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Theoretical Calculation of the Binding Energy of 0"t
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The second-order perturbation procedure of Bolsterli and Feenberg is applied to the ground state of 0' .
The two-body interaction operator employed has a Serber exchange character with repulsive core and tensor
component, determined to give a reasonable fit to the properties of H', H', He', and He' to the accuracy of
the perturbation procedure. The resulting eigenstate for 0"is found to have energy eigenvalue —129.2 Mev
and rms radius 2.33)(10 "cm. Coulomb forces are neglected. Components in the wave function different
from the zero-order shell-model state are found to have a statistical weight of about 18%.

A

Ho=-', hco Q (P;s+q s)+U

= P H.„(i)+U.

The perturbation operator is

W= Q V 'atro(Q q.'—.—AQ-') —U, (1-2)

where V;; is the nuclear iIIteraction operator between
particles i and j, and Q= (1/A)p sl, . The depth of U
is adjusted so that TVOO

——0. The approximate eigenvalue
E is implicitly given by

I Voo I'
E—E = —

~t e"&s&(Ve—"~oV) odX—
0 E—Eo

+ — t.(M )oo—(Moo)
E—Eo—2Aco

—2(MV)oo+2MooVoo), (1-3)
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1. INTRODUCTION

ANY attempts have been made to correlate the
- ~ properties of light nuclei with two-body nuclear

interactions. ' 5 Bolsterli and Feenberg' have devised a
second-order perturbation procedure for such calcu-
lations which reduces mathematical labor, and is fairly
accurate if the zero-order wave function is a good
approximation to the actual eigenstate. %e shall
brieQy review this procedure here, in order to define
our notation.

The zero-order Hamiltonian is taken to be a sum of
single-particle harmonic oscillator Hamiltonians with
a uniform displacement in energy:

where
Eo= Voo —Moo+ (H-.)oo,

and
M = ', )too(P-qP —AQ') = (k(u/2A) P q,P. (1-5)

The operator e "~«& is transformed into manageable
form by

expl: —) (p'+q') 3f(q)

= (k/2s-g)& J~J"Jt f(v)

&&expI —(-', g) (q'+vs —2kq v)$dv, (1-6)

where g= tanh2p, k=sech2p, and p= ~1k''A. 4o is deter-
mined to minimize the energy of the physical system
(E——,s)sos). Mixing of configurations higher than the
zero-order is given by

Iw„, Is
&Vs—1=g

~o (E—E„)'
where X normalizes the perturbed wave function

1
+=—A+ Z

Ã ~~0 E—E„

JVo P

2. GENERAL RELATIONS FOR DOUBLY
MAGIC SHELLS

When we have a closed oscillator shell our wave
function may be written as a single determinant of

' P. Goldhammer and E.Feenberg, Phys. Rev. 101, 1233 (1956).' E. Feenberg and P. Goldhammer, Phys. Rev. 105, 750 (1957).
P. Goldhammer, Bull. Am. Phys. Soc. 2, 228 (1957).

This procedure, which has the elegant advantage of
involving only matrix elements with zero-order har-
monic oscillator wave functions, was originally applied
to H', H', and He4. This method has been extended,
with rehnements, 7' to third order in O'. In this case
at least the higher orders to not appear to make a
significant difference in the energy. '

In this paper we shall prescribe formulas for extending
the method to heavier nuclei whose zero-order wave
function may be taken as a closed (doubly magic)
oscillator shell, and apply them to 0'6
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8 I N DI N G ENERGY OF 0'' 677

particle orbitals: one can obtain Vpp in a manageable form:

Po —(A!) &~u,us" u~~
= (A!) ~ Q„(—1)"P„u1(1)us(2) u~(A), (2-1)

(~lplb) = 2 «*(~)»(b),
1=1

(2-2)

where the sum goes over all orbitals, and likewise

(u,b
~
p'~ c,d) =Q us*(a)us*(b)us(c)uo(d)

where I', is simply a permutation operator, and we sum

over all permutations of A particles in 2 distinct
orbitals. Introducing the density matrix

