III also contains the constants for
the case where the core term is omitted. We see that
this term is not essential for the calculations of binding
energies.

The actual comparison between the calculations pre-

This result was expected since we believe that our
mixture should not dier much from the free-nucleon
interaction, since for small ranges Wigner and Majorana
forces are similar (they become equal for a zero-range
5-force) and start to differ only for longer ranges, but
at longer ranges the many-body correlation eGects are
much smaller. ' Our calculations show that the Bartlett
force also does not change much as a result of the corre-
lations. This result can be seen from the expression:

i tripiet, i 0/+singlet, i=0—1 22

Table IV shows the density-dependent term, a&, for
the difI'erent configurations. This term is in a way a
measure of the overlap of the wave function of the
given configuration with nearby configurations. The
results are consistent with this interpretation, as can

TABLE V. Comparison between experimental and
calculated binding energies (in Mev).

Nucleus Exp Calc Nucleus Exp Calc Nucleus Exp Calc

Siso
P80
P81
S82
C14
N14
N15
016
S84
S85
S86
Cl»
Cl87
A86
A87
Ass
+89
Ca40
018
019

19.09
13.97
26.38
35.24
13.12
12.49
23.32
35.43
20.05
27.07
36.97
26,46
45.39
34.96
43.79
55.54
61.96
70.29
12.23
16.34

18.76
14.03
26.40
35.27
12.90
12.22
23.36
35.50
19.70
26.81
36.33
26.21
45.07
34.57
43.92
55.66
62.19
70.40
13.55
16.45

F19
Ne"
Ne22
Ne28
Ne24
Na28
N~25
Mg24
Mg»
Mg28
A127
Sj28
Ca42
Ca48
ca44
ca45
cg46
Ca47
C&48

SC 48

19.97
39.45
50.17
55.36
64.25
58.52
74.76
70.65
77.98
89.10
97.35

108.94
19.83
27.75
38.89
46.31
56.72
63.87
73.95
24.79

20.49
38.97
49.91
55.04
64.44
58,10
75.02
70.48
77.98
90.03
97.18

108.61
20.07
28.04
39.24
46.66
57.20
63.82
73.46
24.84

SC45
Sq47
SC49
Ti45
Tj46
fj47

fj48
Tj49
Ti5o
V47
V49
V61
Cr»
Cr»
Cr52
Mn»
Fe58
Fe54

Co»
Nj56

45.85
65.23
83.27
43.03
56.32
64.84
76.50
84.62
95.54
61.41
83.23

103.44
92.87

102.02
114.25
120.42
116.17
129.76
134.63
141.19

45.80
65.31
82.93
42.70
55.68
64.55
76.54
84.52
95.43
61.04
83.35

103.44
93.18

102.33
114.29
120.56
116.84
130.01
134.03
141.12

sented here and the experimental binding energies is
given in Table V. We see a very good agreement, of
the same order of magnitude as the one which was
obtained with the free parameters. ' The main errors lie
in the d5~2 configuration, where 0" and Mg" have
especially large errors. It should be remarked here that
in this calculation we are assuming that the seniority is
a good quantum number, and it was shown7 for the
dgt2 configuration that this is not strictly the case. Still
we would like to stress that even for these cases the
agreement is quite good, the over-all error being 400 kev
which is only 0.5%%uz of the difference between the
smallest and largest experimental values used in the
least-squares fit.

We would like to point out that our results do not
only justify to a large extent the main assumptions of
the free-parameters method, ' but show the possibility
of calculating levels in many configurations together,
where many of the parameters are constant over the
whole range.
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