Voo=-'A(A —1) I ~ ~ Po*V hodr, dr, ~ dr„2

f
- ~u„*(1)us*(2)V12[us(1)us(2)

—us (2)us (1)]dr,drs

=-12)"" )"[(1,2I psv»I1, 2)

—(1,2~ p'V12~ 2,1)]dr1drs. (2-4)

Likewise one may express

(Ve ""'V)os= 2A (A —1) (V12e V12) oo

+A(A —1)(A —2)(Vsse " 'V13)oo

+4A(A —1)(A—2)(A —3)(V12e "~oV34)oo (2-5)

= (~lplc)(blpld), (2-3) in terms of density matrices:

—',A(A —1)(V12e " 'V12)oo

~ -~z=-', e 1~4 t ~ ((1, 2
~

p'V12 exp[—XH„,(1)—XH,,(2)]V12 exp[AH„, (1)+PHD«(2)]
~
1, 2)

—(1, 2
~
p'V12 exp[ —XH. (1)—XH.„(2)]V12exp@H.„(1)+AH.„(2)]

~
2, 1))dr1dr, , (2-5a)

A (A —1)(A —2) (V12e " ' V13)oo

f
=e "e' " P (—1)"P,(abc)(1, 2, 31p' exp[AH„, (1)+l1H„,(2)]V12 exp[—XH,«(1)]V13J .-1,2,3

Xexp[—XH„,(2)]~ a, b, c)dr1drsdrs, (2-5b)
4A (A —1) (A —2) (A —3) ( V12e 1~'V34) oo

=-', e "eo ". t P (—1)"P„(abCd)(1, 2, 3 41 p4 eXpPH- (1)+AH„,(2)]V12V34
J v 1,2,3,4

Xexp[—XH„,(1)—XH„.(2)]~43, b, c, d)dr1 dr4, (2-5c)

where Hogs Ego, and P„(a——bc) simply permutes 43, b, c

over 1, 2, 3. Equation (1-6) is employed to handle

g
—XIIp80

If V» is merely a function of r» ——r1—r2 we have

(1,2~ p'V12(1,2) = V12(1,2I p'~ 1,2), but in general we

shall consider an interaction operator with exchange

character so that it will involve the projection operators

Po(1,2) = (1/16) (1—431 sss)(3+~1 ~2)

(singlet-even), (2-6a)

P1(1,2) = (1/16) (3+431.432) (1—~1 ~2)

(triplet-even), (2-6b)

Ps(1,2) = (1/16) (1—ss1. 432) (1—~1 ~2)

(singlet-odd), (2-6c)

Ps(1,2) = (1/16) (3+ss1.4s2) (3+~1 ~2)

(triplet-odd), (2-61)

1324—1432—3214—4231,

3412—4321,

1342—1423—3241—4213,

2314—2431—3124—4132,

2413—3142—4123—2341,

3421—4312,

(2-7a)

(2-7b)

(2-7c)

(2-7d)

(2-7e)

(2-7f)

and so we must perform a sum on spin and isobaric spin
functions before taking V» outside the density matrix.
For a closed shell we may perform our sum over the
spin, isobaric spin, and space quantum numbers
independently. The results of this evaluation are dis-

played in Table I, II, and III. Table III has been
abbreviated due to the equivalence of the sets of
permutations

as well as the tensor operator

+12 &1 ' n12&2 ' +l2 3&1 ' &2
1

under the needed operations. Furthermore 2134 is

(2-6e) readily obtained from 1243; and 2314 from 1342.
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TABLE I. Evaluation of (1,2 ip'Via, b) in o' and 'o space
for needed projection operators.

Likewise

1
Po(12)
Px
Ps
P3

Po(12)Pp(12)
P1 Pl
Pg Pg
P3 Pg
P; P;g,.

16
3
3
2

9
3
3
2

0

—3—3
1
9

—3
1
9
0

L(Z ~. ) ao.=I

= aaA (sA+1), 1s-shell

= (sA —4) (-,'A —3), 1p-shell (2-14)

(M') oo =3 (hcd/4)'(3A —1) (A —1), 1s-shell
= (hco/4)'(5A —11)(5A —9), 1p-shell (2-15)

(M V) oo is simply obtained from Voo '.

Tensor terms are of the form

(1,2 I
p'StsSt o I a,b) =C.o)cos'(tots, est.s.)

',j,——(2-Sa)

(1,2,3 I
paS»St 3 I g,b,c)= —C,o,Leos'(estop'st 3) a jg (2-Sb)

(1,2,3,4lp'StsSa4la, b, dc)

=Ceo, dl cos'(rct&)Na4) a j, (2-8c)

and tensor components in the potential will be multi-
plied by a projection operator to select tensor-even

Ls(1—~t ~a)i or tensor-odd L4 (3+~t ~a)g states.
Nonvanishing elements needed in the calculations are
displayed in Table IV.

The space part of the density matrices is easily
evaluated for closed oscillation shells.

(1lpol2) =m' '
expl —a(ctt'+pa')$, 1s-shell

(1lptl2) =2~ 'tb qa expl —-', (ql'+$2')3,
1p-shell (2-9b)

and so on.
The matrix elements of M needed in Eq. (1-3) are

also easily obtained. Let exp( —q') ~ exp( —yq') in the
oscillator orbitals; then

3. APPLICATION TO 0"
We shall consider an interaction operator that is

composed of three distinct parts:

Vta = Vg (1,2)+Vc(1,2)+ Vs (1,2)Sto. (3-1)

Vg represents a repulsive core:

Vz(1,2) =Jg exp( —rtas/R'), (3-1a)

with a short half-width; V~ is the central exchange
potential (ro) R):

Vc(1)2)= (JoPo+J&Pt+JoPa+ JaPa)
Xexp (—rto'/ro'), (3-1b)

TABLE II. Evaluation of (1,2,3
~

p'6 io,b,c) in cr ancl o space
for needed projection operators.

123 312 231 213 132 321

(d
(MV)oo= —(hco/2)

I

—Voo I

(dy

—(3/4) hco(Voo), =t. (2-16)

1s-shell

—6 —(5t2) (A—4)'Y 'y )

1p-shell

(P qa)oo= —
I

—' ' ' ' ' l4'ol

= (3/2)A, 1s-shell

= (5/2)A —4, 1p-shell

(AQ')oo= a, I:(AQ')')oo= 15/4~

and we finally have

Moo= 4(A —1)hco, 1s-shell
= —,

' (5A —11)hco, 1p-shell.

(2-10)

(2-11)

(2-12)

(2-13)

Pp(12)Pp(13)
P1 P1
P2 P2
P3 Pg
Pp PI
Pp P2
Po
P1 P2
P1 P3
P2 P3

P2 Pp
P2 P1

Pp
P3 P1
P'3 P2

Pp(12)
P1(12)
P (12)
P3(12)
Po(13)
P1 (13)
P, (13)
P3(13)

9/4
9/4
1/4

81/4
9/4
3/4

27/4
3/4

27/4
9/4

3/4
3/4

27/4
27/4
9/4
12
12

36
12
12

36

—3—3
1
9
0
0
0
0
0
0
4
0
0
0
0
0—3—3
1

—3—3
1
9

9/4
9/4
1/4

81/4
9/4—3/4—27/4

-3/4—27/4
9/4
4—3/4

-3/4
27/4—27/4
9/4—3—3

1
9—3—3

9

—9/4—9/4
1/4

81/4
9/4—3/4

-27/4
-3/4—27/4

9/4
16
3/4
3/4

27/4
27/4
9/4—12—12

36
3
3

9

3 —9/4
3 —9/4
1 2/4
9 81/4
0 —9/4
0 3/4
0 27/4
0 3/4
0 27/4
0 9/4

16 16
0 —3/4
0 —3/4
0 —27/4
0 —27/4
0 9/4
3 3
3 3
1 1
9 9
3 —12
3 —12
1 4
9 36
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TAnLz III. Evaluation of (1234~ p4G~ubcd) in n and s space for needed projection operators. Absent permutations

may be obtained from those given by simple symmetry considerations.

Po(12)Po(34)
Pp(12)P1 34)
Po(12)Po 34)
Po(12)Po(34)
P1(12)P1(34)
P1(12)Po(34)
P1(12)Po(34)
Po(12)Po(34)
Po(12)Po(34)
Po(12)Po(34)

Pp(12)
P1 (12)
PR(12)
Z (12)

1234

256
9
9
3

27
9
3

27

9
81
48
48
16

144

1243

64—9—9—3—27

—3—27
1
9

81—48—48
16

144

9/4
9/4
3/4

27/4
9/4
3/4

27/4
1/4
9/4

81/4
12
12
4

36

16
9
9—3—27
9—3—27

(g

81—12—12

36

16
3
0
0
0
3
0
0

0
9
3
3

9

1423

16—9/4—9/4—3/4—27/4
9/4—3/4—27/4
1/4
9/4

81/4—12—12
4

36

4
9/4
9/4—3/4—27/4
9/4

-3/4
-27/4

1/4
9/4

81/4—3—3
1
9

4312

4—3
0
0
0—3
0
0
1
0
9—3—3
1
9

while Vq multiplies the tensor components'. TABLE IV. Density matrices for the tensor operator described
by Eq. (2-8). All absent elements vanish.

n'q12' ——r12'/ro' and p'q12'=r12'/E', (3-2)

we may express Voo and (MV)oo for 0" in terms of the
integrals

&1(7,)=J '' 't (Ilpl1)(2lpl2)

Xexp( —8 q12)drtdrs

Vs(1&2) =[4(1—&1 &2)Js+4(3+&1'&2)JA]
X (r12/ro)' exp[ —(r12/ro)'] (3.-1c)

The specific radial forms chosen make the integrals
reduce to a simple closed form, and furthermore quali-
tatively resembles the Gartenhaus potential. "Making
the substitutions

Then

Operator

4(1—~& ~2)C»
4(1—e1 C2)C21
—,'(3+ej C2)C12
—,'(3+Vg e2)C21—'6(1—&1 &2) (1—&I &3)C»2

~I' (1—g1 ~ e2) (1—C1.C3)C132

y 6 (3+ 01 ~ C2) (3+Z1. C3) C3],2

16 (3+e1 e2) (3+CD.e3)C132
—,', (1—g1 e2) (1—es e4)C432$
y6 (1—41''C2) (1 'C3 %4)C4312

16 (3+41' 'V2) (3+C3' C4) C4321
yo(3+ C1'%2) (3+Co''74}C4312

Density
matrix element

4
12
12
4—4—12—12
4—4

12
12

21[72+2g27] 7'2[1672+4O7gs+31g4] (3-3a)

'U2(7&u) = t' I'l(1l pl2) l'exp( a'qr )dr2,—drs

7 21[72+2~27] 7/2[472+167'2+31~4] (3 3b)

Voo= 2Jn(16&1(1 i') —4&2(1 I') }
+-', (3Jo+3J1){'Ur(1,n)+'U2(1, n))

+-', (J,+9J2)(%1(1,n) —V2(1,n)), (3-3c)

and (MV) oo is easily obtained from Eq. (2-16).
The matrix elements (VeV)oo involve the integrals

I;;(a,b) = I'(1, 2l p' exp[ —asq122] exp[ —),8„,(1)—),8...(2)] exp[ —boq122]

Xexp[) 8„,(1)+)8„,(2)]li, j)dq1dq2, (3-4a)

I,, (as, )=bJI (1, 2, 3lp'exp[), 8„,(1)+),8„,(2)] exp[—asq122] exp[—),8„,(1)]

xexp[ —b'q»'] exp[ —xH„,(2)]li, j, k)dq1dqsdqs, (3-4b)

I;;41(a,b) = I' .Jf(1, 2, 3, 4l p'exp+8„, (1)+),8„,(2)]exp[ —asq12' —b'q„']

xexp[ —xH„,(1)—~8„,(2)]li, j, k, l)dqt .dq4, (3-4c)

T;,(n) =-', (k/27rg)' . I'(1, 2l p eXp[—n'(q12+V12)][(q12 V12) Sq12 512] eXp[),Hoop(1')

+)'8„,(2')]li', j') exp[—('sg)(qP+vr' —2kq1 vr+q2'+s2' —2kqs v2)]dq1dqsdv1dvs, (3-4d)
' S. Gartenhaus, Phys. Rev. 100, 900 (1955).
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T,;$(u) = (k/2srg) I
J

~ ~

J (1, 2, 3
~

p' exp[AH. „(1)+AH„,(2)] exp[ —nsqsss —ns(v& —qs)']

X{[q» (v&—qs)]' —sq»'(v& —qs)'} exP[—X H„,( 2)] (i,j, k) exP[—(sg) (qs'+nP —2kq& v.z)]

)& dq~dqsdqsdv&, (3-4e)

T; ss(n) =~ ~ ~ ~ (1, 2, 3, 4~ p' exp[XHo..(1)+94,(2)] exp[ —u'(qss'+qs4')][(qls'qs4) sq» q$4 ]
Xexp[ —XH...(1)—XH„,(2)]~i, j, k, l)dq& dqs. (3-4f)

The contributions to (VeV)oo may now be written down quite generally for any closed oscillator shell, employing
the e and ~ space evaluations given in X'ables I-IV:

(Vce ""'Vc)oo+e "s'~ (Vc)oo~s

e "sp{(1/2) [3(jo'+Jss)+Jss+9jss][I»(nn) —2Isss(n, n)+Isssg(un)]+ (1/2) [3(Jo'+jp) —jss —9jss]

)&[I»(aa) —2Isss(a, n)+Iso»(nn)]+ (1/4) [3(Jo+Js)+Js+9js]'[Isss(n, n) —Issss(n, n)]

+ (1/4)[3(jo+Jl) js 9js]'[Issl(uin) I24»(uiu)]+(1/2) [3(jp+Jl)+Js+9js]

(Vse "s'Vs)oo+e ""[(Vs)oo['
&& [3(jo+Jl) js 9js][I21$(uiu) —I142$(u,u)]), (3-Sa)

= e "soJss{64[I»$ (P,P) —Isss4 (PP)]—32[Isss (P,P) —Issss (P,P)]+8[Iso (P,P) —2I

ass�

(P,P) —Isssg (P,P)]
(Vce ""pVs)oo+(Vc)oo(Vs)ooe "so

+4[Isss(P,P) —Iss»(P,P)]—2[Isi(P,P) —2I»s(P,P) —Issn(P, P)]}, (3-5b)

=Jse—"so{(1/2) [3(Jo+Jg)+Js+9J$][I»(u p) —2Iass(n p)+Issss(n, p) ]+(1/2) [3(Jo+Js) —Js—9J,]
X[I»(u,p) —2I»s(n P)+Iso»(u P)]+4[3(jo+J~)+Js+9js][I~ps(u P) —I»ss(u P)]

[3(jp+J&) js 9js][Iss&(nip) Iss&s(nip)]+4[3( jp+ J&) js 9js][Is&s(nip) Iss&4(nip)]

—[3(jo+A)+Js+9js][I$21(uip) I142 ( sp)u]i) (i3 Sc)
(Z Vs(i,j)S;;e "'Q Vs(s,j-)S,;)pp

=44 " 'a {(Js+3js )[Tss(u) Tsss(u)+Tssss(u)]+(js 3jz )[Tu(u) Toss(u)+T4»s(u)]) (3 Sd)

Explicit evaluation of the space integrals appears to be rather arduous, but labor is minimized by noting that
one needs only the integral

J exp —Q c;;r,"r, dr) drs ——

[det~c;, ~]l
(3-6)

and various combinations of its derivatives with respect to the c,, For 0" the integrals are (we let t=e sI'):

I»(a b) =Css{4+3CP[4+a b'(1/t'+8+8)]+15Cs'[as+b' 4a'b' 4a b't —(a'+b —a'b't')])—
Iyss(a b) =Cg~{4+.3cs [4+a b'(1/P+4)]+15cs [as+b'+a'b (a /be)]+105cs a b (1/a') (1+b')P)

Iss»(a, b) Css{4+3C$'[4+a b (P+ 1/t')]+15C$'[a +b'+a bs(2a'+2b'+3a'b')])

Iss (a,b) =Css{4+3Cso[a'b'(1/t'+ 8+t')]+1SC '[a'+b' 4a'b' 4a'b'P (a'—+b' a—'b't') ])—
Isis(aib) =C os{4+3 C's[a' bs(1 /P +4)]+15C '[a.'+b'+a'b'(a'+b')]+ 105C 'a'b'(1+a') (1+b') t'-),

I (a b) C ${4+3C'La bs(t +1/P)]+15C '[a'+b'+a'fP(2a'+2bs+3a'b')])
I»$(a,b) =Css{64+3C '[—22 (a'+b') —(61a'b')+16a'O'P]+15Cs'[a'b'( —11—5[a'+b'] —3a'b' —5t'

3t'[a'+b'] (4—a'b't') —2 (a'+—b') ]+105C 'a'b'(1+a') (1+b')P}, (3-7)

I»ss(a b) =Css{64+3C$[ 22(a +b ) 61a b ]+15C$ [a'b'( 11 5a Sb' 3a'b ) 2(a'+b')])
(a b) —C ${4+3C2[2asbs(2 3ts)]+15C 4[asbs(3as+3bs+9asbs+ts 8asbsts)+a4+b4]

+105Cs'a'b'(1+a') (1+b') P}



8 I N DI NG ENERGY OI' 0''

Ip4ip(a b) =Cp {4+3Cp2[4a'b']+15Cp [a'b'(3a'+3b'+9a'b')+a'+b']}
Iptp(a b) =I»i(b u) =C2 {16+3CP[ Su— 'lu—b ]+15Cp [a b'( 1+—a'+7b'+5a'b')+a'+4b'

—a'b'P (6b'+ 5a'b') ]+105C,'a'b'(1+ a') (1+b') P}
Ippi4(a, b) =Ii4pp(b, a) =Cp'{16+3CP[—Sa' —7a'b']+15Cp'[a'b'( 1+—a,'+7b'+5a'b')+u'+4b']}

Tip (n) = (5/2)Ci'[1/P+ 18+7t']+ (35/2)Ci'[ S—n' 6—n'+6P 1—6uPP —12u'P+18u4t4]

+ (315/2) Ci"(Sn't') [(1+n')'—2t'(1+n')n'+ t'n'],

Tip/(u) = (5/2)C&'[2/P+28+6t']+ (35/2)C&'[ —12n' —7n'+t'( —5 —8u' —13u')]
+ (315/2) Cp"{P[(1+u')'+ n4] &([(1/ u) '+4n']+ t'[(1+n')' —2n'] }y (3465/2) Cp"t'u'(1+n')'

Teppi (n) = (5/2) Cp'[t'+ 1/P+ 10]+(35/2) Cp'[ —4n' —2n'],

T2i (u) = (5/2) Cir [1/t'+ 2—St']+ (35/2) Ci'[ 8u' —6n'+—4Pn'+2l'n']+ (315/2)Ci"[Su't']
X[(1+u')'—»'n'(1+n')+n'P]

Tpip (u) = (5/2)Cp7[2/t'+2+4t']+ (35/2)C pp[ —12n' —7n'+ St'n4]+ (315/2) Cp" (2t'n4) [2+n' n']-

+ (3465/2) Cp'Pu'(1+n')'t',
T4pip(n) = (5/2)Cp'(1/P+P)+ (35/2) Cp'( —4n' —2n'),

where

(3-8)

Ci= [(1+2a')(1+2b') 4a'b't']—'*) Cp= [(1+2a') (1j2b') —a'b't'] '* Cp ——[(1+2a')(1+2b')] & (3-9)

(In T terms a=b=n. )

Jg= —58.65 Mev, Jq= —107.29 Mev,

jn ——+189.75 Mev,

ro ——1.54X10 "cm—=1.54 fermis, (4-2)

R= rp/QS

yield binding energies (by our second-order perturba-
tion method')

(4-3a)

B.E.(H') = 8.48 Mev,

B.E.(He4) = 28.42 Mev,

(4-3b)

(4-3c)

and an electric quadrupole moment of 2.72)(10 '~ cm'
in H'. The resulting wave function for the three-body
system yields a Coulomb energy diGerence in H'-He'
of 0.74 Mev, compared with an experimental value of
0.76 Mev. The D-state admixture in H' is computed
to be 7%,

The charge distribution in the s-shell closely resembles
a Gaussian shape since the zero-order wave function is
Gaussian, however configuration mixing introduces
deviations from a pure Gaussian distribution. The
computed rms radii are: 1,92 fermis for H', 1.60 f for
H', and 1.46 f for He4; in reasonable agreement with

4. THE POTENTIAL

The interaction operator of Eq. (3-1) is simplified by
assuming a Serber mixture:

J2=J3=0, Jo= Jg —Jg, Jg —0.

We then determine the fi.ve parameters Jg, Jg, JB, ro,
and E. to give a reasonable representation of nuclei in
the first s-shell. The values

experiments" performed on H' and He'. One must keep
in mind, with regard to these latter results, that it is
actually the size of the system that one varies to mini-
mize the energy. The curve is very Qat in the neighbor-
hood of the eigenvalue, and consequently a small
correction to the energy from higher orders in the
perturbation expansion could result in much larger
corrections to the sizes computed here.

The use of the second-order perturbation theory
places some restrictions on our potential. For a suffi-

ciently strong repulsive core the Jz' terms in second
order would be dominant, and attractive. One must
take care that the attractive terms from the core
appearing in second order are much smaller than the
zero-order repulsive eGect. ' Ways to cope with a
stronger core in a calculation such as this have been
discussed by Clark and Feenberg, "and by Dabrowski. "

A two-body spin-orbit term in the potential would
make zero contribution to the nuclei considered here
(as long as one goes only to second-order terms), and
consequently we have not considered such a term.

S. RESULTS FOR 0"
Employing the interaction operator of Sec. 4, and

the matrix elements of Sec. 3, we have solved Eq. (1-4)
for 0".We obtain a binding energy of 129.2 Mev com-

pared to an experimental value of 127.16 Mev. Agree-
ment is not quite so good as it appears at first glance
since we have neglected Coulomb forces which in 0"
contribute nearly —14 Mev to the binding energy.

"R. Hofstadter, Anneal Review of Nnctear Science (Annual
Reviews, Inc. , Palo Alto, 1957), Vol. 7, p. 231.

'2 J. W. Clark and E. Feenberg, Phys. Rev. 113, 388 (1959)."I.Dabrowski, Proc. Phys. Soc. (I ondon) A71, 658 (1958).
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Consequently in this calculation one should shoot for
a number near 141 Mev, and we are about 8% short.

The zero-order contribution to the binding energy is
87.8 Mev (that is Es—ss fuu = —87.8 Mev, where
)tent=17. 25 Mev). The tensor force provides an addi-
tional contribution of 36.4 Mev in the second order,
and the remaining 5.0 Mev comes from the remaining
central terms in second order. It is interesting that the
second-order eGects of the central terms are so slight.
This appears to be at least partly due to the fact that
these terms are "smothered" by the larger contribution
of the tensor force.

The rms radius is calculated to be 2.33 fermis; a bit
too small for the experimental value of 2.64 fermis. ""
Here again the charge distribution is in zero order
simply the oscillator function for the first p shell.

We And that E'—1=0.22, so that mixing of con-
figurations higher than the zero order is

or about 18%. This means that the simple oscillator
shell-model's" wave function comprises about 82% of
our eigenstate. The small coniguration mixing is

'4 H. F. Ehrenberg et al. Phys. Rev. 113, 666 (1959).» M. G. Mayer, Phys. Rev. 75, 1969 (1949).
"Haxel, Jensen, and Suess, Ergeb. exakt. Naturw. 26, 244

(1952).

especially interesting in light of the fact that our
potential yields a, 7% D-state admixture in H', and
hence appears to overrate con6guration mixing.

The overshoot in radius can possibly be traced back to
the fact that we are forced to use a repulsive core in this
calculation which is weak by modern standards. "'7 '

The procedure described in this paper is currently
being applied to Ca" and 0".
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